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Asymmetric Separation of Convex Sets

Valeriu Soltan

Abstract. Based on various types of asymmetric hyperplane separation of a given
pair of convex sets K1 and K2 in the n-dimensional Euclidean space, we derive a
uniform description of existing types of separation. Our argument uses properties of
the polar cone (K1 − K2)

◦. Also, we consider asymmetric separation of convex cones
with a common apex.
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1 Introduction

Support and separation properties of convex sets are among the most important
topics in convexity. Studied by Minkowski [7, 8] on the turn of 20th century, they
became useful tools in many mathematical disciplines, especially in convex geometry,
linear analysis, convex analysis, and optimization.

We recall that nonempty convex sets K1 and K2 in the n-dimensional Euclidean
space R

n are separated by a hyperplane H ⊂ R
n provided K1 and K2 lie in the op-

posite closed halfspaces determined by H. The concept of separation was gradually
refined in the literature, and various types of separation of convex sets are known
nowadays. The existing classification and the respective terminology in this regard
is mainly due to Klee [5] and Rockafellar [9]. For instance, K1 and K2 are called
properly separated provided K1 ∪ K2 6⊂ H, and they are called strongly separated
if suitable open ρ-neighborhoods Uρ(K1) and Uρ(K2) of these sets are separated by
H. These two types of separation are the most popular in the literature due to the
existence of simple criteria (see [9], § 11), and many other types of separation are
often viewed as their derivatives.

In this paper, we deal with an alternative approach to the classification of sepa-
rating hyperplanes. Namely, we start with various types of asymmetric hyperplane
separation of convex sets, and then derive from them existing types of separation.
Also, unlike many existing results, which provide conditions for the existence of at
least one separating hyperplane, we tend to describe all such hyperplanes.

2 Preliminaries

This section contains necessary definitions, notation, and results on convex sets
in R

n (see, e. g., [9] and [11] for details). The elements of R
n are called vectors, or
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points. We denote by [u, v] and (u, v) the closed and open segments with endpoints
u, v ∈ R

n. Also, u·v will mean the dot product of u and v. The zero vector of R
n

is denoted o. A set L ⊂ R
n is called an r-dimensional plane if it is translate of a

suitable r-dimensional subspace S of R
n: L = c + S, where c ∈ R

n.

In what follows, K stands for a nonempty convex set in R
n. The open ρ-

neighborhood of K, denoted Uρ(K), is the union of all open balls Uρ(x) of radius
ρ > 0 centered at x ∈ K. Convex sets K1 and K2 are called strongly disjoint pro-
vided Uρ(K1)∩Uρ(K2) = ∅ for a suitable ρ > 0; the latter occurs if and only if the
inf -distance δ(K1,K2), defined by

δ(K1,K2) = inf{‖x1 − x2‖ : x1 ∈ K1, x2 ∈ K2},

is positive. The notations clK, intK, rintK, rbdK, and K⊥ stand, respectively, for
the closure, interior, relative interior, relative boundary, and the orthogonal com-
plement of K. The linear span of K, denoted span K, is the smallest subspace
containing K, affine span of K, denoted aff K, is the intersection of all planes con-
taining K, and dimK is defined as the dimension of aff K. Also, the direction space
and the orthospace of K are defined by dir K = span (K−K) and ort K = (dir K)⊥,
respectively.

A hyperplane in R
n is a plane which can be described as

H = {x ∈ R
n : x·e = γ}, e 6= o, γ ∈ R. (1)

Consequently, a hyperplane of the form (1) is a translate of the hypersubspace

S = {x ∈ R
n : x·e = 0}, e 6= o. (2)

Every hyperplane of the form (1) determines a pair of opposite closed halfspaces

V1 = {x ∈ R
n : x·e ≤ γ} and V2 = {x ∈ R

n : x·e ≥ γ} (3)

and a pair of opposite open halfspaces

W1 = {x ∈ R
n : x·e < γ} and W2 = {x ∈ R

n : x·e > γ}. (4)

The (negative) polar cone of a convex set K ⊂ R
n is the set

K◦ = {e ∈ R
n : x·e ≤ 0 for all x ∈ K}.

The recession cone of K is defined by

recK = {e ∈ R
n : x + λe ∈ K whenever x ∈ K and λ ≥ 0},

and the lineality space of K is the subspace given by lin K = recK ∩ (−recK).
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3 Asymmetric Separation

Definition 1. Let convex sets K1 and K2 in R
n be separated by a hyperplane

H ⊂ R
n. We will say that

1) H nontrivially separates K1 from K2 if K1 6⊂ H,

2) H strictly separates K1 from K2 if K1 ∩ H = ∅,

3) H strongly separates K1 from K2 if there is an open ρ-neighborhood Uρ(K1)
of K1 satisfying the condition Uρ(K1) ∩ H = ∅.

Remark 1. The term nontrivially separates from is, probably, new. The expression
strictly separates from is equivalent to that openly separates from used by Klee [4];
our choice here is due to the direct relation with the well established term strict

separation (see Definition 2 below). Finally, the expression strongly separates from

is introduced by Klee [4].

The following obvious lemma reformulates Definition 1 in analytic terms.

Lemma 1. For convex sets K1 and K2 in R
n and a hyperplane H of the form (1),

the assertions below hold.

1) H separates K1 and K2 if and only if e and γ can be chosen such that

sup {x1 ·e : x1 ∈ K1} ≤ γ ≤ inf {x2 ·e : x2 ∈ K2}. (5)

2) H nontrivially separates K1 from K2 if and only if e and γ can be chosen to

satisfy either of the conditions (6) and (7) below:

sup {x1 ·e : x1 ∈ K1} < γ ≤ inf {x2 ·e : x2 ∈ K2}, (6)

inf {x1 ·e : x1 ∈ K1} < sup {x1 ·e : x1 ∈ K1}

= γ = inf {x2 ·e : x2 ∈ K2}.
(7)

3) H strictly separates K1 from K2 if and only if e and γ can be chosen such

that

x1 ·e < γ ≤ inf {x2 ·e : x2 ∈ K2} ∀x1 ∈ K1. (8)

4) H strongly separates K1 from K2 if and only if e and γ can be chosen to

satisfy the inequalities (6).

The next proposition describes known results on hyperplane separation related
to Definition 1. Clearly, these results provide the existence of at least one such
hyperplane; they do not describe all possible separating hyperplanes of a given type.

Proposition 1. Given convex sets K1 and K2 in R
n, the assertions below hold.

1. If K2 is a polyhedron, then there is a hyperplane nontrivially separating K1

from K2 if and only if rintK1 ∩ K2 = ∅ (Rockafellar [9], Theorem 20.2).
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2. If K1 and K2 are disjoint and K1 contains no halfline in its boundary, then
K1 is strictly separated from K2 by a hyperplane (Klee [3]).

3. Let K1 and K2 be disjoint and closed, at least one of them being compact.
Let z1 ∈ K1 and z2 ∈ K2 be points for which δ(K1,K2) = ‖z1−z2‖. Then any
hyperplane perpendicular to the closed segment [z1, z2] and passing through
any point of the semi-open segment (z1, z2] strongly separates K1 from K2

(Minkowki [8], p. 141, for the case when both K1 and K2 are compact).

We observe that the first assertion in Proposition 1 cannot be extended to the
case of arbitrary convex sets. Namely, the following example shows that the con-
dition rintK1 ∩ cl K2 = ∅ is not sufficient for nontrivial separation of K1 from
K2.

Example 1. Let K1 and K2 be planar circular disks in R
3, given by

K1 = {(x, y, 0) : x2 + (y − 1)2 ≤ 1},

K2 = {(0, y, z) : y2 + (z − 1)2 ≤ 1}.

Both K1 and K2 are closed convex sets and rint K1 ∩K2 = ∅. It is easy to see that
the coordinate xy-plane (which contains K1) is the only plane separating K1 and
K2. Hence K1 is not nontrivially separated from K2.

The next two corollaries, which immediately follow from [12], describe all hyper-
planes separating a pair of convex bodies or strongly separating a given convex set
from another one.

Corollary 1. For convex sets K1 and K2 in R
n, the assertions below hold.

1) There is a hyperplane separating K1 and K2 if and only if any of the following

two conditions is satisfied:

(a) o /∈ int (K1 − K2),

(b) (K1 − K2)
◦ 6= {o}.

2) There is a translate of a hypersubspace (2) separating K1 and K2 if and only

if one of the vectors e and −e belongs to (K1 − K2)
◦ \ {o}.

3) For any vector e ∈ (K1 − K2)
◦ \ {o}, one has

sup {x1 ·e : x1 ∈ K1} ≤ inf {x2 ·e : x2 ∈ K2}. (9)

Consequently, any scalar γ satisfying the inequalities (5) can be used in the

description (1) of a hyperplane which separates K1 and K2.

Corollary 2. For convex sets K1 and K2 in R
n, the assertions below hold.

1) There is a hyperplane strongly separating K1 from K2 if and only if o /∈
cl (K1 − K2).
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2) If o /∈ cl (K1 −K2) and e is a vector in R
n such that one of the vectors e and

−e belongs to rint (K1 − K2)
◦, then a suitable translate of the hypersubspace

(2) strongly separates K1 from K2.

3) If there is a translate of a hypersubspace (2) strongly separating K1 from K2,

then one of the vectors e and −e belongs to (K1 − K2)
◦ \ lin (K1 − K2)

◦.

If, additionally, both K1 and K2 are bounded sets, then one of these vectors

belongs to rint (K1 − K2)
◦.

4) If o /∈ cl (K1 − K2), then for any vector e ∈ rint (K1 − K2)
◦, the inequality

sup {x1 ·e : x1 ∈ K1} < inf {x2 ·e : x2 ∈ K2} (10)

holds. Consequently, any scalar γ satisfying the inequalities (6) can be used in

the description (1) of a hyperplane which strongly separates K1 from K2.

The next theorem describes hyperplanes nontrivially separating a given convex
set from another one.

Theorem 1. For convex sets K1 and K2 in R
n, the assertions below hold.

1) There is a hyperplane nontrivially separating K1 from K2 if and only if any of

the following two conditions is satisfied:

(a) o /∈ cl (K1 − K2),

(b) o ∈ cl (K1 − K2) and (K1 − K2)
◦ \ ort K1 6= ∅.

2) There is a translate of a hypersubspace (2) nontrivially separating K1 from K2

if and only if any of the following two conditions is satisfied:

(c) o /∈ cl (K1 − K2) and one of the vectors e and −e belongs to the set

rint (K1 − K2)
◦ ∪ (rbd (K1 − K2)

◦ \ ort K1), (11)

(d) o ∈ cl (K1 − K2) and one of the vectors e and −e belongs to the set

(K1 − K2)
◦ \ ort K1.

3) If o /∈ cl (K1 − K2) and e belongs to the set (11), then one of the relations

(10) and

inf {x1 ·e : x1 ∈ K1} < sup {x1 ·e : x1 ∈ K1} = inf {x2 ·e : x2 ∈ K2} (12)

holds and any scalar γ satisfying the respective conditions (6) and (7) can be

used in the description (1) of a hyperplane which nontrivially separates K1

from K2.

4) If o ∈ cl (K1 − K2) and e ∈ (K1 − K2)
◦ \ ort K1, then the conditions (12)

hold and any scalar γ satisfying (7) can be used in the description (1) of a

hyperplane which nontrivially separates K1 from K2.
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Proof. 1) Let a hyperplane H ⊂ R
n nontrivially separate K1 from K2. We will

assume that H is described by (1) and that K1 and K2 are contained, respectively,
in the closed halfspaces V1 and V2 given by (3). By Lemma 1, one of the relations
(6) and (7) holds. The obvious equality

sup {x·e : x ∈ K1 − K2} = sup {x1 ·e : x1 ∈ K1} − inf {x2 ·e : x2 ∈ K2}, (13)

combined with (6) and (7), gives

sup {x·e : x ∈ K1 − K2} ≤ 0. (14)

Hence the set K1 − K2 is contained in the homogeneous closed halfspace

V = {x ∈ R
n : x·e ≤ 0}.

Consequently, e ∈ V ◦ ⊂ (K1 − K2)
◦.

Suppose that o ∈ cl (K1 − K2). Then (14) implies

sup {x·e : x ∈ K1 − K2} = o·e = 0,

and (13) gives
sup {x1 ·e : x1 ∈ K1} = inf {x2 ·e : x2 ∈ K2}.

The latter equality shows that γ should satisfy the conditions (7).
Under the assumption o ∈ cl (K1 − K2), suppose that e ∈ ortK1. Then

dir K1 = (ort K1)
⊥ ⊂ {e}⊥ := S = {x ∈ R

n : x·e = 0}.

As a translate of dir K1, the plane aff K1 is expressible in the form aff K1 = z+dirK1

for a suitable vector z ∈ R
n. Consequently,

K1 ⊂ aff K1 = z + dirK1 ⊂ z + S = z + {x ∈ R
n : x·e = 0}

= {x ∈ R
n : x·e = µ}, where µ = z ·e.

(15)

Comparing (1) and (15), we conclude that γ = µ and H = z + S. Hence K1 ⊂ H,
contrary to the hypothesis that H nontrivially separates K1 from K2. Thus e /∈
ortK1. The latter exclusion shows that (K1 − K2)

◦ \ ortK1 6= ∅.
Conversely, assume that any of the conditions (a) and (b) is satisfied. If (a) is

satisfied, then, by Corollary 2, there is a hyperplane H ⊂ R
n strongly separating

K1 from K2, and thus nontrivially separating K1 from K2. Suppose now that the
condition (b) is satisfied. Choose a vector e ∈ (K1 − K2)

◦ \ ort K1. Repeating the
above argument in the converse order, we conclude that the inclusion e ∈ (K1−K2)

◦

implies the existence of a hyperplane H of the form (1) separating K1 and K2, while
the exclusion e /∈ ortK1 guarantees that H does not contain K1. Summing up, K1

is nontrivially separated from K2.
2) Let a translate of a hypersubspace (2) nontrivially separate K1 from K2.

By Corollary 1, one of the vectors e and −e, say e, belongs to (K1 − K2)
◦. If
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o ∈ cl (K1 − K2), then, repeating the argument from part 1) above, we obtain
the inclusion e ∈ (K1 − K2)

◦ \ ort K1. Suppose that o /∈ cl (K1 − K2). If e ∈
rint (K1 − K2)

◦, then, by Corollary 2, the inequality (10) holds, and for any scalar
γ satisfying the condition (6), the hyperplane (1) strongly separates K1 from K2.
Finally, if e /∈ rint (K1 −K2)

◦, then e ∈ rbd (K1 −K2)
◦, and, as above, e should not

be in ortK1. Summing up, e ∈ rbd (K1 − K2)
◦ \ ort K1.

Conversely, repeating the above argument in the converse order, we obtain that
each of the conditions (c) and (d) implies the existence of a translate of a hypersub-
space (2) nontrivially separating K1 from K2.

Assertions 3) and 4) follow from Lemma 1 and the above parts 1) and 2).

Problem 1. Describe, in the spirit of Corollaries 1 and 2 and Theorem 1, all hy-
perplanes which strictly separate a given convex set from another one.

4 Weak Asymmetric Separation

In this section, we consider weak types of asymmetric separation of convex sets.
Namely, we discuss the conditions under which (at least) one of the convex sets K1

and K2 in R
n is separated from the other.

Remark 2. The following terminology on weak types of asymmetric separation of
convex sets K1 and K2 by a hyperplane H ⊂ R

n is known in the literature:

1. H properly separates K1 and K2 if one of the sets is nontrivially separated by
H from the other (Rockafellar [9, p. 95]),

2. H nicely separates K1 and K2 if one of the sets is strictly separated by H from
the other (Klee [5]).

The corollary below immediately follows from [12].

Corollary 3. For convex sets K1 and K2 in R
n, the assertions below hold.

1) There is a hyperplane nontrivially separating one of the sets K1 and K2 from

the other if and only if any of the following three conditions is satisfied:

(a) rintK1 ∩ rintK2 = ∅ (see [9, Theorem 11.3]).

(b) o /∈ rint (K1 − K2),

(c) (K1 − K2)
◦ is not a subspace,

(d) (K1 − K2)
◦ \ lin (K1 − K2)

◦ 6= ∅.

2) There is a translate of a hypersubspace (2) nontrivially separating one of the

sets K1 and K2 from the other if and only if one of the vectors e and −e
belongs to (K1 − K2)

◦ \ lin (K1 − K2)
◦.
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3) For any vector e ∈ (K1 − K2)
◦ \ lin (K1 − K2)

◦, both inequalities (9) and

inf {x1 ·e : x1 ∈ K1} < sup {x1 ·e : x1 ∈ K1}

hold. Consequently, any scalar γ satisfying the inequalities (5) can be used in

the description (1) of a hyperplane which nontrivially separates one of the sets

K1 and K2 from the other.

For the case of strict separation, we consider, following Brøndsted [2], the “po-
larity” operation K∆ on a convex set K ⊂ R

n defined by

K∆ = {e ∈ R
n : x·e < 0 ∀x ∈ K \ {o}}.

We observe that, generally, K∆ 6= rintK◦.

Theorem 2. For disjoint convex sets K1 and K2 in R
n, the assertions below hold.

1) There is a hyperplane strictly separating one of the sets K1 and K2 from the

other if and only if (K1 − K2)
∆ 6⊂ {o}.

2) There is a translate of a hypersubspace (2) strictly separating one of the sets

K1 and K2 from the other if and only if one of the vectors e and −e belongs

to (K1 − K2)
∆ \ {o}.

3) For any vector e ∈ (K1 − K2)
∆ \ {o}, one of the conditions below is satisfied:

x1 ·e < inf {x2 ·e : x2 ∈ K2} ∀x1 ∈ K1, (16)

sup {x1 ·e : x1 ∈ K1} < x2 ·e ∀x2 ∈ K2. (17)

Consequently, any scalar γ satisfying the respective conditions

x1 ·e < γ ≤ inf {x2 ·e : x2 ∈ K2} ∀x1 ∈ K1,

sup {x1 ·e : x1 ∈ K1} ≤ γ < x2 ·e ∀x2 ∈ K2

can be used in the description (1) of a hyperplane strictly separating one of the

sets K1 and K2 from the other.

Proof. 1) Let a hyperplane H ⊂ R
n strictly separate one of the sets K1 and K2

from the other. We will assume that H is described by (1) and that K1 and K2 are
contained, respectively, in the complementary halfspaces

W1 = {x ∈ R
n : x·e < γ} and V2 = {x ∈ R

n : x·e ≥ γ}.

(The case when K1 is contained is the closed halfspace V1 and K2 is in the comple-
mentary open halfspace W2 is similar.) For any points x1 ∈ K1 and x2 ∈ K2, one
has

(x1 − x2)·e = x1 ·e − x2 ·e < γ − γ = 0.
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Consequently, K1 − K2 = (K1 − K2) \ {o} is contained in the homogeneous open
halfspace

W = {x ∈ R
n : x·e < 0}, (18)

which gives the inclusion e ∈ (K1 − K2)
∆. Hence (K1 − K2)

∆ 6⊂ {o}.
Conversely, assume that (K1−K2)

∆ 6⊂ {o} and choose a vector e ∈ (K1−K2)
∆\

{o}. Then K1 − K2 is contained in the open halfspace (18). So, (x1 − x2) ·e < 0
whenever x1 ∈ K1 and x2 ∈ K2. Equivalently, x1 ·e < x2 ·e for all x1 ∈ K1 and
x2 ∈ K2. Let

γ1 = sup {x1 ·e : x1 = K1} and γ2 = inf {x2 ·e : x2 = K2}.

Then γ1 ≤ γ2 due to the inclusion K1 − K2 ⊂ W and the inequality

γ1 − γ2 = sup {x1 ·e : x1 ∈ K1} − inf {x2 ·e : x2 ∈ K2}

= sup {x·e : x ∈ K1 − K2} ≤ 0.

If γ1 < γ2, then, by Corollary 2, the hyperplane H ′ = {x ∈ R
n : x ·e = γ′}

strongly separates K1 from K2 for any choice of γ′ ∈ (γ1, γ2]. Suppose that γ1 = γ2

and put γ′ = γ1 = γ2. If there is a point x2 ∈ K2 such that x2·e = γ′, then x1·e < γ′

for all x1 ∈ K1, implying that H ′ strictly separates K1 from K2. Similarly, if there
is a point x1 ∈ K1 such that x1·e = γ′, then γ′ < x2·e for all x2 ∈ K2, implying that
H ′ strictly separates K2 from K1.

2) Let a translate, say H, of a hypersubspace (2) strictly separate one of the sets
K1 and K2 from the other. Then H is described by (1). By the argument of part
1), one of the vectors e and −e should belong to (K1 −K2)

∆ \{o}. In a similar way,
the converse assertion holds.

Assertion 3) follows from Lemma 1 and the above parts 1) and 2).

Remark 3. A description of hyperplanes strongly separating one of the convex sets
K1 and K2 from the other repeats Corollary 2 with one variation: in part 4), the
scalar γ should be chosen to satisfy (6) or the symmetric conditions

sup {x1 ·e : x1 ∈ K1} ≤ γ < inf {x2 ·e : x2 ∈ K2}.

5 Symmetric Separation

In this section, we consider symmetric separation of convex sets. Namely, we
describe the conditions under which each of the convex sets K1 and K2 in R

n is
separated from the other.

Definition 2. Let convex sets K1 and K2 in R
n be separated by a hyperplane

H ⊂ R
n. We will say that

1) H nontrivially separates K1 and K2 if K1 6⊂ H and K2 6⊂ H,

2) H strictly separates K1 and K2 if K1 ∩ H = K2 ∩ H = ∅,
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3) H strongly separates K1 and K2 if there is a scalar ρ > 0 such that

Uρ(K1) ∩ H = Uρ(K2) ∩ H = ∅.

Remark 4. Nontrivial separation is called real separation by Bair and Jongmans [1]
and definite separation in [11, Definition 10.1]. The terms strict and strong separa-
tion are used in the survey of Klee [5] and in numerous publications afterwards.

The next proposition, proved in [11, Theorem 10.6], relates Definitions 1 and 2.

Proposition 2. Let K1 and K2 be convex sets and H1 and H2 be hyperplanes in
R

n such that Hi separates (nontrivially, strictly, or strongly) Ki from K3−i, i = 1, 2.
Then there is a hyperplane containing the set H1 ∩H2 and separating (nontrivially,
strictly, or strongly) K1 and K2.

The corollary below immediately follows from Theorem 1 and Proposition 2.

Corollary 4. For convex sets K1 and K2 in R
n, the assertions below hold.

1) There is a hyperplane nontrivially separating K1 and K2 if and only if one of

the following two conditions is satisfied:

(a) o /∈ cl (K1 − K2),

(b) o ∈ cl (K1 − K2) and (K1 − K2)
◦ \ (ort K1 ∪ ortK2) 6= ∅.

2) There is a translate of a hypersubspace (2) nontrivially separating K1 and K2

if and only if one of the following conditions is satisfied:

(c) o /∈ cl (K1 − K2) and one of the vectors e and −e belongs to the set

rint (K1 − K2)
◦ ∪ (rbd (K1 − K2)

◦ \ (ort K1 ∪ ortK2)), (19)

(d) o ∈ cl (K1 − K2) and one of the vectors e and −e belongs to the set

(K1 − K2)
◦ \ (ort K1 ∪ ort K2).

3) If o /∈ cl (K1 − K2) and e belongs to the set (19), then one of the inequalities

(10), (12), and

sup {x1 ·e : x1 ∈ K1} = inf {x2 ·e : x2 ∈ K2} < sup {x2 ·e : x2 ∈ K2}

holds and the respective value of γ satisfying (5) can be used in the description

(1) of a hyperplane which nontrivially separates K1 and K2.

4) If o ∈ cl (K1 − K2) and e ∈ (K1 − K2)
◦ \ (ortK1 ∪ ort K2), then

inf {x1 ·e : x1 ∈ K1} < sup {x1 ·e : x1 ∈ K1}

= inf {x2 ·e : x2 ∈ K2} < sup {x2 ·e : x2 ∈ K2}

and any scalar γ satisfying (5) can be used in the description (1) of a hyper-

plane which nontrivially separates K1 and K2.
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Problem 2. Describe all hyperplanes which strictly separate a given pair of convex
sets K1 and K2 in R

n.

Remark 5. A description of hyperplanes strongly separating one of the convex sets
K1 and K2 from the other repeats Corollary 2 with one variation: in part 4), the
scalar γ in the description of separating hyperplane (1) can be chosen to satisfy the
conditions

sup {x1 ·e : x1 ∈ K1} < γ < inf {x2 ·e : x2 ∈ K2}.

6 Separation of Convex Cones

This section deals with various types of separation of convex cones which have
a common apex. We recall that a convex set C ⊂ R

n is called a cone with apex
a ∈ R

n provided a + λ(x − a) ∈ C whenever x ∈ C and λ ≥ 0. This definition
implies (letting λ = 0) that C contains its apex a, although a stronger condition
λ > 0 can be beneficial; see, e. g., [6]. The set ap C = C ∩ (2a−C) is called the apex

set of C. It is known that ap C is the largest plane through a contained in C (see [6]
and [11, Theorem 5.17]). Obviously, C 6= ap C if and only if C is not a plane.

The next corollary follows from [12] and Corollary 4.

Corollary 5. Let C1 and C2 be convex cones with a common apex a, and let D1 =
C1 − a and D2 = C2 − a. The assertions below hold.

1) There is a hyperplane nontrivially separating one of the cones C1 and C2 from

the other if and only if (C1 − C2)
◦ is not a subspace.

2) A hyperplane H ⊂ R
n of the form

H = {x ∈ R
n : x·e = a·e}, e 6= o, (20)

nontrivially separates one of the cones C1 and C2 from the other if and only

if one of the vectors e and −e belongs to (C1 − C2)
◦ \ lin (C1 − C2).

3) There is a hyperplane nontrivially separating C1 from C2 if and only if

(C1 − C2)
◦ \ ort C1 6= ∅.

4) A hyperplane H ⊂ R
n of the form (20) nontrivially separates C1 from C2 if

and only if one of the vectors e and −e belongs to (C1 − C2)
◦ \ ort C1.

5) There is a hyperplane nontrivially separating C1 and C2 if and only if

(C1 − C2)
◦ \ (ort C1 ∪ ortC2) 6= ∅. (21)

6) A hyperplane H ⊂ R
n of the form (20) nontrivially separates C1 and C2 if and

only if one of the vectors e and −e belongs to the set (21).
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If closed convex cones C1 and C2 with a common apex are separated by a hyper-
plane H ⊂ R

n, then H supports both C1 and C2. Consequently, ap C1 ∪ ap C2 ⊂ H
(see, e. g., [11], Theorem 9.43). In this regard, we recall the definition from [10]: a
hyperplane H sharply separates C1 and C2 provided H separates them and

C1 ∩ H = ap C1 and C2 ∩ H = ap C2. (22)

An asymmetric version of this definition is formulated as follows.

Definition 3. Let C1 and C2 be closed convex cones in R
n, with a common apex,

and let H ⊂ R
n be a hyperplane separating C1 and C2. We will say that H sharply

separates C1 from C2 if H ∩ C1 = ap C1.

The next theorem gives a criterion for sharp separation of a convex cone from
another one in terms of their polar cones.

Theorem 3. If C1 and C2 are closed convex cones in R
n with a common apex a,

then the following conditions are equivalent.

1) C1 is sharply separated from C2.

2) The set E = rint (C1 − a)◦ ∩ (a − C2)
◦ has positive dimension.

Proof. Put F1 = C1 − a and F2 = C2 − a. Then both F1 and F2 are closed convex
cones with common apex o. Furthermore, ap Fi = ap Ci − a, i = 1, 2, and the set E
from the condition 2) can be described as

E = rintF ◦

1
∩ (−F2)

◦ = rint F ◦

1
∩ (−F ◦

2
). (23)

1) ⇒ 2) Let C1 be sharply separated from C2 by a hyperplane of the form

H = {x ∈ R
n : x·e = γ}, e 6= o.

Clearly, F1 and F2 are separated by the (n − 1)-dimensional subspace

S = H − a = {x ∈ R
n : x·e = o}.

Furthermore, S sharply separates F1 from F2 due to

S ∩ F1 = (H − a) ∩ (C1 − a) = H ∩ C1 − a = ap C1 − a = ap F1,

Without loss of generality, we may assume that

F1 ⊂ V1 = {x ∈ R
n : x·e ≤ 0} and F2 ⊂ V2 = {x ∈ R

n : x·e ≥ 0}.

We assert that e ∈ E. To show the inclusion e ∈ rintF ◦
1
, we will consider

separately the cases when F1 is or is not a subspace.
Assume first that F1 is a subspace. Then F1 = ap F1 ⊂ S, which gives the

inclusion e ∈ S⊥ ⊂ F⊥

1
. Since F⊥

1
is a subspace, we obtain e ∈ F⊥

1
= F ◦

1
= rintF ◦

1
.
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Suppose now that F1 is not a subspace. Then F1 6= ap F1, and the condition
S ∩ F1 = ap F1 implies the inclusion F1 \ ap F1 ⊂ int V1. In this case, Theorem 8.6
from [11] shows that e ∈ rintF ◦

1
.

For the inclusion e ∈ (−F ◦
2
), we observe first that V2 can be expressed as

V2 = {x ∈ R
n : x·(−e) ≤ 0}.

Consequently, the inclusion F2 ⊂ V2 gives −e ∈ V ◦
2
⊂ F ◦

2
, or e ∈ −F ◦

2
.

Summing up, e ∈ rintF ◦
1
∩ (−F ◦

2
) = E, implying that dimE > 0.

2) ⇒ 1) Suppose that dimE > 0, and choose a nonzero vector e ∈ E. By the
above argument, F1 ⊂ V1 and F2 ⊂ V2 such that F1 \ ap F1 ⊂ int V1 if F1 is not a
plane, and F1 \ ap F1 = ∅ if F1 is a plane. Hence S ∩ F1 = ap F1, implying that S
sharply separates F1 from F2. Consequently, H sharply separates C1 from C2.

Analysis of the proof of Theorem 3 reveals the following corollary.

Corollary 6. Let C1 and C2 be closed convex cones in R
n, with a common apex. If

C1 is not a plane and is sharply separated from C2, then C1 is nontrivially separated

from C2.

Remark 6. The converse to Corollary 6 assertion is not true. For instance, in R
2,

the cone C1 = {(x, 0) : x ∈ R} is separated sharply but not properly from the cone
C2 = {(x, y) : 0 ≤ x, 0 ≤ y ≤ x}, while C2 is separated properly but not sharply
from C1.

Theorem 4. Let C1 and C2 be closed convex cones in R
n, with common apex a.

The following conditions are equivalent.

1) C1 and C2 are sharply separated.

2) Each of the cones C1 and C2 is sharply separated from the other.

3) The set D = rint (C1 − a)◦ ∩ rint (a − C2)
◦ has positive dimension.

Proof. The equivalence of conditions 1) and 3) is proved in [11, Theorem 10.16]
(initially given in [10] for the case when neither C1 nor C2 is a plane). Since 1)
obviously implies 2), it suffices to show that 2) ⇒ 3).

So, assume that each of the cones C1 and C2 is sharply separated from the other.
By Theorem 3, there are nonzero vectors

e1 ∈ rint (C1 − a)◦ ∩ (a − C2)
◦ and e2 ∈ rint (C2 − a)◦ ∩ (a − C1)

◦.

Obviously, the second inclusion can be rewritten as

−e2 ∈ (C1 − a)◦ ∩ rint (a − C2)
◦.

If e1 = −e2, then e1 ∈ rint (C1 − a)◦ ∩ rint (a − C2)
◦ = D. Because D is a

convex cone with improper apex o, one has (o, e1] ⊂ D, which implies the inequality
dimD > 0.
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Let e1 6= −e2. Then the open segment I = (e1,−e2) is one-dimensional. Because
(C1−a)◦ is a closed convex cone, the inclusions e1 ∈ rint (C1−a)◦ and −e2 ∈ (C1−a)◦

imply that I ⊂ rint (C1 − a)◦ (see [9, Theorem 6.1]). By a similar argument, I ⊂
rint (a − C2)

◦. So,

I ⊂ rint (C1 − a)◦ ∩ rint (a − C2)
◦ = D,

again resulting in the inequality dimD > 0.
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