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Commutative Weakly Tripotent Group Rings

Peter V. Danchev

Abstract. Very recently, Breaz and Ĉımpean introduced and examined in Bull.
Korean Math. Soc. (2018) the class of so-called weakly tripotent rings as those rings
R whose elements satisfy at leat one of the equations x

3 = x or (1 − x)3 = 1 − x.
These rings are generally non-commutative. We here obtain a criterion when the
commutative group ring RG is weakly tripotent in terms only of a ring R and of a
group G plus their sections.
Actually, we also show that these weakly tripotent rings are strongly invo-clean rings

in the sense of Danchev in Commun. Korean Math. Soc. (2017). Thereby, our
established criterion somewhat strengthens previous results on commutative strongly
invo-clean group rings, proved by the present author in Univ. J. Math. & Math.
Sci. (2018). Moreover, this criterion helps us to construct a commutative strongly
invo-clean ring of characteristic 2 which is not weakly tripotent, thus showing that
these two ring classes are different.

Mathematics subject classification: 16S34; 16U99; 20C07.
Keywords and phrases: Tripotent rings, weakly tripotent rings, strongly invo-clean
rings, group rings.

1 Introduction and Background

Throughout the text of the current article all rings into consideration are as-
sumed to be associative, possessing the identity element 1 which differs from the
zero element 0. Our terminology and notation in both ring and group theories are
mainly standard and some additional notions will be specified in the sequel. For
instance, for a ring R, the symbol U(R) denotes the set of all units in R, Id(R) the
set of all idempotents in R, Nil(R) the set of all nilpotents in R which, in the com-
mutative case, coincides with the nil-radical N(R), and J(R) the Jacobson radical
of R. Likewise, for an abelian group G, the letter G2 stands for the subgroup of G
consisting of all elements of the type {g2 | g ∈ G}. As usual, RG designates the
group ring of G over R with augmentation ideal I(RG;G) generated by elements of
the sort {g − 1 | g ∈ G}.

An element t of a ring R is called tripotent if the equality t3 = t holds. If each
element of R is with this property, R is said to be tripotent as well. The complete
description of such rings is well-known as a subdirect product (= a special subring
of a direct product) of a family of copies of the fields Z2 and Z3.

On the other side, generalizing the aforementioned concept, in [1] were explored
the so-called weakly tripotent rings that are rings in which at least one of the elements
t or 1− t is a tripotent. It is immediate that weakly tripotent rings of characteristic
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3 are themselves tripotent as (1−t)3 = 1−t3 = 1−t yields that t3 = t. Interestingly,
for any element y from the Jacobson radical J(R) of such a ring R, it must be that
y2 = 2y. To look at this, we have that y3 = y or (1 − y)3 = 1 − y. In the first
version, y(1 − y2) = 0 gives that y = 0 as 1 − y2 ∈ U(R), so that y2 = 0 = 2y. In
the second one, we observe that (1− y)2 = 1 as 1− y ∈ U(R) and hence y2 = 2y, as
promised. This substantiates that y2 = 2y is always true. Replacing y → −y allows
us to get that 4y = 0.

These rings are, in general, non-commutative and there is no a complete de-
scription of their structure yet. However, a complete characterization theorem for a
commutative ring R to be weakly tripotent is [1, Theorem 14]. However, since the
direct product of an arbitrary family of Boolean rings is still a Boolean ring, we will
state below this theorem in an equivalent form, but in a manner which is slightly
more transparent and convenient for direct applications, as follows: A commutative
ring R is weakly tripotent if, and only if, R ∼= R1 × R2, where R2 = {0} or x3 = x
holds ∀ x ∈ R2 with 3R2 = {0}, and R1 = {0} or R1 is a subdirect product of
R11 × R12 with 2kR1 = {0} for some k = 1, 2, 3 (or, in other words, 3 ∈ U(R1)),
where R11 and R12 are rings such that either R11 = {0} or R11/J(R11) ∼= Z2 with
y2 = 2y ∀ y ∈ J(R11), and R12 is a Boolean ring. Resultantly, it readily follows
that each commutative weakly tripotent ring of even characteristic (i.e., of charac-
teristic 2k for k = 1, 2, 3) is nil-clean in the sense that the quotient-ring R/N(R)
is Boolean or, equivalently, the factor-ring R/J(R) is Boolean with nil J(R). Be-
sides, an pretty easy consequence is that (compare also with [1, Corollary 9]) a
ring R is weakly tripotent such that 3 ∈ U(R) and Id(R) = {0, 1} if, and only if,
R/J(R) ∼= Z2 with z2 = 2z for any z ∈ J(R). A further characterization of arbitrary
weakly tripotent rings (possibly non-commutative) is given in [5].

Our major motivation to write up this paper is to use the cited above theorem in
order to deduce a full criterion for a commutative group ring to be weakly tripotent
only in terms of the coefficient ring and the former group plus their divisions. This
will be successfully done in the next section.

2 Main Results

Let us recall that a ring R is said to be strongly invo-clean in [2], provided for
any element r ∈ R the existence of an idempotent e ∈ R and a unit v ∈ R of order
at most 2 such that r = e + v with ev = ve. These ring were completely classified
in [2, Corollary 2.17] with the aid of structural results from [6].

The next relationship considerably strengthens [1, Corollary 4].

Proposition 1. Every weakly tripotent ring is strongly invo-clean.

Proof. For such a ring R, we have r3 = r or (1− r)3 = 1− r whenever r ∈ R. In the
first case, one writes that r = (1 − r2) + (r2 + r − 1). A direct manipulation shows
that 1− r2 ∈ Id(R) as r2 ∈ Id(R) and that (r2 + r− 1)2 = 1 observing elementarily
that these two elements commute, as required.
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Dealing with the other equality (1 − r)3 = 1 − r, the replacement r → 1 − r
with the above trick at hand lead to this that 1 − r = f + w for some commuting
idempotent f = 1− (1− r)2 = 2r− r2 and an involution w = 1− 3r + r2. Therefore,
r = (1 − f) + (−w), where (1 − f)2 = 1 − f and (−w)2 = w2 = 1, as required.

We will demonstrate now that the converse implication is totally untrue. Before
doing that, we need the following technicality.

Lemma 1. Let B be a boolean ring and let G be an abelian group. Then the group
ring BG is weakly tripotent if, and only if, B ∼= Z2 and G2 = {1}.

Proof. ”Necessity.” Given g ∈ G, it follows that g3 = g or (1−g)3 = 1−g. The first
equality yields that g2 = 1. The second equality can be written as g3 − g2 + g = 0
since 2 = 0 in both B and BG. If we assume that g2 6= 1, then one sees that g3 6= g,
g3 6= g2 and g2 6= g. This assumption, however, leads to a contradiction since then
g3 − g2 + g is an element in BG written in canonical form. Finally, it must be in the
second case that g2 = 1 as well, as expected.

Next, for every b ∈ B, we consider the element b + g ∈ BG, where 1 6= g ∈ G.
Therefore, (b + g)3 = b + g or [(1 − b) − g]3 = (1 − b) − g. In the first possibility,
we derive that b + bg + b + g = b + g, i.e., that b + bg = 0. This forces at once that
b = 0. Since 1− b is again an idempotent, the second possibility guarantees in a way
of similarity that 1 − b = 0, that is, b = 1. Hence B = {0, 1} ∼= Z2, as asserted.

”Sufficiency.” Each (possibly non-zero) element x of BG has take the form
x = g1 + · · ·+gn for some n ∈ N. It is clear that x2 = n, whence x2 = 1 if n = 2k+1
or x2 = 0 if n = 2k. In the first situation, one infers that x3 = x, as wanted. In the
second situation, (1 − x)2 = 1 + x2 = 1 so that (1 − x)3 = 1 − x, as desired.

So, we are in a position to exhibit the concrete construction.

Example 1. There exists a commutative strongly invo-clean ring of characteristic
2 which is not weakly tripotent.

In fact, consider the group ring K = (Z2 × Z2)G with G2 = {1}. Utilizing
Lemma 1 this group ring is manifestly non-weakly tripotent. Nevertheless, we claim
that such a ring is strongly invo-clean. To show this, we apply the chief result from [9]
to deduce that K is nil-clean in the sense that each element a ∈ K is writable as
a = q + e, where q ∈ Nil(K) = N(K) and e ∈ Id(K). On the other hand, in view
of [8] or [7], one finds that N(K) = I(KG;G) because N(Z2 × Z2) = {0}. It is
obvious now that N(K) has an index of nilpotence not exceeding 2 as char (K) = 2.
And since a = (q + 1) + (1 + e) with (q + 1)2 = 1 and (1 + e)2 = 1 + e, we are set.
This concludes our initial claim in the example.

We are now ready to proceed by proving with our necessary and sufficient condi-
tion for a commutative group ring to be weakly tripotent, thus generalizing Lemma 1
listed above.
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Theorem 1. Suppose R is a commutative ring and G is an abelian group. Then the
group ring RG is weakly tripotent if, and only if, exactly one of the next two points
holds:

(i) G = {1} and R is weakly tripotent.

(ii) G 6= {1} with G2 = {1}, R is weakly tripotent such that R ∼= R1 ×R2, where
both R1 and R2 are weakly tripotent rings with R1 = {0} or R1 a subdirect product
of L × Z2 for either L = {0} or L/J(L) ∼= Z2 having y2 = 2y for all y ∈ J(L), and
R2 = {0} or char(R2) = 3 with x3 = x for all x ∈ R2, and either

(ii.1) |G| = 2, 2d2 = 2d for all d ∈ L (and hence 4L = {0});

or

(ii.2) |G| > 2, char(L) = 2.

Proof. As RG ∼= R whenever G is the trivial group, we shall hereafter assume that
it is non-trivial.

”Necessity.” Each element x in RG satisfies one of the equations x3 = x or
(1 − x)3 = 1 − x. Thus, for any 1 6= g ∈ G, one has that g3 = g or (1 − g)3 = 1 − g.
The first equality gives that g2 = 1. The second one assures that g3 − 3g2 + 2g = 0.
Assume in a way of contradiction that g2 6= 1. Since then g 6= g3 6= g2 6= g and since
the equation g3−3g2 +2g = 0 is a canonical record, we will obtain a contrary to our
assumption. Consequently, one extracts in both cases that g2 = 1. Even something
more: in the second equality we have that 3g − 3 = 0 implying 3 = 0. Thus the
equation (1 − x)3 = 1 − x is tantamount to x3 = x, as expected.

Furthermore, as R ⊆ RG, or even there is an epimorphism (= a surjective
homomorphism) RG → R defined by the augmentation map, we employ [1, Lemma
1] to get that R is weakly tripotent, too. We, therefore, may write in conjunction
with the listed above theorem for commutative weakly tripotent rings that R ∼=
R1 × R2, where both R1 and R2 are weakly tripotent rings with R1 = {0} or R1

a subdirect product of L × B for some Boolean ring B and either L = {0} or
L/J(L) ∼= Z2 having z2 = 2z for all z ∈ J(L), and R2 = {0} or char(R2) = 3. It
is then an easy technical matter to check that RG ∼= R1G × R2G, where R1G,R2G
both remain weakly tripotent. We will study these two direct factors separately:

About R1G: Here R1G is a subdirect product of LG × BG, where LG and BG
are both weakly tripotent rings with 2 ∈ J(L) for the first ring. In the latter
case, Lemma 1 enables us that B ∼= Z2, as stated. Concentrating now on LG, we
shall consider two possibilities on the cardinality of the basis group G. In fact,
firstly suppose that |G| = 2. Then, for every r ∈ L, we consider the element
r(1 − g) ∈ J(LG), where 1 6= g ∈ G with g2 = 1 (see, for instance,[7]). Since
[r(1 − g)]2 = 2r(1 − g), one inspects by simple manipulations that (2r2 − 2r) −
(2r2 − 2r)g = 0 implying immediately the desired equality 2r2 = 2r. Secondly,
suppose that |G| > 2. Then there are two different elements g, h ∈ G \ {1} with
g2 = h2 = 1. Since both g − 1 ∈ J(LG) and 1 − h ∈ J(LG), it follows directly
that g − h = (g − 1) + (1 − h) ∈ J(LG) and so (g − h)2 = 2(g − h) yielding that
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2gh + 2g − 2h − 2 = 0. But as gh 6= 1 because g 6= h as well as gh 6= g and gh 6= h
because h 6= 1 and g 6= 1, we conclude after all that 2 = 0 in L, as required.

About R2G: As it was easily observed above, all weakly tripotent rings having char-
acteristic 3 are obviously tripotent. Since then the non-zero ring R2 of characteristic
3 has to be tripotent, we are done.

”Sufficiency.” Writing RG ∼= R1G × R2G, we must explore both direct factors
R1G and R2G.

Dealing with the non-zero variant of the first direct factor R1G, we detect that
R1G is a subring of LG × Z2G. The application of Lemma 1 is a guarantor that
Z2G is weakly tripotent bearing in mind that G2 = {1}. We now assert that
J(LG) = J(L)G+I(LG;G). Indeed, seeing that 2 ∈ J(L), one verifies in virtue of [7]
(see also [8]) that J(LG) = J(L)G + 〈r(g − 1) | r ∈ L, g ∈ G〉 ⊆ J(L)G + I(LG;G).
To derive the converse inclusion, we differ two possible cases for the cardinality of
G: if |G| = 2, then g(g−1) = −(g−1) as g2 = 1. If now |G| > 2 with G2 = {1} and
2 = 0 in L, we are observing that I2(LG;G) = {0} and so I(LG;G) ⊆ J(LG) since
I(LG;G) is a nil ideal, giving the pursued equality, because J(L)G ⊆ J(LG) holds
always (cf.[7]). That is why, LG/J(LG) = LG/[J(L) + I(LG;G)] ∼= L/J(L) ∼= Z2,
as needed. What suffices to prove in order to complete this point is that z2 = 2z for
any z ∈ J(LG). This, however, follows directly by the same token as in the proof
of [3, Theorem 2.3]. Finally, we arrive at the fact that LG is a weakly tripotent ring,
whence so does R1G in accordance with [1, Lemma 1].

Further, concerning the second direct factor R2G, since R2 is either zero or a
tripotent ring of characteristic 3, one plainly obtains that R2G is also a tripotent
ring by taking into account that G2 = {1}. We, finally, appeal to [1, Proposition 6]
to conclude that RG is weakly tripotent, as claimed.

We close our work with the following challenging question.

Proposition 2. Find a criterion for a non-commutative group ring to be weakly
tripotent.
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