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New Form of the Hidden Logarithm Problem

and its Algebraic Support

D.N. Moldovyan

Abstract. The paper introduces a new form of the hidden discrete logarithm problem
defined over finite non-commutative associative algebras containing two-sided global
unit and sets of local left-sided and right-sided units. The proposed form is charac-
terized in using a new mechanism for masking the finite cyclic group in which the
base exponentiation operation is performed. Local units act in frame of subsets of
non-invertible vectors and are used as elements of the private key in the proposed
post-quantum digital signature scheme. A new 4-dimensional algebra is introduced as
algebraic support of the proposed cryptoscheme. Formulas describing units of different
types are derived.
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1 Introduction

One of current challenges in the area of cryptography relates to the development
of the post-quantum public-key cryptoschemes suitable for wide practical applica-
tion [1, 2]. A cryptographic scheme is called post-quantum if it can resist attacks
performed with using hypothetic quantum computers for which there are known
algorithms solving the discrete logarithm problem (DLP) and factorization prob-
lem in polynomial time [3, 4]. The post-quantum public-key cryptoschemes should
be based on computationally difficult problems having superpolynomial complexity
when solving them on quantum computers.

Earlier the hidden DLP (HDLP) was proposed as the base primitive for post-
quantum public key-agreement protocols [5, 6]. That form of the HDLP has been
defined in a finite non-commutative group Γ as follows. Suppose G is a generator of
some finite cyclic group having prime order of sufficiently large size. Then the DLP
is set as finding a natural number x < q satisfying the equation Y = Gx, where the
values G and Y are known. In the HDLP [5] the value Y is masked, i. e. instead
of the value Y other value Y ′ is given that is an element of another cyclic group
representing a subset of elements of the group Γ.

Recently [7,8] new forms of the HDLP have been proposed, in which both values
G and Y are masked in some given values G′ and Y ′ contained in two different finite
cyclic groups representing subsets of a finite non-commutative associative algebra
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(FNAA). The last forms have been used as the base primitive of the proposed post-
quantum digital signature schemes. The last forms of the HDLP have been set in
the FNAAs containing large sets of the global single-sided units. Homomorphism
maps have been used as the masking mechanism.

The present paper introduces a new form of the HDLP with masking the both
values Y and G, which suits well for designing the signature schemes. The proposed
form is characterized in using two simple masking mechanisms each of which is
performed as one multiplication operation, namely, as the multiplication by the
right-sided unit used as the left operand or the multiplication by the left-sided
unit used as the right operand. The next section of the paper describes a new 4-
dimensional FNAA as an appropriate algebraic support of the proposed form of the
HDLP and the intoduced postquantum signature scheme.

2 A 4-dimensional FNAA used as algebraic support

A finite m-dimensional algebra represents a vector space defined over a finite
field, for example, over the ground finite field GF (p), in which the vector multi-
plication operation (distributive relative to the addition operation) is additionally
defined. If the multiplication operation (denoted as ◦) is non-commutative and
associative, then the algebra is FNAA. Suppose e0, e1, ... em−1 are the basis vec-
tors. A vector V is denoted in the following two forms: A = (a0, a1, . . . , am−1) and
A = a0e0 + a1e1 + · · · + am−1em−1, where a0, a1, . . . , am−1 ∈ GF (p).

Usually the multiplication operation of two vectors A and B =
∑m−1

i=0 biei is
defined with the formula

A ◦ B =

m−1
∑

j=0

m−1
∑

i=0

aibj(ei ◦ ej),

in which products of different pairs of basis vectors ei ◦ej are to be substituted by a
single-component vector indicated in the so called basis vector multiplication table
(BVMT). Every cell of the BVMT contains a single-component vector λek, where
λ ∈ GF (p) is called a structural coefficient. If λ = 1, then the content of the cell
is denoted as ek. One usually assumes that the left operand ei defines the row and
the right one ej defines the column. The intersection of the ith row and jth column
defines the cell indicating the value of the product ei ◦ ej .

2.1 The BVMT and the invertibility condition

In the case of using the BVMT shown in Table 1 the vector equation defining
the value of left-sided units and having the form X ◦ A = A, where the vector
X = (x0, x1, x2, x3) is an unknown value, can be reduced to the following system of
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Table 1. The BVMT setting the 4-dimensional FNAA (λσ 6= 1).

◦ e0 e1 e2 e3

e0 λe0 λe1 e0 e1

e1 e0 e1 σe0 σe1

e2 λe2 λe3 e2 e3

e3 e2 e3 σe2 σe3

four linear equations with the unknowns (x0, x1, x2, x3) :



















(λx0 + x1) a0 + (x0 + σx1) a2 = a0;

(λx2 + x3) a0 + (x2 + σx3) a2 = a2;

(λx0 + x1) a1 + (x0 + σx1) a3 = a1;

(λx2 + x3) a1 + (x2 + σx3) a3 = a3.

(1)

Perfoming the following substitution of the variables u1 = (λx0 + x1) ; u2 =
(x0 + σx1) ; u3 = (λx2 + x3) ; and u4 = (x2 + σx3) one can get the solution u1 = 1;
u2 = 0; u3 = 0; and u4 = 1 that is independent of the value A. From the last
solution we get the following two independent systems of two linear equations with
the unknowns (x0, x1) and (x2, x3) respectively:

{

λx0 + x1 = 1;

x0 + σx1 = 0;
(2)

{

λx2 + x3 = 0;

x2 + σx3 = 1.
(3)

Solving the last two systems we get the following value of the global left-sided unit
(it is called global since it acts on all elements of the considered FNAA):

EL =

(

σ

λσ − 1
,

1

1 − λσ
,

1

1 − λσ
,

λ

λσ − 1

)

. (4)

The vector equation A ◦ X = A defining the value of the right-sided units reduces
to the following system with the unknowns (x0, x1, x2, x3) :



















(λx0 + x2) a0 + (x0 + σx2) a1 = a0;

(λx1 + x3) a0 + (x1 + σx3) a1 = a1;

(λx0 + x2) a2 + (x0 + σx2) a3 = a2;

(λx1 + x3) a2 + (x1 + σx3) a3 = a3.

(5)

Perfoming the following substitution of the variables z1 = (λx0 + x2) ; z2 =
(x0 + σx2) ; z3 = (λx1 + x3) ; and z4 = (x1 + σx3) one can get the solution z1 = 1;
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z2 = 0; z3 = 0; and z4 = 1 that is independent of the value A. Computation of the
inverse variable substitution gives the following formula for the global right-sided
unit

ER =

(

σ

λσ − 1
,

1

1 − λσ
,

1

1 − λσ
,

λ

λσ − 1

)

. (6)

Comparison of the formulas (4) and (6) shows that the considered algebra contains
the unique global two-sided unit E = EL = ER = (e0, e1, e2, e3) .

If for a vector A the equation X◦A = E has a solution, then the vector A is called
invertible. The last vector equation reduces to the following two independent systems
of two linear equations with the unknowns (x0, x1) and (x2, x3) correspondingly:

{

(λa0 + a2) x0 + (a0 + σa2) x1 = e0;

(λa1 + a3) x0 + (a1 + σa3) x1 = e1;
(7)

{

(λa0 + a2) x2 + (a0 + σa2) x3 = e2;

(λa1 + a3) x2 + (a1 + σa3) x3 = e3.
(8)

Each of the last two systems has the same determinant ∆A :

∆A = (λa0 + a2) (a1 + σa3) − (λa1 + a3) (a0 + σa2) = (1 − λσ) (a1a2 − a0a3) (9)

If ∆A 6= 0, then the vector A is invertible, i. e. we have the following invertibility
condition:

a1a2 6= a0a3. (10)

2.2 Local units connected with non-invertible vectors

If coordinates of a vector G = (g0, g1, g2, g3) satisfy the condition g1g2 = g0g3,

then the vector G is non-invertible. However, some non-invertible vectors can be
locally invertible. Such non-invertible vectors are generators of finite cyclic groups
contained in the considered FNAA. Besides, to some fixed locally invertible vector
G a large set of local left-sided units and a large set of right-sided units may relate.
Each of the latter sets contains invertible and non-invertible 4-dimensional vectors.

To derive the formula describing local left-sided units one should consider the
solutions of the vector equation X ◦ G = G that reduces to the following two inde-
pendent systems:

{

(λg0 + g2)x0 + (g0 + σg2) x1 = g0;

(λg1 + g3)x0 + (g1 + σg3) x1 = g1;
(11)

{

(λg0 + g2)x2 + (g0 + σg2) x3 = g2;

(λg1 + g3)x2 + (g1 + σg3) x3 = g3.
(12)

The determinant of each of the latter systems is equal to zero. The auxiliary deter-
minants of the system (11) are

∆0 = g0 (g1 + σg3) − g1 (g0 + σg2) = σ (g0g3 − g1g2) = 0.
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∆1 = g1 (λg0 + g2) − g0 (λg1 + g3) = g1g2 − g0g3 = 0.

For the system (11) we have p solutions described by the formula x1 = g0−(λg0+g2)x0

g0+σg2
,

where x0 = 0, 1, . . . , p − 1, if g0 + σg2 6= 0, or by the formula x0 = g0−(g0+σg2)x1

λg0+g2
,

where x1 = 0, 1, . . . , p − 1, if λg0 + g2 6= 0.

The auxiliary determinants of the system (12) are also equal to zero:

∆2 = g2 (g1 + σg3) − g3 (g0 + σg2) = g1g2 − g0g3 = 0.

∆3 = g3 (λg0 + g2) − g2 (λg1 + g3) = λ (g0g3 − g1g2) = 0.

For the system (12) we have p solutions described by the formula x3 = g2−(λg0+g2)x2

g0+σg2
,

where x2 = 0, 1, . . . , p − 1, if g0 + σg2 6= 0, or by the formula x2 = g2−(g0+σg2)x3

λg0+g2
,

where x3 = 0, 1, . . . , p − 1, if λg0 + g2 6= 0.
Thus, for the non-invetible vector G coordinates of which satisfy the condition

g0 + σg2 6= 0 there exist p2 different left-sided units L = (l0, l1, l2, l3) described by
the formula

L =

(

x0,
g0 − (λg0 + g2)x0

g0 + σg2
, x2,

g2 − (λg0 + g2)x2

g0 + σg2

)

, (13)

where x0, x2 = 0, 1, . . . , p − 1. One can easily show that the set (13) contains p2 − p

invertible and p non-invertible elements of the considered FNAA. The subset of the
local left-sided units L′ that are non-invertible vectors of the considered 4-dimensinal
FNAA is described as follows (for the case g0 6= 0):

L′ =

(

x0,
g0 − (λg0 + g2) x0

g0 + σg2
,
g2

g0
x0,

g0g2 − (λg0 + g2) g2x0

g2
0 + σg0g2

)

, (14)

where x0 = 0, 1, . . . , p − 1.

The formula describing the set of the local right-sided units relating to the non-
invertible vector G can be derived from the vector equation G◦X = X that reduces
to the following two independent systems of two linear equations

{

(λg0 + g1)x0 + (g0 + σg1) x2 = g0;

(λg2 + g3)x0 + (g2 + σg3) x2 = g2;
(15)

{

(λg0 + g1)x1 + (g0 + σg1) x3 = g1;

(λg2 + g3)x1 + (g2 + σg3) x3 = g3.
(16)

The main determinant of each of the systems (15) and (16) is equal to zero. The
auxiliary determinants of the system (15) are

∆0 = g0 (g2 + σg3) − g2 (g0 + σg1) = σ (g0g3 − g1g2) = 0.

∆2 = g2 (λg0 + g1) − g0 (λg2 + g3) = g1g2 − g0g3 = 0.
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For the system (15) we have p solutions described by the formula x2 = g0−(λg0+g1)x0

g0+σg1
,

where x0 = 0, 1, . . . , p − 1, if g0 + σg1 6= 0, or by the formula x0 = g0−(g0+σg1)x2

λg0+g1
,

where x1 = 0, 1, . . . , p − 1, if λg0 + g1 6= 0.

The auxiliary determinants of the system (16) are also equal to zero:

∆1 = g1 (g2 + σg3) − g3 (g0 + σg1) = g1g2 − g0g3 = 0.

∆3 = g3 (λg0 + g1) − g1 (λg2 + g3) = λ (g0g3 − g1g2) = 0.

For the system (16) we have p solutions described by the formula x3 = g1−(λg0+g1)x1

g0+σg1
,

where x2 = 0, 1, . . . , p − 1, if g0 + σg1 6= 0, or by the formula x1 = g1−(g0+σg1)x3

λg0+g1
,

where x3 = 0, 1, . . . , p − 1, if λg0 + g1 6= 0.

Thus, for the non-invetible vector G coordinates of which satisfy the condition
g0 + σg1 6= 0 there exist p2 different right-sided units R = (r0, r1, r2, r3) described
by the formula

R =

(

x0, x1,
g0 − (λg0 + g1) x0

g0 + σg1
,
g1 − (λg0 + g1)x1

g0 + σg1

)

, (17)

where x0, x1 = 0, 1, . . . , p − 1. One can easily show that the set (17) contains p2 − p

invertible and p non-invertible elements of the considered FNAA.

The subset of the local right-sided units R′ that are non-invertible vectors of the
considered 4-dimensinal FNAA is described as follows (for the case g0 6= 0):

R′ =

(

x0,
g1

g0
x0,

g0 − (λg0 + g1)x0

g0 + σg1
,
g0g1 − (λg0 + g1) g1x0

g2
0 + σg0g1

)

, (18)

where x0 = 0, 1, . . . , p − 1.

Let us consider the non-invertible vector G satisfying the conditions g0 +σg2 6= 0
and g0 + σg1 6= 0. Only one non-invertible vector E′ is contained simultaneously in
the sets (14) and (18). The value E′ can be computed substituting the value

x0 =
g2
0

λg2
0 + g0g1 + g0g2 + σg1g2

(19)

in (14) or in (18).

The vector E′ is the unit of the cyclic group generated by the vector G. For
example, for the fixed values p = 2q + 1, where q = 30894397013 is a prime, λ =
1234567, σ = 809, and G = (160, 800, 400, 2000) computation of the value E′ using
the formulas (18) and (19) gives the same result as computation of the value

Gp−1 = (52415881640, 14924232092, 7462116046, 37310580230) = E′.
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3 The proposed form of the HDLP and post-quantum signature

scheme

Suppose there are given the 512-bit prime p = 2q + 1, where q is also prime, the
structural coefficients λ and σ such that λσ 6= 1. Then one can generate the public
key in the form of two vectors Y ′ and G′ as follows:

1. Select at random the non-invertible vector G that is a generator of some finite
cyclic group having the order equal to q.

2. Generate two random natural numbers x0, x2 and, using the formula (13),
compute the local left-sided unit L.

3. Generate two random natural numbers x0, x1 and, using the formula (17),
compute the local right-sided unit R.

4. Compute the vector G′ = G ◦ L.

5. Generate a random natural number x and compute the vector Y ′ = R ◦ Gx.

The private key connected with the public key Y ′, G′ represents the values G, L,

R, and x. Finding the private key from the public key represent the proposed form
of the HDLP that is put into the base of the following digital signature scheme.

Generation of the signature (v, s) to the electronic document M is to be per-
formed as follows:

1. Select a random integer k < q and compute the vector U = R ◦ Gk ◦ L.

2. Using some specified hash-function Fh compute the hash value v from the
document M to which the vector U is cocatenated: v = Fh(M,U). Then compute
the value s = k − xv mod q.

Signature verification procedure is executed as follows:

1. Compute the vector U? = Y ′v ◦ G′s and the value v? = Fh(M,U?).

2. If e? = e, then the signature is accepted as genuine. Otherwise it is rejected.

The signature scheme performs correctly due to the commutativity of the ex-
ponentiation operation Gt and the left (right) multiplication by a right-sided (left-
sided) unit R ◦ G (G ◦ L): (R ◦ G)t = R ◦ Gt; (G ◦ L)t = Gt ◦ L.

Correctness proof of the signature scheme is as follows:

U? = Y ′v ◦ G′s = R ◦ Gxv ◦ G ◦ Ls = R ◦ Gxv ◦ Gs ◦ L = R ◦ Gxv ◦ Gk−xv ◦ L =

= R ◦ Gk ◦ L = U ⇒ Fh(M,U?) = Fh(M,U) ⇒ v? = v.

(20)
Thus, the correctly computed signature (v, s) passes the verification procedure as
genuine signature.

4 Conclusion

A new form of the HDLP and a post-quantum signature scheme on its base have
been introduced. A new 4-dimensional FNAA with two-sided global unit has been
considered as algebraic support of the introduced HDLP. The proposed design of the
signature scheme can be potentially implemented using different algebraic supports,
for example, finite algebra of quaternions and 6-dimensional FNAA described in [9].
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Another direction of an independent research can be attributed to combining the
masking mechanism of the proposed form of the HDLP with the masking mechanisms
described in [8, 10]
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