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Abstract. The paper introduces an enhanced criterion of the post-quantum security
for designing post-quantum digital signature schemes based on the hidden discrete
logarithm problem. The proposed criterion requires that it is computationally impos-
sible to construct a periodic function containing a period whose length depends on the
value of a discrete logarithm in a hidden cyclic group when using public parameters
of the signature scheme. A practical post-quantum signature scheme which satisfies
the criterion is proposed.

Mathematics subject classification: 94A60, 16Z05, 14G50, 11T71, 16S50.

Keywords and phrases: finite associative algebra, non-commutative algebra, dis-
crete logarithm problem, hidden logarithm problem, post-quantum cryptography, dig-
ital signature.

1 Introduction

Currently the development of practical signature schemes is one of the challenges
in the field of cryptography [1, 2]. A signature scheme is called post-quantum if it
resists attacks that use hypothetic quantum computers. Signature schemes based
on the computational difficulty of the discrete logarithm problem (DLP) and the
factorization problem (FP), which are widely used at the present time, are not
post-quantum because both the DLP and the FP can be solved in polynomial time
with quantum computer [3, 4]. The quantum algorithms for solving each of these
problems are based on the extremely high efficiency of a quantum computer to
perform discrete Fourier transform of periodic functions that take on values in some
fixed finite group [5, 6]. The algorithms for solving the DLP (the FP) use the
reducibility of each of these two problems to the problem of finding length of the
period depending on the value of the discrete logarithm (divisor of the integer to
be factorized) [3,7]. A post-quantum signature scheme is to be based on a problem
that is different from the DLP and the FP, which has superpolynomial computational
complexity when solving it with quantum computer.

The hidden DLP (HDLP) was proposed as the base primitive of the post-
quantum public key-agreement protocols [8, 9] and post-quantum digital signature
schemes [10, 11]. The HDLP-based signature algorithms introduced earlier satisfy
the following criterion of the post-quantum security, which requires that periodic
functions, constructed on the basis of public parameters of the signature scheme,
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take on values that lie in a sufficiently large number of different groups contained in
the finite algebra used as the algebraic carrier of the cryptoscheme. However, in the
future new quantum algorithms are assumed to be developed for finding the period
length of a periodic function whose values are not limited to a single finite group or
a sufficiently small number of different finite groups.

We can propose the following enhanced criterion of post-quantum security for
designing the HDLP-based signature algorithms: construction of the periodic func-
tions containing a period depending on the value of the discrete logarithm should
be a computationally intractable problem, when using the public parameters of the
signature scheme.

This paper presents the developed signature scheme that implements the in-
troduced enhanced criterion of the post-quantum security, which is of interest for
application as a practical post-quantum signature scheme having high performance
and comparatively small size (1550 bits).

2 Notion of the HDLP and its algebraic supports

Usual DLP is defined in a finite cyclic group as finding the value x in the equation
Y = Gx, where the group elements Y and G are known; G is the generator of the
group. For example, in the Schnorr signature algorithm [12] the value G having
prime order q of sufficiently large size (≥ 160 bits) is a common parameter, Y is a
public key, and x (x < q) is the private key of the owner of the public key Y. The
quantum algorithm for finding the value x uses the periodic function f(i, j) = Y iGj

that contains a period of the length (−1, x): f(i − 1, j + x) = Y i−1Gj+x = f(i, j),
where the function f(i, j) takes on the values in the said group.

The HDLP is set in finite non-commutative associative algebras (FNAAs) [10,11]
in frame of which one can set sufficintly large number of different cyclic groups. A
hidden cyclic group of large prime order q is selected, in it the basic exponentiation
operation is performed Y = Gx. Then the masking operations ψ1 and ψ2 (each of
them is mutually commutative with the exponentiation operation) are performed
over the values Y and G: W = ψ1 (Y ) and Z = ψ2 (G) . The values W and Z are
elements of the public key in the signature schemes introduced in [10, 11]. In some
other signature algorithms [13,14] the public key includes the third element T that
is a matching element needed to provide correctness of the signature scheme. The
value T is defined by the selected private operations ψ1 and ψ2. Using the public
parameters of the known HDLP-based signature schemes one can easily compose the
periodic function f ′(i, j) = W i ◦Gj or f ′′(i, j) = W i ◦ T ◦ Gj (where ◦ denotes the
multiplication operation in the FNAA), which also contains a period of the length
(−1, x), however each of the functions f ′(i, j) and f ′′(i, j) takes on the values related
to sufficiently large number of different finite cyclic groups contained in the FNAA
used as the algebraic support of the signature scheme, therefore, the known quantum
algorithms can not be applied for finding the value x.

In the signature scheme introduced in the next section, which satisfies the en-
hanced criterion of the post-quantum security, it is assumed to use algebraic supports
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Table 1. The BVMT setting the quaternion-like FNAA with the unit (0, 1, 0, 0).

◦ e0 e1 e2 e3

e0 λe1 e0 −e3 −λe2

e1 e0 e1 e2 e3

e2 e3 e2 −e1 −e0

e3 λe2 e3 e0 λe1

Table 2. The BVMT of the quaternion-like FNAA with the unit (0, 0, 1, 0).

◦ e0 e1 e2 e3

e0 λe2 −e3 e0 −λe1

e1 e3 −e2 e1 −e0

e2 e0 e1 e2 e3

e3 λe1 e0 e3 λe2

being 4-dimensional FNAAs containing global two-sided unit, which are defined over
the ground finite field GF (p) with the characteristic equal to the prime p = 2q − 1,
where q is a 256-bit prime. For example, one can use the FNAAs described in [10,14]
or quaternion-like FNAAs with the multiplication operation defined with the basis
vector multiplication tables (BVMTs) shown as Tables 1, 2, and 3, where λ 6= 0.
(Description of the procedure for performing the multiplication operation in FNAAs
is given, for example, in [10]).

Usually the multiplication operation of two vectors A and B =
∑m−1

i=0 biei is
defined with the formula A ◦ B =

∑m−1
j=0

∑m−1
i=0 aibj(ei ◦ ej), in which products of

different pairs of basis vectors ei ◦ ej are to be substituted by a single-component
vector indicated in the so-called basis vector multiplication table (BVMT), namely,
at the intersection of the ith row and jth column.

In every of the FNAAs defined with Tables 1, 2, and 3 the set of all invertible 4-
dimensional vectors forms a finite non-commutative group with the group operation

Table 3. The BVMT of the quaternion-like FNAA with the unit (0, 0, 0, 1).

◦ e0 e1 e2 e3

e0 −λe3 e2 −λe1 e0

e1 −e2 e3 −e0 e1

e2 λe1 e0 λe3 e2

e3 e0 e1 e2 e3
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◦, the order Ω of which is described by the following formula:

Ω = p(p− 1)
(

p2 − 1
)

.

Due to the used structure of the prime p, the prime value q divides the value Ω,
therefore the group contains elements of the order q. In the above group the max-
imum order of the group elements is equal to p2 − 1, like in the case of the finite
quaternion algebra defined over the field GF (p) [8].

3 The proposed post-quantum signature scheme

The procedure for generating the public key includes the following steps:
1. Select at random an invertible vector U that is a generator of certain finite

cyclic group with the order p2−1 and compute the vector G = U
p
2
−1
q that has order

equal to the prime q.

2. Select at random invertible vectors X and D with the order p2 − 1, which
satisfy the conditions X ◦D 6= D ◦X, X ◦G 6= G ◦X, and D ◦G 6= G ◦D.

3. Generate two random natural numbers x < q and t < q.

4. Compute the vectors Z1 = ψD (G ◦ U) = D ◦ G ◦ U ◦ D−1 and Z2 =
ψX

(

Gt ◦ U
)

= X ◦Gt ◦ U ◦X−1.

5. Compute the vectors W1 = ψX (Gx) = X ◦ Gx ◦X−1 and W2 = ψD

(

Gtx
)

=
D ◦Gtx ◦D−1.

The public key constitutes two pairs of the vectors (Z1,W1) and (Z2,W2) . All
other values used in the public-key generation procedure, except the integers q and p,
are secret. The set of secret values that are needed to compute a signature (i. e., the
vectors X, D, G, U, and the integers x and t) represent the private key. Computing
the private key from the public one is the proposed version of the HDLP that is used
as the base primitive of the developed signature scheme described as follows.

Procedure for generation of the signature (h, s, S) to the electronic document M :
1. Select two random integers w < q and u < q and compute the vector K =

Gw ◦ Uu.

2. Generate a random integer k < q and compute the vectors V1 = X ◦Gk ◦K ◦

D−1 and V2 = X ◦Gtk ◦K ◦D−1.

3. Using some specified 256-bit hash-function fh compute the hash value h from
the documentM to which the vectors V1 and V2 are concatenated: h = fh(M,V1, V2).
The value h is the first signature element.

4. Then compute the second signature element s: s = k − xh mod q.

5. Compute the third signature element in the form of the vector S = X ◦Gw ◦

Uu−s ◦D−1.

Signature verification procedure is executed as follows:

1. Compute the vector V ′

1 = W h
1 ◦ S ◦ Zs

1 .

2. Compute the vector V ′

2 = Zs
2 ◦ S ◦W h

2 .

3. Compute the value h′ = fh (M,V ′

1 , V
′

2) .
4. If h′ = h, then the signature is accepted as genuine. Otherwise it is rejected.
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The masking operations ψX and ψD define two different automomorphism maps
of the FNAA used as algebraic support of the developed signature scheme, therefore
each of the above two operations is mutually commutative with the exponentiation
operation and the signature scheme performs correctly.

Correctness proof of the signature scheme is as follows:

V ′

1 =
(

X ◦Gx ◦X−1
)h

◦
(

X ◦Gw ◦ Uu−s ◦D−1
)

◦
(

D ◦G ◦ U ◦D−1
)s

=

= X ◦Gxh ◦Gw ◦ Uu−s ◦Gs ◦ U s ◦D−1 = X ◦Gxh ◦Gk−xh ◦Gw ◦ Uu ◦D−1 =

= X ◦Gk ◦Gw ◦ Uu ◦D−1 = X ◦Gk ◦K ◦D−1 = V1;

V ′

2 =
(

X ◦Gt ◦ U ◦X−1
)s

◦
(

X ◦Gw ◦ Uu−s ◦D−1
)

◦
(

D ◦Gt ◦D−1
)h

=

= X ◦Gts ◦ U s ◦Gw ◦ Uu−s ◦Gtxh ◦D−1 =

= X ◦Gt(k−xh) ◦Gtxh ◦ Uu ◦Gw ◦D−1 = X ◦Gtk ◦K ◦D−1 = V2;
{

V ′

1 = V1; V
′

2 = V2

}

⇒ fh

(

M,V ′

1 , V
′

2

)

= fh (M,V1, V2) ⇒ h′ = h.

Thus, the correctly computed signature (h, s, S) passes the verification procedure as
genuine signature.

4 Discussion and conclusion

To define computaional complexity of constructing a periodic function containing
period depending on the value x, the value U has been imbedded in the public key
elements Z1 and Z2, which masks well the potential periodicity connected with
x. However, when performing the signature verification you need to eliminate the
influence of the vector U , which depends on a random value s, so the third element
of the signature is used in the form of the vector S calculated depending on the value
U s. To prevent the possibility of using the third element of the signature (which is
included as a multiplier of the first degree in the signature verification equation) for
signature forgery, the proposed signature scheme uses a double verification equation
as compared with the signature schemes [11,13] used as prototype.

The proposed post-quantum signature scheme is of practical interest, since it has
sufficiently high performance and low size of the public key (about 4100 bits) and of
the signature (about 1550 bits) in comparison with the candidates for post-quantum
signature standard which were proposed in the framework of the world competition
for the development of post-quantum two-key cryptosystems [2,16].

The introduced signature scheme uses computations in cyclic hidden group. A
more efficient masking of the periodicity of the periodic functions, which depends
on the private value x, is supposed to be provided when using the commutative
hidden group with 2-dimensional cyclicity (a group generated by the generator sys-
tem containing two elements G and U of the same order). However, some particular
FNAA are to be used as algebraic carries to implement this idea. To set new specific
FNAAs one can use unified methods [10,17] for defining FNAAs of an arbitrary even
dimension.
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