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On the number of topologies on countable skew fields

V. I.Arnautov, G.N.Ermakova

Abstract. If a countable skew field R admits a non-discrete metrizable topology τ0,
then the lattice of all topologies of this skew fields admits:
– Continuum of non-discrete metrizable topologies of the skew fields stronger than
the topology τ0 and such that sup{τ1, τ2} is the discrete topology for any different
topologies τ1 and τ2;
– Continuum of non-discrete metrizable topologies of the skew fields stronger than τ0

and such that any two of these topologies are comparable;
– Two to the power of continuum of topologies of the skew fields stronger than τ0,
each of them is a coatom in the lattice of all topologies of the skew fields.
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1 Introduction

The study of possibility to set a non-discrete Hausdorff topology on infinite
algebraic systems in which existing operations are continuous was begun in [1]. In
this article, for any countable group, a method of constructing such group topologies
was given.

For countable rings the problem of the possibility to set non-discrete Hausdorff
ring topologies was studied in [2, 3].

For infinite fields the problem of the possibility to set non-discrete field topologies
was studied in [2].

For countable skew field the problem of the possibility to set non-discrete Haus-
dorff topologies has not been solved.

The present article is a continuation of research in this direction. The main
result of this paper is Theorem 3.1, in which for any countable skew field R which
admits a nondiscrete, Hausdorff topology we got the numbers of some topologies.

For countable groups, countable rings and countable fields similar results were
obtained in [4–7].

2 Notations and preliminaries

To present the main results we remind the following well-known result:
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Theorem 2.1. A set Ω of subsets of a skew field R is a basis of filter of neighborhoods

of zero for some Hausdorff skew field topology τ on the skew field R if and only if

the following conditions are satisfied:

1)
⋂

V ∈Ω
V = {0};

2) For any subsets V1 and V2 ∈ Ω there exists a subset V3 ∈ Ω such that V3 ⊆
V1 ∩ V2;

3) For any subset V1 ∈ Ω there exists a subset V2 ∈ Ω such that V2 + V2 ⊆ V1;
4) For any subset V1 ∈ Ω there exists a subset V2 ∈ Ω such that −V2 ⊆ V1;
5) For any subset V1 ∈ Ω and any element r ∈ R there exists a subset V2 ∈ Ω

such that r · V2 ⊆ V1 ;

6) For any subset V1 ∈ Ω there exists a subset V2 ∈ Ω such that V2 · V2 ⊆ V1.
7) For any subset V1 ∈ Ω there exists a subset V2 ∈ Ω such that (e+V2)

−1−e ⊆
V1.

Proof. According to ([2], Proposition 1.2.2, Theorems 1.2.5 and 1.2.12) for the proof
of the theorem it suffices to verify that for any subset V1 ∈ Ω and any element r 6= 0
there exists a subset V ∈ Ω such that (r + V )−1 ⊆ r−1 + V1.

In fact, as any skew field topology is a ring topology on R then any basis of the
filter of neighborhoods of zero of the skew field topology τ satisfies the condition 7.

Conversely, let Ω satisfy the condition 7. Then for any subset V0 ∈ Ω and
any element 0 6= r ∈ R there exist sets V1, V2, V ∈ Ω such that r−1 · V1 ⊆ V0,
(e + V2)

−1 − e ⊆ V1 and V · r−1· ⊆ V2. Then

(r + V )−1 = (r−1 · r) · (r + V )−1 = r−1 ·
(

(r−1)−1 · (r + V )−1
)

=

r−1 ·
(

(r + V ) · r−1
)

−1
= r−1 · (r · r−1 + V · r−1)−1 = r−1 · (e + V · r−1)−1 ⊆

r−1 ·
(

(e + V2)
−1 − e + e

)

⊆ r−1 · (V1 + e) = r−1 + r−1 · V1 ⊆ r−1 + V0.

From the arbitrariness of the element r and the set V0, it follows that the operation
of taking the inverse element in (R, τ) is continuous, and hence the theorem is
completely proved.

Definition 2.2. A subset V of an Abelian group R(+) is called the symmetric subset

if V = −V .

Notation 2.3. Let V1, V2, . . . and S1, S2, . . . be sequences of non-empty symmet-
ric subsets of a skew field R, and e is the unit of the field R. If S1 ⊆ S2 ⊆ . . .
and e ∈ S1 then for any natural number k we define by induction the subset
Fk

(

S1, . . . , Sk;V1, . . . , Vk

)

of the skew field R as follows:
F1(S1;V1) = (e + V1 \ {0})

−1 · V1 · S1 + V1 · V1 + S1 · V1 · (e + V1)
−1, and

Fk+1(S1, S2, . . . , Sk+1;V1, V2, . . . , Vk+1) = F1

(

S1;V1+Fk(S2, . . . , Sk+1;V2, . . . , Vk+1)
)

.

Proposition 2.4. Let V1, V2, . . . and S1, S2, . . . be some sequences of non-empty

finite and symmetric subsets of a skew field R. If e ∈ S1 ⊆ S2 ⊆ . . ., and 0 ∈ Vi for

any natural numbers i, then the following statements are true:
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Statement 1. The following inclusions are true:

1. Fk−1(S2, . . . , Sk;V2, . . . , Vk) + Fk−1(S2, . . . , Sk;V2, . . . , Vn+k) ⊆
Fk(S1, . . . , Sk;Vn, . . . , Vk) for any natural number k > 1;

2. Fk−1(S2, . . . , Sk;V2, . . . , Vk) · Fk−1(S2, . . . , Sk;V2, . . . , Vn+k) ⊆
Fk(S1, . . . , Sk;Vn, . . . , Vk) for any natural number k > 1;

3. Fk−1(S2, . . . , Sk;V2, . . . , Vk) · (e + Fk−1(S2, . . . , Sk;V2, . . . , Vk))
−1 ⊆

Fk(S1, . . . , Sk;V1, . . . , Vk) and
(e + Fk−1(S2, . . . , Sk;V2, . . . , Vk))

−1 · Fk−1(S2, . . . , Sk;V2, . . . , Vk) ⊆
Fk(S1, . . . , Sk;V1, . . . , Vk) for any natural number k > 1;

4. S1 · Fk−1(S2, . . . , Sk;V2, . . . , Vk) ⊆ Fk1(S1, . . . , Sk;V1, . . . , Vk) and
Fk−1(S2, . . . , Sk;V2, . . . , Vk)·S1 ⊆ Fk1(S1, . . . , Sk;V1, . . . , Vk) for any natural number

k > 1.
Statement 2. For any natural number k, the set Fk(S1, . . . , Sk;V1, . . . , Vk) is a

finite and symmetric set;

Statement 3. Fk(S1, . . . , Sk; {0}, . . . , {0}) = {0} for any natural number k;

Statement 4. If 0 ∈ Ui ⊆ Vi ⊆ R and e ∈ Ti ⊆ Si ⊆ R for any natural number

i, then

Fk(T1, . . . , Tk;U1, . . . , Uk) ⊆ Fk(S1, . . . , Sk;V1, . . . , Vk);

Statement 5. If k and p are natural numbers and Vk+j = {0} for any natural

number 1 ≤ j ≤ p, then

Fk(S1, . . . , Sk;V1, . . . , Vk) = Fk+p(S1, . . . , Sk+p;V1, . . . , Vk+p);

Statement 6.

Fk+1(S1, . . . , Sk+1;V1, . . . , Vk+1) = Fk

(

S1, . . . , Sk;V1, . . . , Vn−1, Vk+F1(Sk+1, Vk+1)
)

.

for any natural number n;
Statement 7. If k and p are natural numbers then

Fk(Sp+1, . . . , Sk+p;Vp+1, . . . , Vk+p) ⊆ Fk+p(S1, . . . , Sk+p;V1, . . . , Vk+p).

Proof. As 0 ∈ Vi and e ∈ Si for any natural number i then Statement 1 follows from
definition of the set Fk(S1, . . . , Sk;V1, . . . , Vk) for any k > 1.

Statements 2–5 are easily proved by induction on the number k similar to the
proof of Proposition 5.3.2 in [2].

We prove Statement 6 by induction on the number k.
If k = 2, then F2(S1, S2;V1, V2) = F1

(

S1;V1 + F1(S2;V2)
)

.
Assume that the required inclusion is proved for the number k = n ≥ 2 and let

k = n + 1. Then, from the induction assumption it follows

Fk(S1, . . . , Sk;V1, . . . , Vk) = Fn+1(S1, . . . , Sn+1;V1, . . . , Vn+1) =

F1

(

S1;V1 + Fn(S2, . . . , Sn+1;V2, . . . , Vn+1)
)

=

F1

(

S1;V1 + Fn−1

(

S2, . . . , Sn+1;V2, . . . , Vn−1, Vn + F1(Sn+1, Vn+1)
)

)

=



66 V. I.ARNAUTOV, G. N.ERMAKOVA

Fn

(

S1, . . . , Sn;V1, . . . , Vn−1, Vn + F1(Sn+1, Vn+1)
)

.

Thus Statement 6 is proved.

We prove Statement 7 by induction on the number p. If p = 1 then from
Statements 3 and 4 and inclusion 1 of Statement 1 it follows

Fk(S2, . . . , Sk+1;V2, . . . , Vk+1) ⊆ F1

(

S1;V1 + Fk(S2, . . . , Sk+1;V2, . . . , Vk+1)
)

=

F1+k(S1, . . . , Sk+1;V1, . . . , Vk+1).

Assume that the required inclusion is proved for the number p = n and any natural
number k and let p = n + 1. Then

Fk(Sn+1+1, . . . , Sk+n+1;Vn+1+1, . . . , Vk+n+1) ⊆

F1

(

Sn+1;Vn+1 + Fk(Sn+1+1, . . . , Sk+n+1;Vn+1+1, . . . , Vk+n+1)
)

⊆

F1

(

S1;V1 + Fk+n(S2, . . . , Sk+n+1;V2, . . . , Vk+n+1)
)

⊆

Fk+n+1(S1, . . . , Sk+n+1;V1, . . . , Vk+n+1).

Thus Statement 7 is proved, and hence, Proposition 2.4 is proved.

Proposition 2.5. Let (R, τ) be a Hausdorff topological skew field. If S1, S2, . . . is a

sequence of finite sets, then the following statements are true:

Statement 1. For any neighborhood W of zero there exists a neighborhood W1

of zero such that F1(S1;W1) ⊆ W ;

Statement 2. If A is a finite symmetric set such that e /∈ A and 0 ∈ A then

for any neighborhood U of zero there exists a neighborhood W1 of zero such that

F1(S1;A + W1) ⊆ F1(S1, A) + U .

Statement 3. If 2 ≤ n is a natural number and A1, A2, . . . , An are finite

symmetric sets such that −e /∈ Ai and 0 ∈ Ai for any 1 ≤ i ≤ n, then for any

neighborhood U of zero there exists a neighborhood Wn of zero such that

Fn(S1, S2, . . . , Sn;A1, A2, . . . , An−1,Wn) ⊆ Fn−1(S1, S2, . . . Sn−1;A1, A2, . . . An−1)+U.

Proof. We prove Statement 1. There exist neighborhoods U1, U2 of zero such that
U1 + U1 + U1 ⊆ W and U2 · U2 ⊆ U1. As the set S is a finite set then there exits a
neighborhoods U3 of zero such that S · U3 ⊆ U1 and U3 · S ⊆ U1 and since (R, τ)
is a topological skew field then there exits a neighborhood U4 of zero such that
(e + U4 \ {0})

−1 · U4 ⊆ U3 and U4 · (e + U4 \ {0})
−1 ⊆ U3.

If W1 = U2
⋂

U3
⋂

U4 then

F1(S;W1) = (e + W1 \ {0})
−1 · W1 · S + W1 · W1 + S · W1 · (e + W1 \ {0})

−1 ⊆

(e+U4\{0})
−1·U4·S+U2·U2+S·U4·(e+U4)

−1 ⊆ U3·S+U2·U2+S·U3 ⊆ U1+U1+U1 ⊆ W.

Thus Statement 1 is proved.
We prove Statement 2.
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There exists a neighborhood U1 of zero such that U1 + U1 ⊆ U and since sets A
and S are finite sets, then there exists a neighborhood U2 of zero such that

U2 · A · S + S · A · U2 + U2 · U2 · S + U2 · U2 ⊆ U1.

As 0 6= e + a for any element a ∈ A and (R, τ) is a topological skew field and the
topology τ is a Hausdorff topology then there exists a neighborhood Ua of zero such
that −e − a /∈ Ua and (e + a + Ua)

−1 ⊆ (e + a)−1 + U2. Then

(

e + A + (
⋂

a∈A

Ua)
)

−1
=

(

e + (
⋃

a∈A

{a}) + (
⋂

a∈A

Ua)
)

−1
⊆ (e + A)−1 + U2.

As sets A and S are finite sets, then there exists a neighborhood W1 of zero such
that W1 ⊆ (

⋂

a∈A

Ua) ∩ U2 and

A · W1 + W1 · A + (e + A)−1 · W1 · S + S · W1 · (e + A)−1 + W1 · W1 ⊆ U1

and W1 · W1 · S + W1 · W1 + S · W1 · W1 ⊆ U1. Then F1(S;A + W1) =

(e+A+W1)
−1 · (A+W1) ·S +(A+W1) · (A+W1)+S · (A+W1) · (e+A+W1)

−1 ⊆

(e+ A+ W1)
−1 ·A ·S + (e+ A+ W1)

−1 ·W1 ·S + A ·A+ W1 ·A+ A ·W1 + W1 ·W1+

S · A · (e + A + W1)
−1 + S · W1 · (e + A + W1)

−1 + S · (A + W1) · (e + A + W1)
−1 ⊆

(

(e + A)−1 + U2

)

· A · S +
(

(e + A)−1 + U2

)

· W1 · S+

A ·A+A ·W1+W1 ·A+W1 ·W1 +S ·A ·
(

(e+A)−1 +U2

)

+S ·W1 ·
(

(e+A)−1 +U2

)

⊆

(e+A)−1 ·A·S+U2 ·A·S+(e+A)−1 ·W1 ·S+U2·W1 ·S+A·A+A·W1+W1 ·A+W1 ·W1+

S · A · (e + A)−1 + S · A · U2 + S · W1 · (e + A)−1 + S · W1 · U2 ⊆
(

(e + A)−1 ·A ·S + S ·A · (e + A)−1 + A ·A
)

+
(

A ·W1 + W1 ·A + (e + A)−1 ·W1 ·S+

S · W1 · (e + A)−1 + W1 · W1

)

+
(

U2 · A · S + S · A · U2 + U2 · U2 · S + S · U2 · U2

)

⊆

F1(S1;A) + U1 + U1 ⊆ F1(S1;A) + U.

Thus Statement 2 is proved.

We prove Statement 3 by induction on the number n.
If n = 2 then (see Statement 2) there exists a neighborhood V of zero such that

F1(S1;A1 + V ) ⊆ F1(S1;A1)+ U and (see Statement 1) there exists a neighborhood
W2 of zero such that F1(S2;W2) ⊆ U. Then F2(S1, S2;A1,W2) =

F1

(

S1;A1+F1(S2,W2)
)

⊆ F1

(

S1;A1+F1(S2,W2)
)

⊆ F1(S1;A1+V ) ⊆ F1(S1;A1)+U.

Assume that the required inclusion is proved for the number n = k and let
A1, A2, . . . , Ak+1 be finite symmetric sets such that −e /∈ Ai and 0 ∈ Ai for any
1 ≤ i ≤ k + 1.
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Then from the induction assumption it follows that there exists a neighborhood
V of zero such that

Fk(S1, . . . , Sk;A2, . . . , Ak + V ) ⊆ Fk(S1, . . . Sk;A1, A2, . . . Ak) + U,

and (see Statement 1) there exists a neighborhood Wk+1 of zero such that
F1(Sk+1;Wk+1) ⊆ V .

Then (see Statement 6 of Proposition 2.4)

Fk+1(S1, S2, . . . , Sk+1;A1, A2, . . . , Ak,Wk+1) =

Fk(S1, S2, . . . , Sk;A1, A2, . . . , Ak + F1(Sk+1;Wk+1) =

Fk(S1, S2, . . . , Sk;A1, . . . , Ak−1, Ak + V ) ⊆ Fk(S1, . . . Sk;A1, A2, . . . Ak) + U.

Thus Statement 3 is proved, and hence Proposition 2.5 is proved.

Notation 2.6. If R = {0,±1,±r1,±r2, . . .} is a countable skew field, then for any
natural number k we put Sk = {±e,±r1,±r2, . . . ,±rk}.

3 Basic results

Theorem 3.1. If R =
{

0,±r1,,±r2, . . .
}

is a countable skew field and τ0 is a non-

discrete, Hausdorff, skew field topology such that the topological skew field (R, τ0) has

a countable basis of the filter of neighborhoods of zero, then the following statements

are true:

Statement 1. For any infinite set A of natural numbers there exists a skew

field topology τ(A) such that τ0 ≤ τ(A) and the topological skew field (R, τ(A)) has

a countable basis of the filter of neighborhoods of zero;
Statement 2. sup{τ(A), τ(B)} is the discrete topology for any infinite sets A

and B of natural numbers such that A ∩ B is a finite set;

Statement 3. There are continuum of skew field topologies stronger than τ0

and such that any two of them are comparable to each other;

Statement 4. There are two to the power of continuum of field topologies such

that sup{τ1, τ2} is the discrete topology for any two different topologies τ1 and τ2;

Statement 5. There are two to the power of continuum of coatoms in the lattice

of all skew field topologies of the skew field R.

Proof. Proof of Statement 1. Since (R, τ0) is a topological skew field and it
is a Hausdorff space, then there exists a countable basis {V1, V2, . . .} of the filter of
neighborhoods of zero such that −Vk = Vk, Vk∩Sk = ∅ and F1(Sk+1;Vk+1 +Vk+1) ⊆
Vk for any natural number k (see Statement 1 of Proposition 2.5).

As (see Statement 6 of Proposition 2.4)

Fk+1(S1, . . . , Sk+1;V1, . . . , Vk+1) = Fk

(

S1, . . . , Sk;V1, . . . , Vn−1, Vk+F1(Sk+1, Vk+1)
)

.
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then by induction on n it is easy to prove that Fn(Si+1, . . . , Si+n;Vi+1 . . . , Vi+n) ⊆ Vi

for any natural numbers i and n.
Further the proof of Statement 1 will be realized in several steps.

Step I. By induction we construct a sequence k1, k2, . . . of natural numbers such
that ki ≥ i, for any positive integer number i and we construct a sequence h1, h2, . . .
of nonzero elements of the skew field R such that {−hi, hi} ⊆ Vki

and

Fn

(

S1, . . . , Sk;UA,1, . . . , UA,n

)

⋂

Fn

(

S1, . . . , Sk;UB,1, . . . , UB,n

)

= {0}

for all subsets A and B of the set of natural numbers such that A ∩ B = ∅, where
UC, i = {hi, 0,−hi} if i ∈ C and UC, i = {0} if i /∈ C, for any set C of natural
numbers.

We take k1 = 2, and as h1 we take an arbitrary element of the set V2\{0}.
If A and B are some sets of natural numbers such that A

⋂

B = ∅, then k1 /∈ A
and hence UA,1 = {0} or k1 = 2 /∈ B, and hence UB,1 = {0}. Then F1(S1;UA,1) ∩
F1(S1;UB,1) = {0}.

Suppose that we defined natural numbers k1 < k2 < . . . < kn such that ki ≥ i and
we defined nonzero elements h1, h2, . . . , hn of the skew field R such that {−hi, hi} ⊆
Vki

and

Fn

(

S1, . . . , Sn;UA,1, . . . , UA,n

)

∩ Fn

(

S1, . . . , Sn;UB,1, . . . , UB,n

)

= {0}

for any sets A and B of natural numbers such that A ∩ B = ∅.
If Ω = {A1, . . . , A2n} is the set all subsets of the set {1, . . . , 2n} and Bi =

{1, . . . , 2n} \ Ai for 1 ≤ i ≤ 2n then from the induction assumption

Fn

(

S1, . . . , Sn;UAi,1, . . . , UAi,n

)

∩ Fn

(

S1, . . . , Sn;UBi,1, . . . , UBi,1

)

= {0}

for any 1 ≤ i ≤ 2n.
As (R, τ0) is a Hausdorff skew field and sets Fn

(

S1, . . . , Sn;UAi,1, . . . , UAi,n

)

and
Fn

(

S1, . . . , Sn;UBi,1, . . . , UBi,1

)

are finite sets then for any 1 ≤ i ≤ 2n there exists a
neighborhood Wi of zero such that

(

(

Fn(S1, . . . , Sn;UAi,1, . . . , UAi,n) \ {0}
)

+ Wi

)

∩

(

(

Fn(S1, . . . , Sn;UBi,1, . . . , UBi,1) \ {0}
)

+ Wi

)

= ∅,

and hence
(

(

Fn(S1, . . . , Sn;UAi,1, . . . , UAi,n)
)

+ Wi

)

∩

(

(

Fn(S1, . . . , Sn;UBi,1, . . . , UBi,n)
)

+ Wi

)

= {0}.

Then (see Statement 3 of Proposition 2.4) for any 1 ≤ i ≤ 2n there exists a
neighborhood W ′

i of zero such that

Fn+1

(

S1, . . . , Sn, Sn+1;UAi,1, . . . , UAi,n,W ′

i

)

⊆
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Fn(S1, . . . , Sn;UAi,1, . . . , UAi,n) + Wi

and
Fn+1

(

S1, . . . , Sn, Sn+1;UBi,1, . . . , UBi,n,W ′

i )
)

⊆

Fn(S1, . . . , Sn;UBi,1, . . . , UBi,n) + Wi.

If kn+1 is a natural number such that kn+1 > kn and Vkn+1 ⊆
2n

⋂

j=1
W ′

i and hn+1

is some element of Vkn+1 \ {0} then we take as hn+1 an arbitrary element of the set
Vkn+1\{0}.

We prove that

Fn+1(S1, . . . , Sn+1;UA,1, . . . , UA,n+1) ∩ Fn+1(S1, . . . , Sn+1;UB,1, . . . , UB,n+1) = {0}

for any subsets A and B of natural numbers such that A∩B = ∅ (definition of sets
UC,k see above).

Let A and B be some subsets of natural numbers such that A ∩ B = ∅. Then
A ∩ {1, . . . n} = As ∈ Ω and B ∩ {1, . . . n} ⊆ Bs (definition of sets Ω and Bs see
above) for 1 ≤ s ≤ 2n.

It is easy to see that UA,i = UAs,i and UB,i ⊆ UBs,i for any 1 ≤ i ≤ n, and hence

Fn(S1, . . . , Sn;UA,1, . . . , UA,n) ∩ Fn(S1, . . . , Sn;UB,1, . . . , UB,n) ⊆

Fn(S1, . . . , Sn;UAs,1, . . . , UAs,n) ∩ Fn(S1, . . . , Sn;UBs,1, . . . , UBs,n).

Since A ∩ B = ∅ then UB,n+1 = {0} or UA,n+1 = {0}.
Assume, for definiteness, that UA,n+1 = {0}. Then from Statement 5 of Propo-

sition 2.4 and definition of sets Wi (see above) it follows that

{0} ⊆ Fn+1(S1, . . . , Sn;UA,1, . . . , UA,n+1)
⋂

Fn+1(S1, . . . , Sn+1;UB,1, . . . , UB,n+1) ⊆

Fn+1(S1, . . . , Sn+1;UAs,1, . . . , UAs,n, {0})
⋂

Fn+1(S1, . . . , Sn+1;UBs,1, . . . , UBs,n, {−hn+1, 0, hn+1}) ⊆

Fn(S1, . . . , Sn;UAs,1, . . . , UAs,n)
⋂

Fn+1(S1, . . . , Sn+1;UBs,1, . . . , UBs,n, Vkn+1) ⊆

Fn(S1, . . . , Sn;UAs,1, . . . , UAs,n)
⋂

Fn(S1, . . . , Sn;UB,1, . . . , UB,n) + Ws = {0},

and hence

Fn+1(S1, . . . , Sn+1;UA,1, . . . , UA,n+1) ∩ Fn+1(S1, . . . , Sn+1;UB,1, . . . , UB,n+1) = {0}.

So, we defined the sequence k1, k2, . . . of natural numbers such that ki ≥ i for
any number i and we defined the sequence h1, h2, . . . of nonzero elements of the skew
field R such that {−hi, hi} ⊆ Vki

for any natural number i and

Fn(S1, . . . , Sk;UA,1, . . . , UA,n) ∩ F̃n (S1, . . . , Sk;UB,1, . . . , UB,n) = {0}
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for any natural number n and any sets A and B of natural numbers such that
A ∩ B = ∅.

Step II. For any pair (i, j) of natural numbers we consider the set

UA,(i,j) = Fj(Si+1, . . . , Si+j ;UA,i+1, . . . , UA,i+j),

where (as before) UA,k = {0} if k /∈ A and UA,i = {0, hk,−hk} if k ∈ A.
For the sets U(i,j),A we prove the following inclusions:
1. From Statement 3 of Proposition 2.4 it follows that 0 ∈ UA,(i,j) for any natural

numbers i, j and

UA,(i,j) = Fn(Si+1, . . . , Si+n;UA,i+1, . . . , UA,i+n) ⊆

Fn(Si+1, . . . , Si+n;Vi+1, . . . , Vi+n) ⊆ Vi

for any natural numbers i, n and any set A of natural numbers.

2. From Statements 4 and 5 of Proposition 2.4 it follows that UA,(k,j) ⊆ UA,(k,n)

for any natural numbers n and j ≤ n.

3. From Statement 7 of Proposition 2.4 it follows that U(i,j),A ⊆ UA,(k,j+i−k) for
any natural numbers k ≤ i and any j > i.

4. From Statement 2 of Proposition 2.4 it follows that UA,(i,j) is a symmetric
set, i.e. −UA,(i,j) = UA,(i,j) for any natural numbers i, j.

5. From inclusion 2 of Statement 1 of Proposition 2.4 it follows that

UA,(i+1,n+1) · UA,(i+1,n+1) = Fn+1(Si+2, . . . , Si+n+2;

UA,i+2, . . . , UA,i+n+2) · Fn+1(Si+2, . . . , Si+n+2;UA,i+2, . . . , UA,i+n+2) ⊆

Fn+1(Si+1 . . . , Si+n+2;UA,i+1, . . . , UA,i+n+2) = UA,(i,n+1);

6. From inclusion 1 of Statement 1 of Proposition 2.4 it follows that

UA,(i+1,j+1) + UA,(i+1,j+1) =

Fj+1(Si+2, . . . , Si+j+2;UA,i+2, . . . , UA,i+j+2)+

Fj+1(Si+2, . . . , Si+j+2;UA,i+2, . . . , UA,i+j+2) ⊆

Fj+1(Si+1, . . . , Si+j+2;UA,i+1, . . . , UA,i+j+2) = UA,(i,j+1);

7. From inclusion 3 of Statement 1 of Proposition 2.4 it follows that

UA,(i+1,j+1) · (e + UA,(i+1,j+1))
−1 =

(

Fj+1(Si+2, . . . , Si+j+2;UA,i+2, . . . , UA,i+j+2)
)

·
(

e+
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Fj+1(Si+2, . . . , Si+j+2;UA,i+2, . . . , UA,i+j+2)
)

−1
⊆

Fj+2(Si+1 . . . , Si+j+2;UA,i+1, . . . , UA,i+j+2) = UA,(i,j+2)

8. From inclusion 4 of Statement 1 of Proposition 2.4 it follows that

rn · UA,(i+n,j) ⊆ Si+n · Fn+i+j(Sn+i+1, . . . , Sn+i+j;UA,n+i+1, . . . , UA,n+i+j) ⊆

Fn+i+j+1(Sn+i, . . . , Sn+i+j;UA,n+i, . . . , UA,n+i+j) =

UA,(i+n−1,j) ⊆ UA,(i,j+1).

Step III. For every infinite set A of natural numbers and any natural number

i we take Ûi(A) =
∞
⋃

j=1
UA,(i,j) and we show that the set {Ûi(A)|i ∈ N} satisfies the

conditions of Theorem 2.1, and hence this set is a basis of the filter of neighborhoods
of zero for a field topology τ(A) on the skew field R.

In fact, since

{0} ⊆ UA,(i,n+1) = Fn+1(Si+1, . . . , Si+n+1;UA,i+1, . . . , UA,i+n+1) ⊆

Fn+1(Si+1 . . . , Si+n+1;Vi+1, . . . , Vi+n+1) ⊆ Vi

for any natural numbers i and n, then Ûi(A) =
∞
⋃

j=1
UA,(i,j) ⊆ Vi. Then

{0} ⊆
∞
⋂

i=1
Ûi(A) ⊆

∞
⋂

i=1
Vi = {0}, and hence the condition 1 of Theorem 2.1 is satisfied.

From inclusions 2 and 3 (see Step II), it follows

Ûi(A)
⋂

Ûk(A) = (

∞
⋃

j=1

(

UA,(i,j)

)

⋂

(

∞
⋃

l=1

UA,(k,l)

)

=

∞
⋃

j=1

∞
⋃

l=1

(

UA,(i,j)

⋂

UA,(k,l)

)

=
∞
⋃

j=1

UA,(t,j) = Ût(A),

where t = max{i, k}, and hence the condition 2 of Theorem 2.1 is satisfied.
From inclusions 2 and 5 (see Step II) it follows

Ûi(A) + Ûk(A) =
(

∞
⋃

j=1

UA,(i,j)

)

+
(

∞
⋃

l=1

UA,(i,l)

)

=

⋃

j=1

⋃

l=1

(

UA,(i,j) + UA,(i,l)

)

⊆
∞
⋃

t=1

UA,(i−1,t) = Ûi−1(A)

and

Ûi(A) · Ûk(A) =
(

∞
⋃

j=1

UA,(i,j)

)

·
(

∞
⋃

l=1

UA,(i,l)

)

=
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∞
⋃

j=1

∞
⋃

l=1

(

UA,(i,j) · UA,(i,l)

)

⊆
∞
⋃

t=1

UA,(i−1,t) = Ûi−1(A)

for any natural number i > 1, and hence conditions 3 and 6 of Theorem 2.1 are
satisfied.

From inclusion 4 (see Step II) it follows

−Ûi(A) = −(

∞
⋃

j=1

UA,(i,j)) =

∞
⋃

j=1

∞
⋃

l=1

(

−UA,(i,j)

)

=

∞
⋃

j=1

UA,j = Ûi(A)

for any natural number i, and hence, the condition 4 of Theorem 2.1 is satisfied.
Now, let r ∈ R.
If r = 0, then r · Ûi(A) = {0} ⊆ Ûi(A) and Ûi(A) · r = {0} ⊆ Ûi(A) for any

natural number i and any set A of natural numbers.
If r 6= 0, then r = rn or r = −rn for some natural number n. Then, from the

inclusion 8 (see Step II) it follows rn · Ûi+n(A) ⊆ Ûi(A) for any natural number i,
and hence the condition 5 of Theorem 2.1 is satisfied.

If now a ∈ Ûi+1(A) =
∞
⋃

j=1
UA,(i+1,j) then there exists a natural number n such

that a ∈ UA,(i+1,n). Then from inclusion 7 (see Step II) it follows

(e+a)−1−e = (e−e−a)·(e+a)−1 = (−a)·(e+a)−1 ∈ UA,(i,n+1) ⊆
∞
⋃

j=1

UA,(i,j) = Ûi(A).

From the arbitrariness of the element aÛi+1(A) it follows that (Ûi+1(A))−1−e ⊆
Ûi(A) for any natural number i, and hence the condition 7 of Theorem 2.1 is satisfied.

Thus, we have shown that the set {Ûi(A)|i ∈ N} satisfies conditions 1 – 7 of
Theorem 2.1, and hence this set is a basis of the filter of neighborhoods of zero for
a skew field topology τ(A) on the skew field R.

Since Ûi(A) =
∞
⋃

j=1
UA,(i,j) ⊆ Vi for any natural number i, then τ0 ≤ τ(A).

Thus Statement 1 of this theorem is proved.

Proof of Statements 2 – 5 can be obtained if we repeat word for word the proof
of the corresponding statements 3.1.2 – 3.1.5 in [6].

The theorem is proved.
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