
BULETINUL ACADEMIEI DE ŞTIINŢE
A REPUBLICII MOLDOVA. MATEMATICA
Number 1(92), 2020, Pages 75–88
ISSN 1024–7696

New Algorithms for Finding the Limiting and

Differential Matrices in Markov Chains

Alexandru Lazari, Dmitrii Lozovanu

Abstract. New algorithms for determining the limiting and differential matrices in
Markov chains, using fast matrix multiplication methods, new computation procedure
of the characteristic polynomial and algorithms of resuming matrix polynomials, are
proposed. We show that the complexity of finding the limiting matrix is O(n3) and
the complexity of calculating differential matrices is O(nω+1), where n is the number
of the states of the Markov chain and O(nω) is the complexity of the used matrix
multiplication algorithm. The theoretical computational complexity estimation of the
algorithm is governed by the fastest known matrix multiplication algorithm, for which
ω < 2.372864.

Mathematics subject classification: 65C40, 60J22, 90C40, 65F05, 65F15, 15B51.
Keywords and phrases: Discrete Markov Process, The Matrix of Limiting States
Probabilities, Differential Matrices, Matrix Multiplication Complexity.

1 Introduction and problem formulation

In this paper we propose new algorithms for determining the limiting and differ-
ential matrices in a homogenous discrete Markov process with finite set of states. The
proposed algorithms represent a modification of the algorithms from [6,7], based on
results from [2–4, 9–12, 14–16], concerned with fast matrix multiplication methods,
efficient computation of the characteristic polynomial of a transition probability
matrix and fast algorithms for resuming matrix polynomials. We show that the
proposed modified algorithms determine the limit matrix with running time O(n3)
and the differential matrices with running time O(nω+1), where n is the number
of the states of the Markov chain and O(nω) is the complexity of the used matrix
multiplication algorithm. We ground all these results for a discrete Markov process
with given set of states X = {x1, x2, . . . , xn} and given transition probability matrix
P = (px,y)x,y∈X . In such a process at every discrete moment of time t = 0, 1, 2, . . .
the stochastic system passes from the current state x ∈ X to the next state y ∈ X
with probability px,y, where

∑

y∈X
px,y = 1, ∀x ∈ X.

An important role in studying the evolution of a discrete Markov process is
played by the t-step transition matrix P (t) = P t, where an element px,y(t) of matrix
P (t) expresses the probability of the stochastic system to occupy the state y after
t transitions if it starts transition in x at the time moment t = 0. In [17] Howard
presented a general scheme how the matrix P (t) can be expressed via limiting and

c© Alexandru Lazari, Dmitrii Lozovanu, 2020

75

76 ALEXANDRU LAZARI, DMITRII LOZOVANU

differential matrices, however a detailed algorithm how to calculate these matrices
has not been exposed. We will consider the matrix of limiting state probabilities
Q = (qx,y)x,y∈X of the Markov process in the sense of Cesaro limit, i.e. Q =

lim
t→∞

1

t

t
∑

k=1

P (k). An element q(x, y) of matrix Q can be treated as the probability

with which the process will occupy the state y after a large number of transitions
when the initial state is x, ∀x, y ∈ X.

Algorithms for calculating the limiting and differential matrices have been pro-
posed and grounded in [6, 7]. The computational complexity of these algorithms
are O(n4). Special algorithms with running time O(n3) that determine only the
limiting matrix in a Markov chain can be found in [1, 13]. In this paper we shall
use the approach and the corresponding algorithms for determining the limiting and
differential matrices from [1, 6, 7]. First a general approach for determining these
matrices has been proposed in [6] and then such an approach has been specified
in [6, 7]. According to [6], the limiting and differential matrices in the discrete
Markov process represent the coefficients βk(y), y ∈ (C\D)\{1}, k = 0,m(y) − 1, in
the decomposition

P (t) =
∑

y∈C\D

m(y)−1
∑

k=0

tk

yt
βk(y), ∀t ≥ n − r, (1)

where ∆(z) = |I − zP |, r = deg(∆(z)), D = {z ∈ C | ∆(z) 6= 0} and m(y) is the
multiplicity of the root y of the polynomial ∆(z), ∀y ∈ C\D. Also, it was noted
that, for each y ∈ (C\D)\{1}, k = 0,m(y) − 1, the matrix βk(y) is differential, i.e.
the sum of elements across to each row is equal to zero. The unique non-differential
component matrix in representation (1) is the stochastic matrix β0(1) = Q, the rest
of the matrices βk(1), k = 1,m(1) − 1, being null.

In the following we present a modification of the algorithms from [6,7] based on
recent optimized methods for matrix multiplication, computation of the characteris-
tic polynomial of transition probability matrix and algorithms for resuming matrix
polynomials.

2 Preliminaries

In this section we present some preliminary results regarding the optimal me-
thods for solving matrix multiplication problem, determining the characteristic poly-
nomial and resuming the matrix polynomials that we shall use for our new algo-
rithms for determining the limiting matrix Q and the differential matrices βk(y),
y ∈ (C\D)\{1}, k = 0,m(y) − 1.

2.1 Fast matrix multiplication

The classical method that multiplies two n × n matrices (the naive algorithm)
needs O(n3) elementary operations. Actually to multiply two matrices more efficient

ALGORITHMS FOR FINDING THE LIMITING AND DIFFERENTIAL MATRICES 77

algorithms can be used, especially in the case of large n. The first algorithm of matrix
multiplication with computation complexity O(nω), where ω < 3, was proposed by
Strassen [16] in 1969. He developed an algorithm with ω ≈ 2.802. Later, this algo-
rithm has been improved by others (see reference from [3]) and a series of algorithms
with ω ≈ 2, 796 (Pan 1978), ω ≈ 2, 2522 (Bini 1981), ω ≈ 2.479 (Strassen 1986) have
been obtained. The last more efficient algorithms was elaborated by Coppersmith-
Winograd [14] with ω < 2.376 in 1990 and Williams [3] with ω < 2.372873 in
2014. The fastest known algorithm at the moment is Le Gall version [2], devel-
oped in 2014 as an improvement of Coppersmith-Winograd algorithm. He proved
that ω = 2.3728639 The fastest known matrix multiplication algorithms (Cop-
persmith–Winograd, Williams, Le Gall) are frequently used as a building block in
other algorithms to prove theoretical time bounds. However, unlike the Strassen al-
gorithm, they are considered as galactic algorithms and are not used in practice due
to their advantage only for matrices very large, which are not able to be processed
by modern hardware. Despite of above mentioned disadvantages, there exist par-
allel algorithms for computing the product of two n × n matrices. D’Alberto and
Nicolau studied the adaptive Winograd’s matrix multiplications in [9] and Ballard,
Demmel, Holtz, Lipshitz and Schwartz described a communication-optimal parallel
algorithm for Strassen’s matrix multiplication in [5].

2.2 Matrix inversion

Similar as matrix multiplication operation, the matrix inversion is one of the
most basic problems in mathematics and computer science. There exist multiple al-
gorithms for finding the inverse of an invertible matrix: Gauss-Jordan elimination,
LU decomposition, Newton’s iterative method, Cayley-Hamilton method, eigende-
composition, Cholesky decomposition, reciprocal basis vectors method, blockwise
inversion and others. The most simple method to inverse an invertible matrix is
the Gauss-Jordan elimination. According to this method, the identity matrix is
augmented to the right of given matrix and, after that, through application of ele-
mentary row operations, the reduced echelon form is found, the obtained left block
being identity matrix and the right block being the inverse of the given invertible
matrix. If the algorithm is unable to reduce the left block to identity matrix, then
the initial matrix is not invertible. The disadvantage of this method is its O(n3)
computational complexity, which is the same as for naive matrix multiplication algo-
rithm. However, due to its simplicity, it can be considered as part of more complex
algorithms, at least in the case when there are also another algorithm parts with
complexity bigger than O(n3), since the entire algorithm complexity is not such
much affected by this method.

In contrast to the Gauss-Jordan elimination, the blockwise inversion method
[8, 11] is a divide and conquer algorithm, which allows to reduce the algorithm
complexity, due to its relationship with matrix multiplication complexity. It was
shown in [8] that the blockwise inversion method runs with the same time complexity
as the matrix multiplication algorithm that is used internally. Since the best known

78 ALEXANDRU LAZARI, DMITRII LOZOVANU

matrix multiplication complexity is O(nω), this means that the fastest known matrix
inversion algorithm runs with same time complexity O(nω).

2.3 Determining the characteristic polynomial

The characteristic polynomial for a given matrix can be found using algorithms
from [10, 15]. In [10] several ideas were combined to get a new Las Vegas random-
ized algorithm for computing the characteristic polynomial. The complexity of this
randomized algorithm is O(nω). The Keller Gehrig’s deterministic algorithm [15]
works for all inputs and in the worst case has the complexity O(nωlg(n)).

2.4 Resuming matrix polynomial

The problem of resuming the matrix polynomial is the following: For a given

n × n matrix P and a polynomial T (z) =
m
∑

k=0

akz
k with numeric coefficients, to

compute the matrix T (P) =
m
∑

k=0

akP
k.

This problem can be solved by using the naive algorithm recursively computing
the matrices P 0 = In, P 1 = P 0P, P 2 = P 1P, . . . Pm = Pm−1P , performing m
matrix multiplications, multiply each matrix with the corresponding coefficient ak,
k ∈ {1, 2, . . . ,m} and sum by k. The complexity of such an algorithm is O(mnω).

The r × r scheme presented in [12] shows that we can use only O(r) matrix
multiplications, where r = [

√
m + 1]. This means that we have to store the ma-

trices P 0, P 1, . . . , P r and reuse them along polynomial subdivision into a set of
sub-polynomials of degree less than or equal to r. So, the complexity of the algo-
rithm is O(max{mn2, rnω}). On the conditions m ≈ n and ω <= 2.5, the running
time of this algorithm is O(n3).

For resuming matrix polynomials there exist also parallel algorithms. For exam-
ple, Alonso, Boratto, Peinado, Ibáñez and Sastre in [4] evaluated matrix polynomials
using several GPGPUs.

2.5 Determining the limiting matrix in a Markov chain

The main results concerned with determining the limiting matrix in a finite state
space Markov chain can be found in [1, 6, 7, 14]. In our investigations we shall use
the following algorithm for determining the limiting matrix from [7]:

Algorithm 1.

Input: the transition matrix P ∈ Mn(R);

Output: the limit matrix Q ∈ Mn(R);

1. Set β0 = 1 and P 0 = In;

ALGORITHMS FOR FINDING THE LIMITING AND DIFFERENTIAL MATRICES 79

2. For each k = 1, n calculate:

P k = PP k−1, sk = trP k, βk = −
1

k

sk +

k−1
∑

j=1

βjsk−j

 ;

3. Divide the polynomial ∆(z) =
n
∑

k=0

βkz
k by polynomial (z − 1)m(1) and obtain

the quotient V (z) using Horner scheme, where m(1) is the multiplicity of root

z0 = 1 for ∆(z). Additionally preserve the coefficients β∗
k , k = 0, N , of the

polynomial V ′(z) = (z − 1)V (z) obtained at the last step;

4. Compute S(0) = β∗
0I and S(k) = β∗

kIn + PS(k−1), k = 1, N − 1;

5. Determine the matrix S =
N−1
∑

k=0

S(k) and the value V (1);

6. Find the limit matrix Q = −S/V (1).

Based on methods and calculation procedures from Sections 2.1 - 2.4 we can conclude
that the complexity of Algorithm 1 is O(nω+1).

3 A new approach and an algorithm to find the limiting matrix

In this section we propose an approach for determining the limiting matrix in
a Markov chain that represents a modification of Algorithm 1. Based on such an
approach we ground a new algorithm for determining the limiting matrix Q. The
complexity of the algorithm is O(n3).

3.1 The main results and an algorithm to find the limiting matrix

Let KP (z) be the characteristic polynomial for the transition probability matrix
P . Then, based on results from [7] and Algorithm 1, the following equalities

∆(z) = (−1)nznKP (z−1) = (z − 1)m(1)V (z)

hold. Substituting z with z−1, we obtain

(−1)nz−nKP (z) = (z−1 − 1)m(1)V (z−1)

This implies the relation

V (z−1) =
KP (z)

(−z)n(z−1 − 1)m(1)
. (2)

Additionally, from step 4 of the Algorithm 1 we have

S(k) =

k
∑

j=0

β∗
k−jP

j, k = 0, N − 1. (3)

80 ALEXANDRU LAZARI, DMITRII LOZOVANU

Taking into account that

V ′(z) = (z − 1)V (z), V (z) =
N−1
∑

k=0

γkz
k and V ′(z) =

N
∑

k=0

β∗
kzk

and dividing the polynomial V ′(z) by z − 1 using Horner schema, we obtain

γk =

N
∑

j=k+1

β∗
j , k = 0, N − 1.

Since
N
∑

j=0
β∗

j = V ′(1) = 0, we have

γk = −
k
∑

j=0

β∗
j , k = 0, N − 1. (4)

So, using the equalities (3) and (4), we obtain the following formula

S =

N−1
∑

k=0

S(k) = −
N−1
∑

k=0

γN−1−kP
k. (5)

Now, using the equalities

V (z−1) =
N−1
∑

k=0

γkz
−k = z1−N

N−1
∑

k=0

γkz
N−1−k = z1−N

N−1
∑

k=0

γN−1−kz
k,

and applying the relation (2), we obtain

N−1
∑

k=0

γN−1−kz
k = zN−1V (z−1) = zn−m(1)V (z−1) =

=
zn−m(1)KP (z)

(−z)n(z−1 − 1)m(1)
= (−1)N−1 KP (z)

(z − 1)m(1)
.

Taking into account that KP (z)
...(z − 1)m(1), we can represent KP (z) as follows

KP (z) = (z − 1)m(1)T (z). This means that the previous relation becomes

N−1
∑

k=0

γN−1−kz
k = (−1)N−1T (z). (6)

Formula (6) represents an identity for two polynomials. Substituting z with P ,
we obtain an equality of two matrix polynomials

N−1
∑

k=0

γN−1−kP
k = (−1)N−1T (P). (7)

ALGORITHMS FOR FINDING THE LIMITING AND DIFFERENTIAL MATRICES 81

Formula (5) becomes

S = (−1)NT (P), (8)

i.e. the limit matrix is

Q = −
S

V (1)
=

(−1)N−1

V (1)
T (P). (9)

So, the limit matrix Q represents the product of the matrix R = T (P) with a

constant c =
(−1)N−1

V (1)
. Because the limit matrix Q is a stochastic matrix, we can

determine the constant c through normalization operation, i.e. c−1 represents the
sum of the elements from an arbitrary row of the matrix R.

So, the results presented above ground the following algorithm for determining
the limiting matrix Q:

Algorithm 2.

Input: the transition matrix P ∈ Mn(R);

Output: the limit matrix Q ∈ Mn(R);

1. Determine the characteristic polynomial KP (z) = |P − zIn|;

2. Divide the polynomial KP (z) by (z − 1)m(1), where m(1) is the multiplicity of

the eigenvalue z0 = 1, obtaining the quotient T (z);

3. Compute the matrix R = T (P);

4. Determine the limit matrix Q by dividing the matrix R by the sum of the

elements of an arbitrary its row.

Remark 1. For a better performance of Algorithm 2 it is necessary to use the fast
methods from Sections 2.1 - 2.4. So, to obtain algorithm with complexity O(n3) for
determining the limiting matrix Q it is necessary to use the fast matrix multiplication
algorithms from Section 2.1 with complexity O(nω), the algorithm from Section 2.3
with complexity O(nω) at the Step 1, the O(n · m(1)) Horner schema at the Step 2
and the O(nmax{ω+1/2, 3}) algorithm from Section 2.4 at the Step 3.

3.2 Numerical examples

We present some numerical examples which illustrate the main details of the
elaborated algorithm from Section 3.1.

Example 1. Consider the Markov process with the transition probability matrix

P =

(

0 1
1 0

)

. We can see that P 2t =

(

1 0
0 1

)

and P 2t+1 =

(

0 1
1 0

)

, ∀t ≥ 0,

i.e. the Markov chain is 2-periodic.

82 ALEXANDRU LAZARI, DMITRII LOZOVANU

So, in this case, the limit lim
t→∞

P t does not exist, but there exists the limit matrix

Q which can be found by using the Algorithm 2. If we apply this algorithm, then
we have:

KP (z) = |P − zIn| =

∣

∣

∣

∣

−z 1
1 −z

∣

∣

∣

∣

= (z − 1)(z + 1) ⇒

T (z) = z + 1 ⇒ T (P) = I2 + P =

(

1 1
1 1

)

⇒

Q =
1

1 + 1
T (P) =

(

1/2 1/2
1/2 1/2

)

.

So, we obtained the same result as for numerical example 1 from [7]. Note that the
Markov process for the considered process is not ergodic, however the rows of the
limit matrix are the same and the vector of limiting probabilities is π∗ = (0.5, 0.5),
i.e., regardless of the initial state of the Markov process, it will occupy the both
states with the same probability 0.5 after a large number of transitions.

Example 2. Consider the Markov process with the transition probability matrix

P =

(

0.5 0.5
0.4 0.6

)

. We find the matrix Q applying Algorithm 2:

KP (z) = |P − zIn| =

∣

∣

∣

∣

0.5 − z 0.5
0.4 0.6 − z

∣

∣

∣

∣

= (z − 1)(z − 0.1) ⇒

T (z) = z − 0.1 ⇒ T (P) = −0.1 · I2 + P =

(

0.4 0.5
0.4 0.5

)

⇒

Q =
1

0.4 + 0.5
T (P) =

(

4/9 5/9
4/9 5/9

)

.

So, we obtained the same result as in numerical example 2 from [7]. The rows of
the limit matrix are the same and the Markov process is ergodic, with the vector of
limiting probabilities π∗ = (4/9, 5/9).

Example 3. We consider a non-ergodic Markov process with the transition pro-

bability matrix P =

1 0 0
0 1 0

1/3 1/3 1/3

. If for this example we apply Algorithm

2 for determining the limiting matix then we obtain:

KP (z) = |P − zIn| =

∣

∣

∣

∣

∣

∣

1 − z 0 0
0 1 − z 0

1/3 1/3 1/3 − z

∣

∣

∣

∣

∣

∣

= (z − 1)2(1/3 − z) ⇒

T (z) = 1/3 − z ⇒ T (P) = (1/3)I3 − P =

−2/3 0 0
0 −2/3 0

−1/3 −1/3 0

 ⇒

ALGORITHMS FOR FINDING THE LIMITING AND DIFFERENTIAL MATRICES 83

Q =
1

−
2

3
+ 0 + 0

· T (P) =

1 0 0
0 1 0

1/2 1/2 0

 .

So, we obtained the same result as in numerical example 3 from [7]. In this case
all rows of the matrix Q are different. It is easy to observe that for the considered
example there exists the limit lim

t→∞
P t and this limit is Q.

4 A new approach and algorithm to find differential matrices

The aim of this section is to ground a new algorithm for determining the differ-
ential matrices in a finite state space Markov chain, the computational complexity
of which is O(nω+1). We show that such an algorithm can be grounded if the roots
of characteristic polynomial of matrix P are known. The computational complexity
of the algorithm is O(nω+1).

4.1 The main results and an algorithm to find differential matrices

As we have already noted, based on results from [6], the decomposition (1) holds
and the coefficients

βk(y), y ∈ (C\D)\{1}, k = 0,m(y) − 1,

represent the differential matrices of the Markov process. Since the set C\D consists
of all inverses of eigenvalues of the transition probability matrix P , the decomposi-
tion (1) is equivalent to the decomposition

P (t) =
∑

y∈σ(P)

m(y)−1
∑

k=0

tkytβk(y), ∀t ≥ n − r,

where KP (z) = |P −zI| is the characteristic polynomial of the transition probability
matrix P and σ(P) = {z ∈ C | KP (z) = 0} is the spectrum of the transition
probability matrix P . Note that r = deg(KP (z)), m(y) is the multiplicity of the
root y of the polynomial KP (z) and βk(y) = βk(y

−1), ∀y ∈ σ(P). In particular, we
have

P (t) =
∑

y∈σ(P)

m(y)−1
∑

k=0

tkytβk(y), t = n − r, n − 1.

On components, this relation can be written as follows

pi,j(t) =
∑

y∈σ(P)

m(y)−1
∑

k=0

tkytβi,j,k(y), t = n − r, n − 1, i, j = 1, n.

If we denote

βt = (tkyt)(y,k)∈σ(P)×{0,...,m(y)−1}, ∀t ≥ 0, B = (βj)j=0,r−1, 00 ≡ 1, (10)

84 ALEXANDRU LAZARI, DMITRII LOZOVANU

and

pi,j = (pi,j(t))
n−1
t=n−r, βi,j = (βi,j,k(y))(y,k)∈σ(P)×{0,...,m(y)−1}, i, j = 1, n,

then we obtain

pi,j = βi,jB
T , i, j = 1, n,

where BT is the transpose of matrix B. Since the vectors βj , j = 1, r, are linearly
independent, the matrix B is invertible. As consequence,

βi,j = pi,j(B
T)−1, i, j = 1, n.

Finally, if we consider △ = (βi,j)(i,j)∈{1,...,n}×{1,...,n} and Π = (pi,j)(i,j)∈{1,...,n}×{1,...,n}

then we obtain

△ = Π(BT)−1. (11)

Since Π is an n2×r matrix and B is an r×r matrix, then the result △ is a n2×r
matrix, which contains all elements of r n×n coefficient matrices βk(y), y ∈ σ(P). A
row of △ corresponding to a pair index (i, j) represents the elements from position
(i, j) of the limit and differential matrices. This means that the columns of △
represent the flattened version of the limit and differential matrices. In similar way
we can refer this to the matrix Π whose columns represent the flattened version of
the powers P t, t = n − r, n − 1.

Now, if we analyze the computational complexity of calculating △ according
to (11), then we can notice the following. We can obtain the better performance

for calculating (11) if we split the set of rows of ∆ and Π into about

[

n2

r

]

parts

of dimension r. After that the equation (11) can be regarded as about

[

n2

r

]

ma-

trix multiplications of dimension r × r. This means that we have the complexity
O(rω−1n2) for determining △. Since, in the worst case, we have r = n, the com-
plexity of △ according to formula (11) is O(nω+1).

Additionally to this complexity, we need to take into account the complexity of
calculating the matrices Π, B, BT and (BT)−1. For obtaining the matrix Π we need
to have all matrices P t, t = n − r, n − 1, i.e. in the worst case we need O(nω+1)
operations. If the eigenvalues of the matrix P are known, then the matrices B and
BT can be computed by using O(n2) elementary operations and the computation of
(BT)−1 takes O(nω) arithmetic operations. Taking into account all above remarks,
we can conclude that the entire algorithm complexity is O(nω+1). So, having the
eigenvalues of the transition probability matrix P , we can compute the matrix of
limiting state probabilities and the differential matrices using O(nω+1) arithmetic
operations.

Thus, based on mentioned above results we can propose the following algorithm
for determining the differential matrices.

ALGORITHMS FOR FINDING THE LIMITING AND DIFFERENTIAL MATRICES 85

Algorithm 3.

Input: the transition probability matrix P ∈ Mn(R);

Output: the limit and differential matrices;

1. Calculate P 0 = In, P 1 = P 0P, P 2 = P 1P, . . . Pn−1 = Pn−2P ;

2. Build the matrix Π, by collecting elements from the powers of matrix P;

3. Determine the matrix B, according to (10);

4. Compute the matrix (BT)−1;

5. Determine matrix △, according to (11);

6. Build the limit and differential matrices, by collecting elements from ∆.

4.2 Numerical Examples

We present numerical examples that illustrate the details of Algorithm 3 for
periodic and aperiodic Markov chains.

Example 4. Let be given the Markov chain with transition probability matrix

P =

1 0 0
0 0.5 0.5

0.5 0 0.5

 and consider the problem of determining the differential

components. We apply Algorithm 3:

1) P 0 =

1 0 0
0 1 0
0 0 1

, P =

1 0 0
0 0.5 0.5

0.5 0 0.5

, P 2 =

1 0 0
0.25 0.25 0.5
0.75 0 0.25

;

2-4) KP (z) = |P − zIn| =

∣

∣

∣

∣

∣

∣

1 − z 0 0
0 0.5 − z 0.5

0.5 0 0.5 − z

∣

∣

∣

∣

∣

∣

= (1 − z)(0.5 − z)2 ⇒

⇒ r = deg(KP (z)) = 3, σ(P) = {1, 0.5}, m(1) = 1, m(0.5) = 2 ⇒

⇒ β0 = (1, 1, 0), β1 = (1, 0.5, 0.5), β2 = (1, 0.25, 0.5) ⇒ B =

1 1 0
1 0.5 0.5
1 0.25 0.5

⇒

86 ALEXANDRU LAZARI, DMITRII LOZOVANU

⇒ (BT)−1 =

1 0 −2
−4 4 6
4 −4 −4

 ; Π =

1 1 1
0 0 0
0 0 0

−− −− −−
0 0 0.25
1 0.5 0.25
0 0.5 0.5

−− −− −−
0 0.5 0.75
0 0 0
1 0.5 0.25

;

5) △ =

1 1 1
0 0 0
0 0 0

−− −− −−
0 0 0.25
1 0.5 0.25
0 0.5 0.5

−− −− −−
0 0.5 0.75
0 0 0
1 0.5 0.25

·

1 0 −2
−4 4 6
4 −4 −4

 =

1 0 0
0 0 0
0 0 0

−− −− −−
1 −1 −1
0 1 0
0 0 1

−− −− −−
1 −1 0
0 0 0
0 1 0

;

6) β0(1) =

1 0 0
1 0 0
1 0 0

 , β0(0.5) =

0 0 0
−1 1 0
−1 0 1

 , β1(0.5) =

0 0 0
−1 0 1
0 0 0

 .

So, the t-step transition probability matrix can be represented as follows:

P (t) =

(

1 0 0
1 0 0
1 0 0

)

+

(

0 0 0
−1 1 0
−1 0 1

)

(

1

2

)t

+

(

0 0 0
−1 0 1
0 0 0

)

t

(

1

2

)t

, ∀t ≥ 0.

Example 5. Let be given the 2-periodic Markov process determined by the matrix

of probability transition P =

(

0 1
1 0

)

and consider the problem of determining

the limit and differential components. If we apply Algorithm 3, then we obtain:

1) P 0 =

(

1 0
0 1

)

, P =

(

0 1
1 0

)

2-4) KP (z) = |P − zIn| =

∣

∣

∣

∣

−z 1
1 −z

∣

∣

∣

∣

= z2 − 1 = (z − 1)(z + 1) ⇒

⇒ r = deg(KP (z)) = 2, σ(P) = {1,−1}, m(1) = m(−1) = 1 ⇒

⇒ β0 = (1, 1), β1 = (1,−1) ⇒ B =

(

1 1
1 −1

)

⇒

ALGORITHMS FOR FINDING THE LIMITING AND DIFFERENTIAL MATRICES 87

⇒ (BT)−1 =

(

0.5 0.5
0.5 −0.5

)

; Π =

1 0
0 1

−− −−
0 1
1 0

;

5) △ =

1 0
0 1

−− −−
0 1
1 0

·
(

0.5 0.5
0.5 −0.5

)

=

0.5 0.5
0.5 −0.5
−− −−
0.5 −0.5
0.5 0.5

;

6) β0(1) =

(

0.5 0.5
0.5 0.5

)

, β0(−1) =

(

0.5 −0.5
−0.5 0.5

)

.

So, the t-step transition probability matrix can be represented as follows:

P (t) =

(

0.5 0.5
0.5 0.5

)

+

(

0.5 −0.5
−0.5 0.5

)

(−1)t, ∀t ≥ 0.

5 Conclusions

Based on results presented in this article, new algorithms for determining the
limiting and differential matrices for finite state space Markov chains have been
elaborated. The proposed algorithms represent a modification of the algorithms from
[6,7] by using new calculation methods and procedures for fast matrix multiplication,
matrix inversion, finding characteristic polynomial and resuming polynomial. The
computational complexity of finding the limiting matrix is O(n3) and the complexity
of calculating differential matrices is O(nω+1), where n is the number of the states of
the Markov chain and O(nω) is the complexity of the used fast matrix multiplication
algorithm.

References

[1] Lozovanu D., Pickl S. Optimization of Stochastic Discrete Systems and Control on Com-

plex Networks. Springer, 2015.

[2] Le Gall F. Powers of tensors and fast matrix multiplication, Proceedings of the 39th Inter-
national Symposium on Symbolic and Algebraic Computation, 2014, 296–303.

[3] Williams V. Multiplying matrices in O(n2.373) time, Stanford University, 2014.

[4] Alonso P., Boratto M., Peinado J., Ibáñez J., Sastre J. On the evaluation of

matrix polynomials using several GPGPUs, 2014.

[5] Ballard G., Demmel J., Holtz O., Lipshitz B., Schwartz O. Communication-

Optimal Parallel Algorithm for Strassen’s Matrix Multiplication. Cornell University Library,
2012.

[6] Lazari A. Algorithms for determining the transient and differential matrices in finite Markov

processes, Bul. Acad. Ştiinţe Repub. Moldova, Mat., 2010, No. 2(63), 84–99.

88 ALEXANDRU LAZARI, DMITRII LOZOVANU

[7] Lazari A., Lozovanu D. An approach for determining the matrix of limiting state probabil-

ities in discrete Markov processes, Bul. Acad. Ştiinţe Repub. Moldova, Mat., 2010, No. 1(62),
77–91.

[8] Cormen T.H., Leiserson C. E., Rivest R.L., Stein C. Introduction to Algorithms,
3rd ed., MIT Press, Cambridge, MA, 2009.

[9] D’Alberto P., Nicolau A. Adaptive Winograd’s Matrix Multiplications, ACM Transactions
on Mathematical Software, Vol. V, 2008.

[10] Pernet C., Storjohann A. Faster algorithms for the characteristic polynomial, David R.
Cheriton School of Computer Science University of Waterloo, Ontario, Canada N2L 3G1,
2007.

[11] Bernstein D. Matrix Mathematics, Princeton University Press, 2005.

[12] WanZhen L., Roi B., Chandra S., Yihan S., Alexis T., Martin H. Fast methods for

resumming matrix polynomials and Chebyshev matrix polynomials, Journal of Computational
Physics, 194, 2004, 575–587.

[13] Puterman M. Markov Decision Processes: Discrete Stochastic Dynamic Programming,
Wiley, 2005.

[14] Coppersmith D., Winograd S. Matrix multiplication via arithmetic progressions, J. Sym-
bolic Computation, 1990, 9(3), 251–280.

[15] Keller-Gehrig W. Fast algorithms for the characteristic polynomial, Theoretical Computer
Science, 1985, 36, 309–317.

[16] Strassen V. Gaussian elimination is not optimal, Numer. Math., 13, 1969, 354-356.

[17] Howard R.A. Dynamic Programming and Markov Processes, Wiley, 1960.

Alexandru Lazari, Dmitrii Lozovanu

Vladimir Andrunachievic Institute of Mathematics
and Computer Science
5 Academiei str., Chişinău, MD−2028, Moldova

E-mail: alexan.lazari@gmail.com, lozovanu@math.md

Received March 4, 2020

