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Closure operators in modules and their

characterizations

A. I. Kashu

Abstract. This work is dedicated to the investigation of closure operators of a mod-
ule category R-Mod. The principal types of closure operators of R-Mod are studied
and their characterizations are indicated, using dense or (and) closed submodules.
The method of description of the closure operators consists in the elucidation of prop-
erties of functions which separate in every module, the set of dense submodules and
the set of closed submodules. The main properties of the closure operators of R-Mod
are studied: weakly heredity – idempotency, maximality – minimality, heredity – co-
heredity, as well as diverse combinations of them. Altogether, 16 types of the closure
operators are described, among which 7 types possess double characterizations (by
dense submodules and by closed ones).

Mathematics subject classification: 16D90, 16S90, 18A40, 18E40.

Keywords and phrases: Ring, module, closure operator, preradical, dense (closed),
submodule.

Introduction

The main notion of this work is the closure operator of a module category R-Mod.
It is defined as a function C which associates to every pair N ⊆ M , where N is
a submodule of the module M ∈ R-Mod, a new submodule CM (N) ⊆ M such
that the properties of extension, monotony and continuity are satisfied (see Def-
inition 1.1). This notion possesses numerous relations with different problems of
algebra, topology, theory of categories etc. Various aspects of closure operators
were studied by many authors, especially in the book [4], where a broad spectrum
of questions on closure operators and their relations with other notions are exposed
in categorial language.

The relations between the closure operators of R-Mod and the preradicals of this
category are of special interest for us. We will use this connection, as well as the
method of description of preradicals by the associated classes of modules, adopting
it to the case of closure operators.

The aim of this work is the characterization of principal types of closure opera-
tors of R-Mod by the dense submodules or (and) by the closed submodules. More
exactly, every closure operator C of R-Mod defines two functions F

C
1 and F

C
2 ,

which distinguish in every module M ∈ R-Mod the set F
C
1 (M) of C-dense sub-

modules and the set of C-closed submodules F
C
2 (M). The studied types of closure
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operators are characterized by the function F
C
1 or (and) by the function F

C
2 , indi-

cating, for every studied type of operators, properties of the associated functions,
which reestablish the given operators.

The following pairs of properties of closure operators have a particular impor-
tance: 1) weakly heredity, idempotence; 2) maximality, minimality; 3) heredity,
coheredity. On the base of these conditions, different combinations of them are
considered, which define the most important classes of closure operators of R-Mod.
The method of characterization of diverse types of closure operators consists in the
following. For every type of operators the properties of associated functions F

C
1 or

(and) F
C
2 are indicated, which uniquely determine the studied type of operators. In

such a way, the description of closure operators is expressed in the form of a bijec-
tion between the operators (C) of the studied type and the abstract functions (F )
with the necessary properties. In this procedure both the well known conditions of
the functions are used ([4, 5]), as well as some new properties are introduced (see
Table 1).

We will consider all possible cases (determined by the indicated three pairs of
properties) and will show the characterizations by associated functions for 16 types
of closure operators, among which 7 types are described both by dense submodules
and by closed submodules. These facts supplement and complete the known results
on this question exposed in [4] and [5]. Figure 1 shows the relations between the
studied classes of closure operators, as well as the properties of associated functions,
which characterize the given type of closure operators.

1 Preliminary notions and results

This section is of preparatory character and contains the notions and main results
which are necessary for the exposition of the basic material. We begin with the
central notion: closure operator of R-Mod [2–7].

Let R be a ring with unity and R-Mod be the category of unitary left R-modules.
For every module M ∈ R-Mod we denote by L(M) the lattice of submodules of M .

Definition 1.1. A closure operator of R-Mod is a function C which associates to
every pair N ⊆ M , where M ∈ R-Mod and N ∈ L(M), a submodule of M , denoted
by CM(N), such that the following conditions are satisfied:

(c1) N ⊆ CM(N) (extension);

(c2) If N,L ∈ L(M) and N ⊆ L, then CM(N) ⊆ CM(L) (monotony);

(c3) If f : M → M ′ is an R-morphism and N ⊆ M , then
f
(

CM(N)
)

⊆ CM′

(

f(N)
)

(continuity).

By CO(R) we denote the class of all closure operators of R-Mod.

Definition 1.2. Let C ∈ CO(R) and M ∈ R-Mod. A submodule N ∈ L(M) is
called:

a) C-dense in M if CM(N) = M ;

b) C-closed in M if CM(N) = N .
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For every closure operator C ∈ CO(R) and every module M ∈ R-Mod we
denote by :

F
C
1 (M) = {N ∈ L(M) | CM(N) = M} the set of C-dense submodules of M ;

F
C
2 (M) = {N ∈ L(M) | CM(N) = N} the set of C-closed submodules of M .

It is obvious that F
C
1 (M)∩ F

C
2 (M) = {M}.

In such a way every closure operator C ∈ CO(R) defines two functions F
C
1 and

F
C
2 , which separate in every module M ∈ R-Mod the set of C-dense submodules

F
C
1 (M) and the set of C-closed submodules F

C
2 (M). In Section 2 we will show

properties of these functions.
In the class CO(R) of the closure operators of R-Mod the order relation (≤)

can be defined as follows:

C ≤ D ⇔ CM(N) ⊆ DM(N) for every pair N ⊆ M.

Moreover, the class CO(R) can be transformed in a (“big”) complete lattice by the
following operations:

1) the meet (intersection):
∧

α∈A

Cα , {Cα | α ∈ A} ⊆ CO(R), where

(

∧

α∈A

Cα

)

M
(N)

def
==

⋂

α∈A

[

(Cα)M (N)
]

for every N ⊆ M ;

2) the join (sum):
∨

α∈A

Cα , {Cα | α ∈ A} ⊆ CO(R), where

(

∨

α∈A

Cα

)

M
(N)

def
==

∑

α∈A

[

(Cα)M (N)
]

for every N ⊆ M.

Besides, in the class CO(R) two more operations are defined, namely:
3) the composition (multiplication): C · D, where C,D ∈ CO(R) and

(

C · D)M (N)
def
== CM

(

DM(N)
)

for every N ⊆ M ;

4) the cocomposition (comultiplication): C ∗ D, where C,D ∈ CO(R) and

(

C ∗ D)M (N)
def
== CD

M
(N)(N) for every N ⊆ M.

The properties of these operations are shown in [2–7]. As an example, we indicate
the distributivity properties:

(

∧

α∈A

Cα

)

· D =
∧

α∈A

(Cα · D),
(

∨

α∈A

Cα

)

· D =
∨

α∈A

(Cα · D);

(

∧

α∈A

Cα

)

∗ D =
∧

α∈A

(Cα ∗ D),
(

∨

α∈A

Cα

)

∗ D =
∨

α∈A

(Cα ∗ D).

In continuation we remind an important notion related to the closure operators.
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Definition 1.3. A preradical r of R-Mod is a subfunctor of the identity functor
of R-Mod, i.e. r is a function which separates, in every module M ∈ R-Mod, a
submodule r(M) ⊆ M such that for every R-morphism f : M → M ′ the relation
f
(

r(M)
)

⊆ r(M ′) holds [1].

We denote by PR(R) the class of all preradicals of R-Mod. Similarly to the
class of closure operators CO(R), it possesses four operations [1].

The classes CO(R) and PR(R) are closely related by the following three map-
pings:

CO(R)
Φ // PR(R) ,

Ψ1

rr

Ψ2

ll

which are defined by such rules.

1) Φ : CO(R) −−→ PR(R). For every C ∈ CO(R) we denote Φ(C) = rC and

define rC(M)
def
== CM(0) for every M ∈ R-Mod.

2) Ψ1 : PR(R) −−→ CO(R). For every r ∈ PR(R) we denote Ψ1(r) = C r and
define (C r)M(N) by such relation:

[(C r)M(N)]
/

N
def
== r(M/N) for every N ⊆ M.

3) Ψ2 : PR(R) −−→ CO(R). For every r ∈ PR(R) we denote Ψ2(r) = C r and
define:

(C r)M(N)
def
== r(M) + N for every N ⊆ M.

For any preradical r ∈ PR(R) the operator C r is the greatest between the
operators C ∈ CO(R) with the property Φ(C) = r, while C r is the least operator
of such type. Therefore every preradical r ∈ PR(R) defines the equivalence class
(interval) [C r, C r] and there exists a bijection between the preradicals of R-Mod
and such classes. The operators of the form C r for r ∈ PR(R) are called maximal

and the operators of the form C r are called minimal (the direct definitions are
formulated in continuation).

In the literature on this subject many types of closure operators are studied [2–7].
We distinguish the most important types of closure operators in R-Mod, which play
a fundamental role in the theory of closure operators in module categories. On the
base of our investigations the following types of closure operators are.

Definition 1.4. A closure operator C ∈ CO(R) is called:

– weakly hereditary if CC
M

(N) (N) = CM(N) for every N ⊆ M ;

– idempotent if CM

(

CM(N)
)

= CM(N) for every N ⊆ M ;

– maximal if CM(N)/N = CM/N( 0̄) for every N ⊆ M
(

or: CM(N)/K = CM/K(N/K) for every K ⊆ N ⊆ M
)

;

– minimal if CM(N) = CM(0) + N for every N ⊆ M
(

or: CM(N) = CM(K) + N for every K ⊆ N ⊆ M
)

;



CLOSURE OPERATORS IN MODULES AND THEIR CHARACTERIZATIONS 35

– hereditary if CN(K) = CM(K)∩N for every K ⊆ N ⊆ M ;

– cohereditary if
(

CM(N)+K
)

/K = CM/K

(

(N +K)/K
)

for every K,N ∈ L(M)
(

or: f
(

CM(N)
)

= Cf(M)

(

f(N)
)

for every R-morphism

f : M → M ′ and N ⊆ M
)

.

From the definitions of the operations (·) and (∗) in CO(R) it is clear that C
is weakly hereditary iff C ∗ C = C and C is idempotent iff C · C = C.

Besides the indicated three pairs of types of closure operators, in this work
different combinations of these conditions are studied (see Figure 1). Now we remark
some simple relations between the indicated classes of closure operators of R-Mod,
which will be used in the next proofs.

Lemma 1.1. Every hereditary closure operator is weakly hereditary.

Proof. If C ∈ CO(R) is hereditary and N ⊆ M , then in the situation N ⊆
CM(N) ⊆ M the heredity of C implies:

CC
M

(N)(N) = CM(N)∩CM(N) = CM(N),

so C is weakly hereditary.

Lemma 1.2. Every minimal closure operator is idempotent.

Proof. If C ∈ CO(R) is minimal and N ⊆ M , then:

CM

(

CM(N)
)

= CM

(

CM(0)+N
)

= CM(0)+
(

CM(0)+N
)

= CM(0)+N = CM(N).

Lemma 1.3. A closure operator C ∈ CO(R) is cohereditary if and only if C is

maximal and minimal.

Proof. (⇒) Let C ∈ CO(R) be a cohereditary closure operator and K ⊆ N ⊆ M .
Then CM(N)

/

K = CM/K(N/K), i.e. C is maximal.
To verify the minimality of C let N ⊆ M and consider the natural morphism

π : M → M/N . In M we have the situation N ⊆ CM(N) ⊆ M , which is transferred
by π in 0̄ ⊆ CM(N)

/

N ⊆ M/N and by coheredity of C we have CM(N)
/

N =
CM/N(0̄).

On the other hand, we have 0 ⊆ CM(0) ⊆ M , which by π passes to 0̄ ⊆
(

CM(0) + N
)/

N ⊆ M
/

N and the coheredity of C now implies
(

CM(0) + N
)/

N =
CM/N(0̄). Comparing with the above relation, we have CM(N)

/

N =
(

CM(0) +
N

)/

N , i.e. CM(N) = CM(0) + N and C is minimal.
(⇐) Let C ∈ CO(R) be maximal and minimal. For submodules K,N ∈ L(M)

we apply the minimality of C in the situation N ⊆ N + K ⊆ M and obtain:

CM(N + K) = CM(N) + (N + K) = CM(N) + K.

Therefore
(

CM(N) + K
)/

K =
(

CM(N + K)
)/

K.
Now we will use the maximality of C in the situation K ⊆ N + K ⊆ M

and obtain:
(

CM(N +K)
)/

K = CM/K

(

(N +K)
/

K
)

. Comparing with the previous
relation, we have

(

CM(N)+K
)/

K = CM/K

(

(N+K)
/

K
)

, i.e. C is cohereditary.
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Now it is clear that every cohereditary closure operator, since being minimal
(Lemma 1.3), is idempotent (Lemma 1.2). The rest of relations indicated in Figure 1
are obvious.

In continuation we remind some more facts on the principal types of closure
operators. On the pair of properties “weakly hereditary – idempotent” we can
say that every operator C ∈ CO(R) possesses an approximation in the respective
classes of operators. More exactly, for every C ∈ CO(R) there exists the greatest

weakly hereditary operator C∗ which is contained in C (weakly hereditary core of C).
Dually, for C ∈ CO(R) there exists the least idempotent operator C

∗
which contains

C (idempotent hull of C). These approximations C∗ and C
∗

can be obtained by
the operations (∗) and (·), indicated above [4].

Namely, for C ∈ CO(R) we consider the descending ordinal chain:

C1 ≥ C2 ≥ · · · ≥ Cα ≥ Cα+1 ≥ · · · ≥ Cβ ≥ · · · ,

where C1 = C, Cα+1 = C ∗ Cα and Cβ =
⋂

γ<β

Cγ for every ordinal number α and

limit ordinal β. Then the intersection C∗ of all members of this chain is the greatest
weakly hereditary operator which is contained in C.

Dually, we can define the ascending ordinal chain for C ∈ CO(R):

C1 ≤ C2 ≤ · · · ≤ Cα ≤ Cα+1 ≤ · · · ≤ Cβ ≤ · · · ,

where C1 = C, Cα+1 = C · Cα and Cβ =
∨

γ<β

Cγ for all α and β as above.

Then the join (sum) C
∗

of all members of this chain is the least idempotent closure
operator containing C.

Similar constructions for preradicals are shown in [1].
We remark that in Section 2 the other method will be shown for the construction

of operators C∗ and C
∗

by the associated functions F
C
1 and F

C
2 .

Some similar results on approximations are true also for the maximal and min-
imal operators, using the mappings Φ,Ψ1 and Ψ2, mentioned above. Namely, for
C ∈ CO(R) and r = rC , Cr is the least maximal operator containing C, while Cr

is the greatest minimal operator which is contained in C.
Now we will remind the method of characterization of some types of preradicals

by means of the associated classes of modules [1]. Every preradical r ∈ PR(R)
defines two classes of modules:

Tr = {M ∈ R-Mod | r(M) = M} is the class of r-torsion modules;

Fr = {M ∈ R-Mod | r(M) = 0} is the class of r-torsionfree modules.

In some cases the classes Tr or (and) Fr reestablish the preradical r and thus
uniquely determine r. The inverse transition from the classes of modules to prerad-
icals is defined as follows.

Let K be an abstract class of modules, i.e. K is closed under isomorphisms
(M ∈ K,M ∼= M ′ ⇒ M ′ ∈ K) and 0 ∈ K. Then we can obtain two preradicals rK

and rK by the rules:



CLOSURE OPERATORS IN MODULES AND THEIR CHARACTERIZATIONS 37

rK(M)
def
==

∑

α∈A

{Nα ⊆ M | Nα ∈ K},

rK(M)
def
==

⋂

α∈A

{Nα ⊆ M | M
/

Nα ∈ K},

for every M ∈ R-Mod. Using the mappings r  Tr, K rK and r Fr, K rK ,
the characterizations of all principal types of preradicals r by associated classes Tr

or (and) Fr can be obtained [1]. For example, the mappings r  Tr, K  rK

establish a monotone bijection between the idempotent radicals of R-Mod and the
classes of modules closed under homomorphic images and direct sums. Dually, the
mappings r  Fr, K  rK define an antimonotone bijection between the radicals

of R-Mod and the classes of modules closed under submodules and direct products.
In more complicated cases some new properties of classes of modules are added.

The general method of characterization of principal types of closure operators,
accepted in this work, is similar to the indicated above method for preradicals.
Namely, for every C ∈ CO(R) the associated functions F

C
1 and F

C
2 , defined by the

dense and closed submodules, are considered. The studied types of operators are
described by the properties of corresponding functions F

C
1 or (and) F

C
2 . With this

aim the inverse transitions are defined: from an abstract function F of the necessary
form to the closure operators C F and CF.

We will use the term abstract function F of R-Mod in the sense that F is
a function which separates, in every module M ∈ R-Mod, a set of submodules

F(M) ⊆ L(M) such that it is concordant with isomorphisms
(

M
f
∼= M ′, N ∈

F(M) ⇒ f(N) ∈ F(M ′)
)

and M ∈ F(M). Every abstract function F of R-Mod
defines two operators C F and CF by the rules:

(C F)M (N) =
∑

α∈A

{Nα ⊆ M | N ⊆ Nα , N ∈ F(Nα)},

(CF)M (N) =
⋂

α∈A

{Nα ⊆ M | N ⊆ Nα , Nα ∈ F(M)},

for every N ⊆ M . The mappings C  FC
1 , F  C F and C  FC

2 , F  CF give
us the possibility to characterize the principal types of closure operators, using the
abstract functions of R-Mod with the suitable conditions (properties). The list of
all used conditions is attached in the end of this work (see Table 1).

2 Dense and closed submodules. Properties of the

functions F
C
1F
C
1F
C
1 and F

C
2F
C
2F
C
2

Let C ∈ CO(R) and we consider the functions F
C
1 and F

C
2 , defined as above by

C-dense and C-closed submodules:

F
C
1 (M)

def
== {N ∈ L(M)

∣

∣ CM(N) = M}, F
C
2 (M)

def
== {N ∈ L(M)

∣

∣ CM(N) = N}.

In this section we will show the properties of the functions F
C
1 and F

C
2 for an

arbitrary C ∈ CO(R).



38 A. I. KASHU

For convenience in the following exposition we formulate some conditions (prop-
erties) in a general form, considering an abstract function F (which preserves the
isomorphisms and M ∈ F(M) for every M ∈ R-Mod):

C 1. If Mα ⊆ M and N ∈ F(Mα) for every α ∈ A, then N ∈ F(
∑

α∈A

Mα);

C 2. If N ⊆ L ⊆ M and N ∈ F(L), then N +K ∈ F(L+K) for every K ⊆ M ;

C 3. If K ⊆ N ⊆ M and N ∈ F(M), then N/K ∈ F(M/K).

The reason of the choice of these conditions consists in the following.

Proposition 2.1. For every closure operator C ∈ CO(R) the associated function

F
C
1 , defined by C-dense submodules, satisfies the conditions C 1, C 2 and C 3.

Proof. C 1. Suppose that Mα ⊆ M and N ∈ F
C
1 (Mα) for every α ∈ A. Then

CMα(N) = Mα (α ∈ A) and from the monotony of C in the first term
(

which follows
from (c3)

)

we have CMα(N) ⊆ C∑

α∈A

Mα(N), i.e. Mα ⊆ C∑

α∈A

Mα(N) for every α ∈ A.

Therefore
∑

α∈A

Mα ⊆ C∑

α∈A

Mα(N), so
∑

α∈A

Mα = C∑

α∈A

Mα(N) and N ∈ F
C
1 (

∑

α∈A

Mα).

C 2. Let N ⊆ L ⊆ M and N ∈ F
C
1 (L). Then CL(N) = L and for any submo-

dule K ⊆ M we have CL(N) + K = L + K. From the monotony of C (in both
terms) it follows that CL(N) ⊆ CL+K(N+K), therefore CL(N)+K ⊆ CL+K(N+K).
Then L + K ⊆ CL+K(N + K), which means that N + K ∈ F

C
1 (L + K).

C 3. Let K ⊆ N ⊆ M and N ∈ F
C
1 (M), i.e. CM(N) = M . By (c3) we have

π
(

CM(N)
)

⊆ CM/K(N/K), where π : M → M/K is the natural morphism. Then
CM(N)/K ⊆ CM/K(N/K) and by assumption M/K ⊆ CM/K(N/K), i.e. N/K ∈
F

C
1 (M/K).

The abstract functions of R-Mod with the conditions C1−C 3 will play a special
role in the following investigations and for simplification of exposition we need such
notion.

Definition 2.1. An abstract function F of R-Mod which satisfies the conditions
C 1−C 3 will be called a function of the type F1.

For the next characterizations some modifications of the conditions C 2 and C 3
are convenient. By this reason we formulate the following two conditions, indicating
their relations with the previous ones:

C 4. If N ⊆ L ⊆ M and N ∈ F(M), then L ∈ F(M);

C 5. If f : M → M ′ is an R-morphism and N ∈ F(M), then f(N) ∈ F
(

f(M)
)

.

Lemma 2.2. The following implications are true:

C 2 ⇒ C 4, C 5 ⇒ C 3, C 3 + C 4 ⇒ C 5 (so C 2 + C 3 ⇒ C 5).

Therefore, every abstract function of the type F1 satisfies the conditions C 4 and C 5.
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Proof. C 2 ⇒ C 4. If N ⊆ L ⊆ M and N ∈ F(M), then from C 2 we have
N + L ∈ F(M + L), i.e. L ∈ F(M).

C 5 ⇒ C 3. If K ⊆ N ⊆ M and N ∈ F(M), then from C 5 (applied to the
natural morphism π : M → M/K) we obtain N/K ∈ F(M/K).

C 3 + C 4 ⇒ C 5. Let f : M → M ′ be an R-morphism and N ∈ F(M). Denote
K = Ker f and consider the situation:

M

f

**π

nat
// M/K ∼= f(M)

⊆
// M ′

N

⊆

;;
w

w
w

w
w

w
w

w
w

w ⊆
// N+K

⊆

OO

π′
//___ (N+K)/K ∼= f(N) .

⊆

OO

⊆

OO

⊆

55jjjjjjjjjjjjjjjjj

Since N ∈ F(M), by C 4 we have N + K ∈ F(M). Now from C 3 we obtain
(N +K)/K ∈ F(M/K). By the definition F preserves the isomorphisms, so f(N) ∈
F

(

f(M)
)

and C 5 is true.
From the implication C 2 ⇒ C 4 now it is clear that C 2 + C 3 ⇒ C 5. Therefore

every function of the type F1 satisfies the conditions C 4 and C 5.

In the rest of this section we will study in a similar manner the function F
C
2 ,

defined by C-closed submodules for C ∈ CO(R). This part has a dual character
relative to the previous. Now we consider the following conditions for an abstract
function F of R-mod:

C 1
∗

. If Nα ⊆ M and Nα ∈ F(M) for every α ∈ A, then
⋂

α∈A

Nα ∈ F(M);

C 2
∗

. If N ⊆ L ⊆ M and N ∈ F(L), then N ∩ K ∈ F(L ∩ K) for every
K ⊆ M ;

C 3
∗

. If K ⊆ N ⊆ M and N/K ∈ F(M/K), then N ∈ F(M).

Proposition 2.3. For every closure operator C ∈ CO(R) the associated function

F
C
2 , defined by C-closed submodules, satisfies the conditions C1

∗

,C2
∗

and C3
∗

.

Proof. C 1
∗

. Suppose that Nα ⊆ M and Nα ∈ F
C
2 (M) for every α ∈ A. Then

CM(Nα) = Nα (α ∈ A) and by the monotony of C we have CM(
⋂

α∈A

Nα) ⊆ CM(Nα) =

Nα for every α ∈ A. Therefore CM(
⋂

α∈A

Nα) ⊆
⋂

α∈A

Nα , so CM(
⋂

α∈A

Nα) =
⋂

α∈A

Nα , i.e.
⋂

α∈A

Nα ∈ F
C
2 (M).

C 2
∗
. Let N ⊆ L ⊆ M and N ∈ F

C
2 (L), i.e. CL(N) = N . For any submodule

K ⊆ M from the monotony of C it follows that CL∩K(N ∩ K) ⊆ CL(N) = N .
From the other hand, the monotony of C implies CL∩K(N ∩K) ⊆CK(N ∩K) ⊆

K. By the previous relation now it is clear that CL∩K(N ∩ K) ⊆ N ∩ K, i.e.
CL∩K(N ∩ K) = N ∩ K. Therefore N ∩ K ∈ F

C
2 (L ∩ K) and C 2

∗

for F
C
2 is true.

C 3
∗

. Let K ⊆ N ⊆ M and N/K ∈ F
C
2 (M/K), i.e. CM/K(N/K) = N/K. By

(c3) we have π
(

CM(N)
)

= CM(N)/K ⊆ CM/K(N/K) = N/K, i.e. CM(N)/K ⊆
N/K, where π : M → M/K is the natural morphism. Therefore CM(N) ⊆ N , i.e.
CM(N) = N and N ∈ F

C
2 (M).
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Definition 2.2. If an abstract function F of R-Mod satisfies the conditions
C 1

∗
,C 2

∗
and C 3

∗
, then it will be called a function of the type F2.

As in the previous case, now we formulate two auxiliary conditions, which are
closely related to C 2

∗
and C 3

∗
:

C 4
∗
. If N ⊆ L ⊆ M and N ∈ F(M), then N ∈ F(L);

C 5
∗

. If g : M → M ′ is an R-morphism, N ′ ⊆ g(M) and N ′ ∈ F
(

g(M)
)

, then
g−1(N ′) ∈ F(M).

Lemma 2.4. The implications C 2
∗

⇒ C 4
∗

, C 3
∗

⇔ C 5
∗

are true. Therefore every

function of the type F2 satisfies the conditions C 4
∗

and C 5
∗

.

Proof. C2
∗

⇒ C4
∗

. If N ⊆ L ⊆ M and N ∈ F(M), then from C 2
∗

it follows that
N ∩ L ∈ F(M ∩ L), i.e. N ∈ F(L) and C 4

∗

is true.

C 3
∗
⇒ C 5

∗
. Let g : M → M ′ be an R-morphism and N ′ ∈ F

(

g(M)
)

. Denote
K = Ker g and N = g−1(N ′). Consider the situation:

M

g

**π

nat
// M/K ∼= g(M)

⊆
// M ′

K

⊆

88
q

q
q

q
q

q
q

q
q

q
q

q
q ⊆

// N = g−1(N ′)

⊆

OO

π′
//___ N/K ∼= N ′ .

⊆

OO
⊆

OO
⊆

66
n

n
n

n
n

n
n

n
n

n
n

n
n

Since N ′ ∈ F
(

g(M)
)

and F preserves the isomorphisms, we have N/K ∈ F(M/K).
From C 3

∗
now we obtain N = g−1(N ′) ∈ F(M) and C 5

∗
holds.

C5
∗

⇒ C3
∗

. Let K ⊆ N ⊆ M and N/K ∈ F(M/K). Applying C5
∗

to the
natural morphism π : M → M/K we obtain π−1(N/K) ∈ F(M), i.e. N ∈ F(M)
and C 3

∗

holds.

3 Weakly hereditary and idempotent closure operators

In Section 2 it is shown that every closure operator C ∈ CO(R) defines two
functions F

C
1 and F

C
2 , specifying their properties. In general case the operator C

can not be reestablished uniquely by F
C
1 or by F

C
2 . The aim of this section is to

prove the following results:

a) operator C can be uniquely described by F
C
1 if and only if it is weakly

hereditary ;

b) operator C can be characterized by F
C
2 if and only if it is idempotent.

Moreover, we will prove that the properties C 1−C 3 and C 1
∗

−C 3
∗

are necessary
and sufficient for realization of the respective characterizations. The results of this
section constitute the base of all other facts established in this work, since all further
characterizations contain the conditions C 1−C 3 or C 1

∗
−C 3

∗
, adding in every case

some necessary auxiliary conditions.
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Remind that the operator C ∈ CO(R) is called weakly hereditary if CC
M

(N)(N) =
CM(N) for every pair N ⊆ M , i.e. C ∗ C = C. Dually, the operator C is called
idempotent if CM

(

C
M
(N)

)

= CM(N) for every N ⊆ M , i.e. C ∗ C = C (see
Definition 1.4).

In the previous part of this work the mappings C  F
C
1 and C  F

C
2 are used.

Now we will show the inverse transition: from an abstract function F of R-Mod to
the operators C F and CF , which are defined by the following rules:

(C F)M(N)
def
==

∑

α∈A

{Mα ⊆ M | N ⊆ Mα , N ∈ F(Mα)}, (3.1)

(CF)
M

(N)
def
==

⋂

α∈A

{Nα ⊆ M | N ⊆ Nα , Nα ∈ F(M)}, (3.2)

for every N ⊆ M .

From the definitions of these operators it is clear that the mapping F  C F is
monotone, while the mapping F  CF is antimonotone.

In this section we will study three cases, considering separately three types of clo-
sure operators of R-Mod: a) weakly hereditary ; b) idempotent ; c) weakly hereditary

and idempotent.

a) Weakly hereditary closure operators

We begin with the characterization of weakly hereditary closure operators C by
means of the associated functions F

C
1 , i.e. with the help of C-dense submodules.

Proposition 3.1. Let F be an abstract function of R-Mod of the type F (i.e. with

the conditions C 1−C 3). Then C F
(

defined by (3.1)
)

is a closure operator of R-Mod.

Proof. We will verify the conditions (c1)−(c3) of Definition 1.1.

(c1). Since in the rule (3.1) we have N ⊆ Mα for every α ∈ A, it is clear that

N ⊆
∑

α∈A

Mα
def
== (C F)M(N).

(c2). Suppose that N ⊆ L ⊆ M . Then by (3.1) we have:

(C F)M(N) =
∑

α∈A

{Nα ⊆ M | N ⊆ Nα , N ∈ F(Nα)},

(C F)M(L) =
∑

β∈B

{Lβ ⊆ M | L ⊆ Lβ , L ∈ F(Lβ)}.

Since N ∈ F(Nα), from C 2 we have N + L ∈ F(Nα + L), i.e. L ∈ F(Nα + L).
Denote Lβ = Nα + L . Then Nα ⊆ Lβ and L ∈ F(Lβ), so every submodule Nα is
contained in some Lβ from the definition of (C F)M(L). Therefore

∑

α∈A

Nα ⊆
∑

β∈B

Lβ ,

i.e. (C F)M(N) ⊆ (C F)M(L) and (c2) is true for C F.

(c3). Let f : M → M ′ be an arbitrary R-morphism and N ⊆ M . Then as
above (C F)M(N) =

∑

α∈A

{Nα ⊆ M | N ⊆ Nα , N ∈ F(Nα)} and

(C F)M′

(

f(N)
)

=
∑

β∈B

{N ′
β ⊆ M ′ | f(N) ⊆ N ′

β , f(N) ∈ F(N ′
β)}.
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Since F is a function of the type F1 , it satisfies the condition C 5 (Lemma 2.2),
from which it follows that the relation N ∈ F(Nα) implies f(N) ∈ F

(

f(Nα)
)

.
Therefore f(Nα) is one of the submodules N ′

β and so f(Nα) ⊆
∑

β∈B

N ′
β for every

α ∈ A. In such a way
∑

α∈A

f(Nα) ⊆
∑

β∈B

N ′
β , which implies the relations:

f
(

(C F)M(N)
)

= f
(

∑

α∈A

Nα

)

=
∑

α∈A

f(Nα) ⊆
∑

β∈B

N ′
β

def
== (C F)M′

(

f(N)
)

.

This means that C F satisfies also the condition (c3), therefore it is a closure operator
of R-Mod.

Now we will clarify the situation related with the transitions F  C F
 F

C F

1 ,
beginning with an abstract function F of the type F1 (conditions C 1−C 3).

Proposition 3.2. Let F be an abstract function of the type F1 of R-Mod. Then

the closure operator C F is weakly hereditary and the associated function F
C F

1

coincides with the initial function F (i.e. F = F
C F

1 ).

Proof. By Proposition 3.1 C F is a closure operator of R-Mod. Now we verify that
C F is weakly hereditary. If N ⊆ M then by the definition of C F we have:

(C F)M(N) =
∑

α∈A

{Nα ⊆ M | N ⊆ Nα , N ∈ F(Nα)},

(C F) ∑

α∈A

Nα
(N) =

∑

β∈B

{Lβ ⊆
∑

α∈A

Nα | N ⊆ Lβ , N ∈ F(Lβ)}.

Since F satisfies C 1, from the relations N ∈ F(Nα) (α ∈ A) it follows that N ∈
F

(
∑

α∈A

Nα

)

. Therefore
∑

α∈A

Nα is one of submodules Lβ and so
∑

α∈A

Nα ⊆
∑

β∈B

Lβ, where

the inverse inclusion is trivial, because
∑

α∈A

Nα ⊆ M . So we have C F

(C F )M (N)
(N) =

(C F)M(N) for every N ⊆ M , i.e. C F is weakly hereditary.

Now it remains to prove the relation F = F
C F

1 . The inclusion F ≤ F
C F

1 follows
from the definition: if N ∈ F(M), then by (3.1) it is clear that (C F)M(N) = M ,
i.e. N ∈ F

C F

1 (M). The inverse inclusion F
C F

1 ≤ F follows from the condition C 1

of F: if N ∈ F
C F

1 (M), then (C F)M(N) = M , i.e.
∑

α∈A

Nα = M and now from the

relations N ∈ F(Nα) (α ∈ A) by C 1 we conclude that N ∈ F(
∑

α∈A

Nα) = F(M).

In continuation we analyze the transitions C  F
C
1  C FC

1 for an arbitrary
closure operator C ∈ CO(R). By Proposition 2.1 F

C
1 is a function of the type

F1, therefore by Proposition 3.1 F
C
1 defines the closure operator C FC

1 . Denote

C∗ = C FC
1 and examine its relation with the operator C.

Proposition 3.3. Let C ∈ CO(R). Then:

a) C∗ ≤ C;

b) C∗ is weakly hereditary;
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c) C∗ is the greatest weakly hereditary closure operator of CO(R) which is con-

tained in C.

Proof. a) By the rule (3.1) for every N ⊆ M we have (C∗)M(N) =
∑

α∈A

{Mα ⊆

M | N ⊆ Mα , N ∈ F
C
1 (Mα)}. Since F

C
1 satisfies C 1 (Proposition 2.1), from

the relations N ∈ F
C
1 (Mα) (α ∈ A) it follows that N ∈ F

C
1 (

∑

α∈A

Mα). Therefore

C∑

α∈A

Mα(N) =
∑

α∈A

Mα and from the monotony of C we have C ∑

α∈A

Mα(N) ⊆ CM(N),

i.e.
∑

α∈A

Mα ⊆ CM(N). This means that (C∗)M(N) ⊆ CM(N) for every N ⊆ M ,

i.e. C∗ ≤ C.

b) Since F
C
1 satisfies C 1−C 3 (Proposition 2.1), the operator C∗ = C FC

1 is
weakly hereditary by Proposition 3.2.

c) Let D ∈ CO(R) be a weakly hereditary closure operator such that D ≤ C.

We must verify that D ≤ C∗ = C FC
1 . The assumptions on D imply the relations:

DM(N) = DD
M

(N)(N) ⊆ CD
M

(N)(N) ⊆ DM(N).

Therefore CDM(N)(N) = DM(N), i.e. N ∈ F
C
1

(

DM(N)
)

. Thus DM(N) is one of

submodules Mα , so DM(N) ⊆
∑

α∈A

Mα
def
== (C∗)M(N) for every N ⊆ M . This

means that D ≤ C∗ and c) is true.

Corollary 3.4. A closure operator C ∈ CO(R) is weakly hereditary if and only if

C = C∗ , where C∗ = C FC
1 . �

From Proposition 3.3 it follows that the operator C∗ coincides with the weakly

hereditary core of C, which was constructed in Section 1 by the operation of cocom-
position (∗) in CO(R).

For the transitions C  F
C
1  C FC

1 the equality C = C FC
1 means that C is

weakly hereditary (Corollary 3.4), therefore the characterization of C ∈ CO(R) by
the function F

C
1 is possible if and only if C is weakly hereditary. This is the reason

why in all the following characterizations the function F
C
1 is used only for the class

of weakly hereditary operators and for its subclasses.

Now we can formulate the main result of this part, which shows the charac-
terization of weakly hereditary closure operators C ∈ CO(R) by the associated
functions F

C
1 .

Theorem 3.5. The mappings C  F
C
1 and F  C F define a monotone bijec-

tion between the weakly hereditary closure operators of R-Mod and the abstract

functions of the type F1 of this category.

Proof. If C ∈ CO(R) is weakly hereditary then C = C F
C
1 (Corollary 3.4). From

the other hand, for every abstract function F of the type F1 we have F = F
C F

1 (Pro-
position 3.2). Therefore the indicated mappings define a monotone bijection.
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b) Idempotent closure operators

In a similar manner as in the previous case, now we will describe the idempotent
closure operators C ∈ CO(R) by the associated functions F

C
2 defined by C-closed

submodules. In Section 2 it was proved that for every C ∈ CO(R) the function
F

C
2 is of the type F2, i.e. it satisfies the conditions C 1

∗
− C 3

∗
(Proposition 2.3).

Moreover, F
C
2 satisfies also the conditions C 4

∗
and C 5

∗
(Lemma 2.4).

Now we will study the inverse transition F  CF, where CF is defined by the

rule (3.2): (CF)M(N)
def
==

⋂

α∈A

{Nα ⊆ M | N ⊆ Nα , Nα ∈ F(M)} for every N ⊆ M .

Proposition 3.6. Let F be an abstract function of the type F2 . Then CF is a

closure operator of R-Mod.

Proof. (c1) Since N ⊆ Nα for every α ∈ A , it is obvious that N ⊆
⋂

α∈A

Nα
def
==

(CF)M(N).

(c2) Let N ⊆ L ⊆ M . By the definition of CF we have as above (CF)M(N) =
⋂

α∈A

Nα with Nα ∈ F(M) for every α ∈ A , and

(CF)M(L) =
⋂

β∈B

{Lβ ⊆ M | L ⊆ Lβ , Lβ ∈ F(M)}.

Then N ⊆ L ⊆ Lβ and Lβ ∈ F(M), therefore Lβ is one of submodules Nα and
so

⋂

α∈A

Nα ⊆ Lβ for every β ∈ B . In such a way we obtain
⋂

α∈A

Nα ⊆
⋂

β∈B

Lβ , i.e.

(CF)M(N) ⊆ (CF)M(L), which shows the monotony of CF .

(c3) Let f : M → M ′ be an R-morphism and N ⊆ M . Then we have the
submodule (CF)M(N), defined by (3.2) and

(CF)M′

(

f(M)
)

=
⋂

β∈B

{N ′
β ⊆ M ′ | f(N) ⊆ N ′

β , N ′
β ∈ F(M ′)}.

Since F is a function of the type F2 , it satisfies the condition C 5
∗

(Lemma 2.4), from
which we conclude that the relation N ′

β ∈ F(M ′) implies f−1(N ′
β) ∈ F(M), where

N ′
β ⊇ f(N), so f−1(N ′

β) ⊇ f−1
(

f(N)
)

⊇ N . This means that f−1(N ′
β) is one of

the submodules Nα from the definition of (CF)M(N). Therefore
⋂

α∈A

Nα ⊆ f−1(N ′
β)

for every β ∈ B and
⋂

α∈A

Nα ⊆
⋂

β∈B

{f−1(N ′
β) | f(N) ⊆ N ′

β , N ′
β ∈ F(M ′)}.

Using this relation we obtain:

f [(CF)M(N)] = f(
⋂

α∈A

Nα) ⊆ f
[

⋂

β∈B

f−1(N ′
β)

]

⊆
⋂

β∈B

[

f
(

f−1(N ′
β)

)]

=

=
⋂

β∈B

[

N ′
β ∩ f(M)

]

⊆
⋂

β∈B

N ′
β

def
== (CF)M′

(

f(N)
)

,

so CF satisfies (c3).

Now we will study the transitions F  CF  F
C

F

2 , where F is an abstract
function of the type F2 .
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Proposition 3.7. Let F be an abstract function of the type F2 of R-Mod. Then

the corresponding closure operator CF is idempotent and the associated function

F
C

F

2 coincides with the initial function F (i.e. F = F
C

F

2 ).

Proof. By Proposition 3.6 CF is a closure operator. Let N ⊆ M . By the definition
of CF we have:

(CF)M(N) =
⋂

α∈A

{Nα ⊆ M | N ⊆ Nα , Nα ∈ F(M)},

(CF)M

[

(CF)M(N)
]

=
⋂

β∈B

{Lβ ⊆ M | (CF)M(N) ⊆ Lβ , Lβ ∈ F(M)}.

Since F satisfies C 1
∗

, from the relations Nα ∈ F(M) (α ∈ A) we obtain
⋂

α∈A

Nα ∈ F(M). Therefore
⋂

α∈A

Nα is some Lβ , so
⋂

β∈B

Lβ ⊆
⋂

α∈A

Nα , which means

that (CF)M

[

(CF)M(N)
]

⊆ (CF)M(N) and the inverse inclusion is trivial. This
shows that CF is idempotent.

Now we will verify that F = F
C

F

2 . The relation F ≤ F
C

F

2 follows from the
construction. Indeed, if N ∈ F(M), then N is one of Nα from the definition of
(CF)M(N), therefore

⋂

α∈A

Nα = N , i.e. (CF)M(N) = N and N ∈ F
C

F

2 (M).

The inverse relation F
C

F

2 ≤ F follows from the condition C 1
∗

of the function F.
If N ∈ F

C
F

2 (M), then (CF)M(N) = N , i.e.
⋂

α∈A

Nα = N . Since Nα ∈ F(M) for

every α ∈ A , by C 1
∗

we have
⋂

α∈A

Nα ∈ F(M), i.e. N ∈ F(M).

Further we consider the transitions C  F
C
2  C

FC
2

for an arbitrary closure

operator C ∈ CO(R). Denote: C
∗

= C
FC

2
.

Proposition 3.8. Let C ∈ CO(R). Then:

a) C
∗

≥ C;

b) C
∗

is idempotent;

c) C
∗

is the least idempotent closure operator of R-Mod, containing C.

Proof. a) Let N ⊆ M . By the definition of C
∗

we have:

(C
∗
)M(N) =

⋂

α∈A

{Nα ⊆ M | N ⊆ Nα , Nα ∈ F
C
2 (M)}.

Since F
C
2 satisfies C 1

∗
and Nα ∈ F

C
2 (M) for every α ∈ A , we have

⋂

α∈A

Nα ∈

F
C
2 (M), i.e. CM(

⋂

α∈A

Nα) =
⋂

α∈A

Nα . The monotony of C and the relation N ⊆
⋂

α∈A

Nα imply that CM(N) ⊆ CM(
⋂

α∈A

Nα) =
⋂

α∈A

Nα . This means that CM(N) ⊆

(C
∗
)M(N) for every N ⊆ M , i.e. C ≤ C

∗
.

b) For every C ∈ CO(R) F
C
2 is a function of the type F2 (Proposition 2.3),

therefore by Proposition 3.7 the operator C
∗

= C
FC

2
is idempotent.

c) Let D ∈ CO(R) be an idempotent closure operator such that D ≥ C. We
will verify that C

∗
≤ D. By the definition of C

∗
we have:
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(C
∗
)M(N) = (C

FC
2

)M(N) =
⋂

α∈A

{Nα ⊆ M | N ⊆ Nα , Nα ∈ F
C
2 (M)}.

Since D is idempotent and D ≥ C, we obtain:

DM(N) = DM

(

DM(N)
)

≥ CM

(

DM(N)
)

≥ DM(N),

therefore DM(N) = CM

(

DM(N)
)

, i.e. DM(N) ∈ F
C
2 (M). Then DM(N) is one of

submodules Nα from the definition of (C
∗
)M(N) and so

⋂

α∈A

Nα ⊆ DM(N). This

means that (C
∗
)M(N) ⊆ DM(N) for every N ⊆ M , i.e. C

∗
≤ D.

Corollary 3.9. A closure operator C ∈ CO(R) is idempotent if and only if C = C
∗
,

where C
∗

= C
FC

2
. �

Therefore the characterization of an operator C ∈ CO(R) by the associated function
F

C
2 is possible if and only if the operator C is idempotent. By this reason in all

subsequent descriptions the function F
C
2 is used if and only if the studied type of

closure operators is contained in the class of idempotent operators.
From Proposition 3.8 it is clear that the operator C

∗
= C

FC
2

coincides with
the idempotent hull of C, which was constructed in Section 1 by the operation of
composition (∗) in ∈ CO(R).

The previous results show the characterization of an idempotent closure operator
C ∈ CO(R) by the associated functions F

C
2 .

Theorem 3.10. The mappings C  F
C
2 and F  CF define an antimonotone

bijection between the idempotent closure operators of R-Mod and the abstract func-

tions of the type F2 of this category. �

c) Weakly hereditary and idempotent closure operators

In this subsection we will study closure operators of R-Mod which are weakly

hereditary and idempotent. From the foregoing it follows that every operator C of
such type can be uniquely reestablished both by the function F

C
1 (Theorem 3.5) and

by the function F
C
2 (Theorem 3.10). Now we will supplement the bijections of these

theorems, showing the necessary and sufficient conditions for an abstract function F

of R-Mod such that the corresponding operators C F and CF are weakly hereditary
and idempotent. With this purpose, besides the previous conditions (C 1−C 3,
C 1

∗

−C 3
∗

), we will use the following condition:

C 6 = C 6
∗
. If N ⊆ L ⊆ M, N ∈ F(L) and L ∈ F(M), then N ∈ F(M).

If is obvious that this condition is autodual. It will be called in continuation the
property of transitivity and will be used both for the functions F

C
1 and F

C
2 .

Proposition 3.11. If the closure operator C ∈ CO(R) is idempotent, then the

associated function F
C
1 possesses the property of transitivity C 6 = C 6

∗
.

Proof. Let C ∈ CO(R) be an idempotent closure operator and consider the situation:
N ⊆ L ⊆ M, N ∈ F

C
1 (L), L ∈ F

C
1 (M). Then CL(N) = L and CM(L) = M . By the

monotony of C we have CL(N) ⊆ CM(N) and so L ⊆ CM(N). The idempotency
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and monotony of C imply CM(L) ⊆ CM

(

CM(N)
)

= CM(N), i.e. M ⊆ CM(N) and
M = CM(N). So we have N ∈ F

C
1 (M), i.e. for F

C
1 C 6 is true.

The following statement in some sense is inverse to the previous: transitivity
implies idempotency.

Proposition 3.12. Let F be an abstract function of the type F1 which satisfies the

condition C 6. Then the closure operator C F is idempotent.

Proof. If F is a function of the type F1, then it defines the closure operator C F

(Proposition 3.1), from the definition of which we have:

(C F)M(N) =
∑

α∈A

{Mα ⊆ M | N ⊆ Mα , N ∈ F(Mα)},

(C F)M

[

(C F)M(N)
]

=
∑

β∈B

{Lβ ⊆ M | (C F)M(N) ⊆ Lβ , (C F)M(N) ∈ F(Lβ)},

for every N ⊆ M . From the relations N ∈ F(Mα) (α ∈ A) by C 1 we con-
clude that N ∈ F

(
∑

α∈A

Mα

)

. Having also the relation
∑

α∈A

Mα ∈ F(Lβ) for every

β ∈ B , we can apply the condition C 6 in the situation N ⊆
∑

α∈A

Mα ⊆ Lβ , ob-

taining N ∈ F(Lβ) (β ∈ B) . Now from C 1 we have N ∈ F
(
∑

β∈B

Lβ

)

, therefore

∑

β∈B

Lβ is one of submodules Mα . Hence
∑

β∈B

Lβ ⊆
∑

α∈A

Mα , which means that

(C F)M
[

(C F)M(N)
]

⊆ (C F)M(N), i.e. (C F)M
[

(C F)M(N)
]

= (C F)M(N) and the
operator C F is idempotent.

The indicated above results permit us to show the characterization of weakly
hereditary and idempotent operators C ∈ CO(R) by the associated functions F

C
1

(i.e. by C-dense submodules).

Theorem 3.13. The mappings C  F
C
1 and F  C F define a monotone bijection

between the weakly hereditary and idempotent closure operators of R-Mod and

the abstract functions of the type F1 which satisfies the condition C 6.

Proof. By Theorem 3.5 the indicated mappings define a monotone bijection between
the weakly hereditary closure operators of R-Mod and the abstract functions of the
type F1 of R-Mod. In this bijection if C is idempotent then by Proposition 3.1 the
function F

C
1 is transitive.

From the other hand, in the same situation if a function F of the type F1 is tran-
sitive, then the corresponding weakly hereditary closure operator C F is idempotent
(Proposition 3.12). In such a way, by the restriction of the bijection of Theorem 3.5
we obtain the formulated result.

In a dual manner the weakly hereditary and idempotent closure operators of R-
Mod can be described by the associated functions F C

2 , i.e. by C-closed submodules.
We remark that in this case the same autodual condition of transitivity C 6 = C 6

∗

is used.
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Proposition 3.14. If the closure operator C ∈ CO(R) is weakly hereditary, then

the associated function F
C
2 satisfies the condition C 6 = C 6

∗
.

Proof. Let C ∈ CO(R) be a weakly hereditary closure operator. Consider the situ-
ation: N ⊆ L ⊆ M, N ∈ F

C
2 (L), L ∈ F

C
2 (M). Then CL(N) = N and CM(L) = L.

The monotony of C implies CM(N) ⊆ CM(L) = L and so CM(N) ⊆ L. This
relation gives us CCM(N)(N) ⊆ CL(N), i.e. CCM (N)(N) = N . Since C is weakly
hereditary, we have CC

M
(N)(N) = CM(N) and from the previous equality we obtain

CM(N) = N and N ∈ F
C
2 (M). This means that the function F

C
2 is transitive.

Proposition 3.15. If an abstract function F is of the type F2 and satisfies the

condition C 6, then the operator CF is weakly hereditary.

Proof. By the definition of CF, for every N ⊆ M we have:

(CF)M(N) =
⋂

α∈A

{Nα ⊆ M | N ⊆ Nα , Nα ∈ F(M)},

(CF) (CF )M (N)(N) =
⋂

β∈B

{Lβ ⊆ M | N ⊆ Lβ ⊆ (CF)M(N) , Lβ ∈ F
(

(CF)M(N)
)

}.

Since F satisfies C 1
∗
, the relations Nα ∈ F(M) (α ∈ A) imply

⋂

α∈A

Nα ∈ F(M), i.e.

(CF)M(N) ∈ F(M).

From the other hand, the relations Lβ ∈ F
(

(CF)M(N)
)

(β ∈ B) and C 1
∗

imply
⋂

β∈B

Lβ ∈ F
(

(CF)M(N)
)

. Now we can use the transitivity of F in the situation:

⋂

β∈B

Lβ ⊆ (CF)M(N) ⊆ M and conclude from the foregoing that
⋂

β∈B

Lβ ∈ F(M).

Therefore
⋂

β∈B

Lβ is one of the submodules Nα and so
⋂

α∈A

Nα ⊆
⋂

β∈B

Lβ. This means

that (CF)M(N) ⊆ (CF) (CF )M (N)(N) and the inverse inclusion follows from the

relation M ⊇ (CF)M(N). Thus (CF)M(N) = (CF) (CF )M (N)(N) for every N ⊆ M ,
i.e. the operator CF is weakly hereditary.

The last two statements permit us to restrict the bijection of Theorem 3.10
and to obtain the characterization of the weakly hereditary and idempotent closure
operators C by the functions F

C
2 (i.e. by C-closed submodules).

Theorem 3.16. The mappings C  F
C
2 and F  CF define an antimono-

tone bijection between the weakly hereditary and idempotent closure operators

of R-Mod and the abstract functions of the type F2 which satisfy the condition

C 6 = C 6
∗
. �

As a conclusion of this section we can say that every weakly hereditary closure
operator C can be uniquely reestablished by the associated function F

C
1 which

satisfies the conditions C 1−C 3. Dually, every idempotent closure operator C can
be described by the function F C

2 which possesses the properties C 1
∗
−C 3

∗
. In the case

of weakly hereditary and idempotent operators the previous conditions are completed
by the transitivity (C 6 = C 6

∗
).
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4 Maximal and minimal closure operators

We continue the study of principal types of closure operators of R-Mod. To
the conditions of weakly heredity and idempotency, studied above, now we add two
other important properties: maximality and minimality. These types of operators
are investigated in parallel, though they are not dual in the sense of duality of the
previous two conditions.

For convenience we remind the main necessary definitions (see Section 1). A
closure operator C ∈ CO(R) is called maximal if

CM(N)/N = CM/N( 0̄) (4.1)

for every N ⊆ M . This condition is equivalent to the property that for every
submodules K ⊆ N ⊆ M the relation

CM(N)/K = CM/K(N/K) (4.2)

is true.
A closure operator C ∈ CO(R) is called minimal if

CM(N) = CM(0) + N (4.3)

for every N ⊆ M , which is equivalent to the relation

CM(N) = CM(K) + N (4.4)

for every K ⊆ N ⊆ M .
The other form of these types of operators can be obtained by the mappings

Φ,Ψ1 and Ψ2 between the classes CO(R) and PR(R), defined in Section 1. Namely,
an operator C ∈ CO(R) is maximal if and only if it is of the form C r for some
preradical r ∈ PR(R). Similarly, an operator C is minimal if and only if C = C r

for some r ∈ PR(R).
The aim of this section is to describe by the functions F

C
1 or (and) F

C
2 all types

of closure operators, related to maximality and minimality. On the base of previous
results we can affirm that such characterizations are possible if and only if the studied
types of operators are contained in the class of weakly hereditary operators (then
F

C
1 is used), or in the class of idempotent operators (using F

C
2 ).

Taking into consideration these facts, in continuation we will study the cases
when an operator C is: a) weakly hereditary and maximal; b) idempotent and
maximal; c) weakly hereditary, idempotent and maximal; d) minimal; e) weakly
hereditary and minimal (see Figure 1). The case when an operator C is maximal and
minimal is investigated in Section 5, where the cohereditary operators are described
(see Lemma 1.3).

a) Weakly hereditary and maximal closure operators

Let C ∈ CO(R) be a weakly hereditary and maximal closure operator. The
first condition implies that C can be described by the function F

C
1 , which is of the
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type F1 (Theorem 3.5). So it remains to express by the function F
C
1 the maximality

of C. By this purpose we use the following known condition (see Section 2):

C 3
∗
. If K ⊆ N ⊆ M and N/K ∈ F(M/K), then N ∈ F(M).

Proposition 4.1. Let C ∈ CO(R) be a weakly hereditary closure operator. Then C
is maximal if and only if the associated function F

C
1 satisfies the condition C 3

∗
.

Proof. (⇒) Suppose that a weakly hereditary operator C is maximal and consider
the situation: K ⊆ N ⊆ M, N/K ∈ F

C
1 (M/K). Since C is maximal, we have

CM(N)/K = CM/K(N/K) (see (4.2)). From the condition N/K ∈ F
C
1 (M/K)

we have CM/K(N/K) = M/K, therefore CM(N)/K = M/K. This means that
CM(N) = M , i.e. N ∈ F

C
1 (M) and F

C
1 satisfies the condition C 3

∗
.

(⇐) Let C be a weakly hereditary closure operator such that F
C
1 satisfies the

condition C 3
∗
. Then in the situation K ⊆ N ⊆ M we have:

CM(N) =
∑

α∈A

{Mα ⊆ M | N ⊆ Mα , N ∈ F
C
1 (Mα)},

CM/K(N/K) =
∑

β∈B

{M ′
β/K ⊆ M/K | N/K ⊆ M ′

β/K , N/K ∈ F
C
1 (M ′

β/K)}.

Using the condition C 3
∗
, from the relations N/K ∈ F

C
1 (M ′

β/K) we obtain
N ∈ F

C
1 (M ′

β) for every β ∈ B. Now from the property C 1 of F
C
1 we conclude

that N ∈ F
C
1

(
∑

β∈B

M ′
β

)

. This means that
∑

β∈B

M ′
β is one of submodules Mα from the

definition of CM(N). Therefore CM(N) ⊇
∑

β∈B

M ′
β and

CM(N)/K ⊇
(
∑

β∈B

M ′
β

)

/K =
∑

β∈B

(M ′
β/K) = CM/K(N/K),

i.e. CM(N)/K ⊇ CM/K(N/K). The inverse inclusion follows from (c3) of Defini-
tion 1.1, so we obtain the relation (4.2), i.e. C is maximal.

Now we can use Theorem 3.5, proved for weakly hereditary closure operators
and, restricting the bijection of this theorem, by Proposition 4.1 we obtain a new
bijection, which describes the weakly hereditary and maximal closure operators.

Theorem 4.2. The mappings C  F
C
1 and F  C F define a monotone bijection

between the weakly hereditary and maximal closure operators of R-Mod and the

abstract functions of the type F1 which satisfy the condition C 3
∗

. �

b) Idempotent and maximal closure operators

Let C ∈ CO(R) be an idempotent and maximal closure operator. Since C is
idempotent, it can be described by the function F

C
2 , which in this case satisfies the

conditions C 1
∗

−C 3
∗

(Theorem 3.10). Thus for the characterization of C by F
C
2 it

is necessary to express the maximality of C by the function F
C
2 . For that we will

use the known condition, formulated in Section 2:

C 3. If K ⊆ N ⊆ M and N ∈ F(M), then N/K ∈ F(M/K).
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Proposition 4.3. Let C ∈ CO(R) be an idempotent closure operator. Then C is

maximal if and only if the function F
C
2 satisfies the condition C 3.

Proof. (⇒) Suppose that the idempotent closure operator C is maximal and
consider the situation: K ⊆ N ⊆ M, N ∈ F

C
2 (M). Then CM(N) = N

and from the maximality of C we have CM(N)/K = CM/K(N/K). Therefore
N/K = CM/K(N/K), i.e. N/K ∈ F

C
2 (M/K) and so F

C
2 satisfies the condition C 3.

(⇐) Let C be an idempotent closure operator such that the function F
C
2

satisfies the condition C 3. Then in the situation K ⊆ N ⊆ M we have:

CM(N) =
⋂

α∈A

{Nα ⊆ M | N ⊆ Nα , Nα ∈ F
C
2 (M)},

CM/K(N/K) =
⋂

β∈B

{Lβ/K ⊆ M/K | N/K ⊆ Lβ/K , Lβ/K ∈ F
C
2 (M/K)}.

Using the condition C 3 for F
C
2 , from Nα ∈ F

C
2 (M) we obtain Nα/K ∈ F

C
2 (M/K).

Therefore Nα/K is one of the submodules Lβ/K. Then {Nα | α ∈ A} ⊆
{Lβ | β ∈ B} and

⋂

α∈A

Nα ⊇
⋂

β∈B

Nβ , therefore
(

⋂

α∈A

Nα

)

/K ⊇
(

⋂

β∈B

Nβ

)

/K =

⋂

β∈B

(Nβ/K). This means that CM(N)/K ⊇ CM/K(N/K) and the inverse inclusion

is trivial. So we have the relation (4.2), i.e. C is maximal.

This result together with Theorem 3.10 leads to the following description of the
idempotent and maximal closure operators by the function F

C
2 .

Theorem 4.4. The mappings C  F
C
2 and F  CF define an antimonotone

bijection between the idempotent and maximal closure operators of R-Mod and

the abstract functions of the type F2 which satisfy the condition C 3. �

c) Weakly hereditary, idempotent and maximal closure operators

Now we consider the case which combines together the previous two cases: sup-
pose that an operator C ∈ CO(R) is weakly hereditary, idempotent and maximal.
Then it is clear that C can be described both by F

C
1 and by F

C
2 .

Namely, since C is weakly hereditary and maximal, the function F
C
1 is of the

type F1 and satisfies the condition C 3
∗

(Theorem 4.2). In this case the idempotency
of C implies the condition C 6 for F

C
1 (Theorem 3.13), so the function F

C
1 of the

type F1 accumulates the conditions C 3
∗

and C 6.
Similarly we can show the properties of the function F

C
2 in this case. By Theo-

rem 4.4 F
C
2 is a function of the typeF2, which satisfies the condition C 3. It remains

to add the effect of the weakly heredity of C to F
C
2 , which is expressed by the

condition C 6 (Theorem 3.16). Therefore in this case F
C
2 is a function of the type

F2 with the conditions C 3 and C 6. In such a way the previous results give us the
following characterizations.

Corollary 4.5. a) The mappings C  F
C
1 and F  C F define a monotone bijec-

tions between the weakly hereditary, idempotent and maximal closure opera-

tors of R-Mod and the abstract functions of the type F1 which satisfy the conditions

C 3
∗

and C 6.
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b) The mappings C  F
C
2 and F  CF define an antimonotone bijection

between the weakly hereditary, idempotent and maximal closure operators of

R-Mod and the abstract functions of the type F2 which satisfy the conditions C 3
and C 6. �

d) Minimal closure operators

Let C ∈ CO(R) be a minimal closure operator. By Lemma 1.2 C is idempotent,
therefore it can be described by the associated function F

C
2 which satisfies the

conditions C 1
∗
−C 3

∗
(Theorem 3.10). Now we will express the minimality of C by

the function F
C
2 . For that we will use the following known condition (Section 2):

C 4. If N ⊆ L ⊆ M and N ∈ F(M), then L ∈ F(M).

Proposition 4.6. Let C ∈ CO(R) be an idempotent closure operator. Then C is

minimal if and only if the associated function F
C
2 satisfies the condition C 4.

Proof. (⇒) Suppose that the operator C ∈ CO(R) is minimal and consider the
situation: N ⊆ L ⊆ M, N ∈ F

C
2 (M). Then CM(N) = N and the minimality

of C implies CM(N) = CM(0) + N
(

see (4.3)
)

. Therefore N = CM(0) + N and
CM(0) ⊆ N . Using again the minimality of C we obtain: CM(L) = CM(0) + L ⊆
N + L = L . Then CM(L) ⊆ L and CM(L) = L , i.e. L ∈ F

C
2 (M), which means

that F
C
2 satisfies the condition C 4.

(⇐) Let C be an idempotent closure operator such that F
C
2 satisfies the con-

dition C 4. Then C can be reestablished by F
C
2 and in the situation K ⊆ N ⊆ M

we have:

CM(N) =
⋂

α∈A

{Nα ⊆ M | N ⊆ Nα , Nα ∈ F
C
2 (M)},

CM(K) =
⋂

β∈B

{Kβ ⊆ M | K ⊆ Kβ , Kβ ∈ F
C
2 (M)}.

Since F
C
2 satisfies C 1

∗

, from the relations Kβ ∈ F
C
2 (M) (β ∈ B) it follows that

⋂

β∈B

Kβ ∈ F
C
2 (M), i.e. CM(K) ∈ F

C
2 (M).

Now we will use the property C 4 of F
C
2 in the situation: CM(K) ⊆

CM(K)+N ⊆ M , where CM(K) ∈ F
C
2 (M). Then C 4 implies CM(K)+N ∈ F

C
2 (M)

and this means that CM(K) + N is one of submodules Nα from the definition of
CM(N). Therefore CM(N) ⊆ CM(K) + N and the inverse inclusion is trivial. So
we have CM(N) = CM(K) + N , i.e. the operator C is minimal.

This proposition combined with Theorem 3.10 leads to the characterization of
the minimal closure operators C by the function F

C
2 .

Theorem 4.7. The mappings C  F C
2 and F  CF define an antimonotone

bijection between the minimal closure operators of R-Mod and the abstract functions

of the type F2 which satisfy the condition C 4. �
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e) Weakly hereditary and minimal closure operators

Let C ∈ CO(R) be a weakly hereditary and minimal closure operator. The first
condition implies that C can be described by F

C
1 (Theorem 3.5). From the other

hand, every minimal closure operator C can be characterized by F
C
2 (Theorem 4.7).

Therefore in the studied case C can be described both by F
C
1 and F

C
2 .

We begin with the characterization of C by F
C
1 . By Theorem 3.5 F

C
1 is a

function of the type F1 (i.e. with C 1−C 3). Now we must express by F
C
1 the

minimality of C. With this aim we will formulate a new condition for an abstract
function F of R-Mod:

C7. If K ⊆ N ⊆ M , then for every submodule Nα with N ⊆ Nα ⊆ M and
N ∈ F(Nα), there exists a submodule Kβ with K ⊆ Kβ ⊆ M and K ∈ F(Kβ)
such that Nα = Kβ + N .

Proposition 4.8. Let C ∈ CO(R) be a weakly hereditary closure operator. Then

C is minimal if and only if the function F
C
1 satisfies the condition C7.

Proof. (⇒) Suppose that a weakly hereditary closure operator C is minimal. Then
in the situation K ⊆ N ⊆ M we have CM(N) = CM(K) + N

(

see (4.4)
)

. In this
case the operator C can be reestablished by F

C
1 and we obtain:

CM(N) =
∑

α∈A

{Nα ⊆ M | N ⊆ Nα , N ∈ F
C
1 (Nα)},

CM(K) =
∑

β∈B

{Kβ ⊆ M | K ⊆ Kβ , K ∈ F
C
1 (Kβ)}.

The minimality of C implies the relation:
∑

α∈A

Nα =
(
∑

β∈B

Kβ

)

+ N =
∑

β∈B

(Kβ + N).

Now we will verify that F
C
1 satisfies C7. Let K ⊆ N ⊆ M and Nα be a

submodule of M such that N ⊆ Nα ⊆ M and N ∈ F
C
1 (Nα). By the minimality

of C in the situation K ⊆ N ⊆ Nα we have CNα(N) = CNα(K) + N . From the
relation N ∈ F

C
1 (Nα) it follows that CNα(N) = Nα, therefore Nα = CNα(K) + N .

Denoting Kβ = CNα(K), we have Nα = Kβ + N .

Since C is weakly hereditary, for the pair K ⊆ Nα we have CCNα
(K)(K) =

CNα(K), i.e. K ∈ F
C
1

(

CNα(K)
)

= F
C
1 (Kβ). Therefore Kβ is a submodule required

in the condition C7.

(⇐) Now we suppose that for a weakly hereditary closure operator C the
function F

C
2 satisfies the condition C7. We must verify that C is minimal, i.e. in

the situation K ⊆ N ⊆ M the relation CM(N) = CM(K)+ N is true, which in the
above notations means that

∑

α∈A

Nα =
(
∑

β∈B

Kβ

)

+ N =
∑

β∈B

(Kβ + N).

From the condition C7 it follows that every submodule Nα of the definition of
C M(N) is of the form Kβ + N for a suitable submodule Kβ . Therefore we have
the relation

∑

α∈A

Nα ⊆
∑

β∈B

(Kβ + N), i.e. CM(N) ⊆ CM(K) + N , where the inverse

inclusion is trivial. So CM(N) = CM(K) + N and the operator C is minimal.
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From this result it follows that we can restrict the bijection of Theorem 3.5,
obtained for weakly hereditary closure operators, to a new bijection requiring the
minimality for C and the condition C7 for the function F

C
1 .

Theorem 4.9. The mappings C  F
C
1 and F  C F define a monotone bijection

between the weakly hereditary and minimal closure operators of R-Mod and the

abstract functions of the type F1 which satisfy the condition C7. �

The characterization of weakly hereditary and minimal closure operators C by
the associated functions F

C
2 is clear from the previous results and consists in the

following. The minimality of C implies that F
C
2 is of the type F2 and satisfies

the condition C 4 (Theorem 4.7). Moreover, the weakly heredity of C implies the
condition C 6 for F

C
2 (Theorem 3.16), so F

C
2 accumulates the conditions C 4 and C 6.

Corollary 4.10. The mappings C  F
C
2 and F  CF define an antimono-

tone bijection between the weakly hereditary and minimal closure operators

of R-Mod and the abstract functions of the type F2 which satisfy the conditions

C 4 and C 6. �

5 Hereditary and cohereditary closure operators

In this section we will study the hereditary and cohereditary closure operators
of R-Mod, as well as diverse combinations with the types of operators investigated
above. The purpose is to describe all types of operators related with these new
conditions by the associated functions F

C
1 or (and) F

C
2 . Firstly we remind the

necessary definitions (see Section 1).

A closure operator C ∈ CO(R) is called hereditary if for every submodules
K ⊆ N ⊆ M the relation

CN(K) = CM(K)∩N (5.1)

is true. Dually, a closure operator C is called cohereditary if for every submodules
K,N ∈ L(M) the equality

(

CM(N) + K
)

/K = CM/K

(

(N + K)/K
)

(5.2)

holds. This condition can be expressed in other form: for every R-morphism
f : M → M ′ and every submodule N ⊆ M we have:

f
(

CM(N)
)

= Cf(M)

(

f(N)
)

. (5.3)

It is useful to remind the relations between these new types of operators and the
types studied above. Namely, every hereditary closure operator is weakly heredi-
tary, every cohereditary operator is idempotent; moreover, an operator C ∈ CO(R)
is cohereditary if and only if it is maximal and minimal (see Lemmas 1.1, 1.2, 1.3).
Taking into account these facts and using the proved above results, in this sec-
tion we will characterize by the functions F

C
1 or (and) F

C
2 the following types of
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closure operators: a) hereditary; b) hereditary and maximal; c) hereditary and
idempotent; d) hereditary, maximal and idempotent; e) hereditary and minimal;
f) cohereditary; g) weakly hereditary and cohereditary; h) hereditary and cohered-
itary (see Figure 1).

a) Hereditary closure operators

Let C ∈ CO(R) be a hereditary closure operator. Then it is weakly hereditary
(Lemma 1.1), therefore C can be characterized by the function F

C
1 (Theorem 3.5),

which in this case is a function if the type F1. So it remains to express the heredity

of C by the function F
C
1 . By this aim we will use the following known condition

(see Section 2) :

C 4
∗

. If N ⊆ L ⊆ M and N ∈ F(M), then N ∈ F(L).

Proposition 5.1. Let C ∈ CO(R) be a weakly hereditary closure operator. Then C
is hereditary if and only if the associated function F

C
1 satisfies the condition C 4

∗
.

Proof. (⇒) Suppose that an operator C ∈ CO(R) is hereditary and consider the
situation: N ⊆ L ⊆ M, N ∈ F

C
1 (M). Then CM(N) = M and since C is hereditary

we have: CL(N) = CM(N)∩L = M ∩L = L . Therefore CL(N) = L and N ∈
F

C
1 (L), which means that F

C
1 satisfies the condition C 4

∗

.

(⇐) Let C ∈ CO(R) be a weakly hereditary closure operator such that the
function F

C
1 satisfies the condition C 4

∗

. Then C can be expressed by F
C
1 and for

submodules K ⊆ N ⊆ M we have :

CM(K) =
∑

α∈A

{Kα ⊆ M | K ⊆ Kα , K ∈ F
C
1 (Kα)},

CN(K) =
∑

β∈B

{Nβ ⊆ N | K ⊆ Nβ , K ∈ F
C
1 (Nβ)}.

Since F
C
1 satisfies the condition C 1, from the relations K ∈ F

C
1 (Kα) (α ∈ A)

it follows that K ∈ F
C
1 (

∑

α∈A

Kα) = F
C
1

(

CM(K)
)

.

Now we apply the condition C 4
∗

of F
C
1 in the situation: K ⊆ CM(K)∩N ⊆

CM(K). Having the relation K ∈ F
C
1

(

CM(K)
)

, from C 4
∗

it follows that
K ∈ F

C
1

(

CM(K)∩N
)

. Therefore CM(K)∩N is one of the submodules Nβ from
the definition of CN(K). Then CM(K)∩N ⊆ CN(K) and the inverse inclusion is
trivial. So we have CM(K)∩N = CN(K), which means that C is hereditary.

Combining this result with Theorem 3.5, we obtain the characterization of hered-
itary closure operators C by the functions F

C
1 .

Theorem 5.2. The mappings C  F
C
1 and F  C F define a monotone bijection

between the hereditary closure operators of R-Mod and the abstract functions of

the type F1 which satisfy the condition C 4
∗
. �

b) Hereditary and maximal closure operators

If a closure operator C ∈ CO(R) is hereditary and maximal, then it can be
described by the function F

C
1 which is of the type F1 and satisfies the condition
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C 4
∗

(Theorem 5.2). Moreover, in this situation (since C is weakly hereditary) the
maximality of C can be expressed by the condition C 3

∗
for F

C
1 (Proposition 4.1).

Therefore in this case F
C
1 is a function of the type F1 with the properties C 3

∗

and C 4
∗

.

Corollary 5.3. The mappings C  F
C
1 and F  C F define a monotone bijection

between the hereditary and maximal closure operators of R-Mod and the abstract

functions of the type F1 which satisfy the conditions C 3
∗

and C 4
∗
. �

Remark 1. The mappings (Φ,Ψ1) (see Section 1) establish a bijection between the
hereditary and maximal closure operators of R-Mod and the pretorsions (= heredi-
tary preradicals) of this category [5]. If r is a pretorsion, then C r can be reduced
to a closure operator (in the classical sense) of the lattice L(RR) of the left ideals
of R [7].

c) Hereditary and idempotent closure operators

Let C ∈ CO(R) be a hereditary and idempotent closure operator. Then C
can be described both by F

C
1 (since C is weakly hereditary) and by F

C
2 (since

C is idempotent). The characterization of C by F
C
1 can be obtained from the

previous results and consists in the following. The heredity of C implies that F
C
1

is a function of the type F1 with the condition C 4
∗

(Theorem 5.2). Moreover, the
idempotency of C in this case is equivalent to the transitivity (C 6 = C 6

∗
) of F

C
1

(Theorem 3.13).

Corollary 5.4. The mappings C  F
C
1 and F  C F define a monotone bijec-

tion between the hereditary and idempotent closure operators of R-Mod and the

abstract functions of the type F1 which satisfy the conditions C 4
∗

and C 6. �

Now we will show the description of the studied type of operators by the functions
F

C
2 , which is possible because C is idempotent (Theorem 3.10). Then F

C
2 is a

function of the type F2 and now we must express by F
C
2 the heredity of C. For

that we will use a new condition, which is concordant with heredity (to compare
with C7):

C7
∗
. If N ⊆ L ⊆ M , then for every submodule Lα with N ⊆ Lα ⊆ L and

Lα ∈ F(L), there exists a submodule Mβ with N ⊆ Mβ ⊆ M and Mβ ∈ F(M)
such that Lα = Mβ ∩L.

Proposition 5.5. Let C ∈ CO(R) be an idempotent closure operator. Then C is

hereditary if and only if the associated function F
C
2 satisfies the condition C7

∗

.

Proof. (⇒) Suppose that an idempotent operator C is hereditary. Then in the
situation N ⊆ L ⊆ M we have CL(N) = CM(N)∩L. Since C is idempotent, it
can be reestablished by F C

2 and we have :

CL(N) =
⋂

α∈A

{Lα ⊆ L | N ⊆ Lα , Lα ∈ F
C
2 (L)},

CM(N) =
⋂

β∈B

{Mβ ⊆ M | N ⊆ Mβ , Mβ ∈ F
C
2 (M)}.
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Then the above relation obtained by the heredity of C has the form :
⋂

α∈A

Lα = (
⋂

β∈B

Mβ) ∩L =
⋂

β∈B

(Mβ ∩L).

In the situation Lα ⊆ L ⊆ M the heredity of C implies that CL(Lα) =
CM(Lα)∩L . Since Lα ∈ F

C
2 (L), we have CL(Lα) = Lα , therefore Lα =

CM(Lα)∩L . Denote: Mβ = CM(Lα). Since C is idempotent, the submodule
Mβ is C-closed in M , i.e. Mβ ∈ F

C
2 (M), where N ⊆ Lα ⊆ Mβ . In such a way,

for every submodule Lα of the indicated type we find a submodule Mβ such that
Mβ ∈ F

C
2 (M) and Lα = Mβ ∩L . This proves that F

C
2 satisfies C7

∗
.

(⇐) Let C ∈ CO(R) be an idempotent closure operator such that the function
F

C
2 satisfies the condition C7

∗

. In the preceding notations the heredity of C is
expressed in the form:

⋂

α∈A

Lα =
⋂

β∈B

(Mβ ∩L), where N ⊆ L ⊆ M .

From the condition C7
∗

it follows that every submodule Lα (α ∈ A) has the form
Mβ ∩L , therefore

⋂

α∈A

Lα ⊇
⋂

β∈B

(Mβ ∩L) . This means that CL(N) ⊇ CM(N)∩L ,

where the inverse inclusion is trivial. So we obtain CL(N) = CM(N)∩L for every
N ⊆ L ⊆ M , i.e. C is hereditary.

This result gives us the possibility to restrict the bijection of Theorem 3.16, de-
manding for C to be hereditary and for F

C
2 to satisfy the condition C7

∗
. Therefore

in this case F
C
2 is a function of the type F2 which satisfies the condition C7

∗
.

Theorem 5.6. The mappings C  F
C
2 and F  CF define an antimonotone

bijection between the hereditary and idempotent closure operators of R-Mod and

the abstract functions of the type F2 which satisfy the condition C7
∗

. �

We can remark that in the studied case the operator C is weakly hereditary and
idempotent, therefore by Theorems 3.13 and 3.16 both the functions F

C
1 and F

C
2

satisfy the condition of transitivity (C 6 = C 6
∗
).

d) Hereditary, maximal and idempotent closure operators

This subsection is a combination of two previous cases
(

b) and c)
)

and contains
the description of the closure operators with three properties: they are hereditary,

maximal and idempotent. By the part b) the operator C can be described by
F

C
1 , which is a function of the type F1 with the properties C 3

∗
and C 4

∗
(Corol-

lary 5.3). Moreover, the idempotency of C is expressed for F
C
1 by the condition C 6

(Theorem 3.13).

Corollary 5.7. The mappings C  F
C
1 and F  C F define a monotone bi-

jection between the hereditary, maximal and idempotent closure operators of

R-Mod and the abstract functions of the type F1 which satisfy the conditions C 3
∗

,

C 4
∗

and C 6. �

Similarly the operators of the studied type can be characterized by the function
F

C
2 using Theorem 5.6. Indeed, since C is hereditary and idempotent, it can be

described by the function F C
2 , which is of the type F2 and satisfies the condition

C7
∗
. Finally, we must take into account the effect to F

C
2 of the maximality of C,

which is expressed by the condition C 3 (Proposition 4.3).
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Corollary 5.8. The mappings C  F
C
2 and F  CF define an antimonotone

bijection between the hereditary, maximal and idempotent closure operators

of R-Mod and the abstract functions of the type F2 which satisfy the conditions

C 3 and C7
∗

. �

Remark 2. As in the case b), the mappings (Φ,Ψ1) define a bijection between the
operators studied in this subsection and the torsions (= hereditary radicals) of
R-Mod. Moreover, such an operator (hereditary, maximal and idempotent) can be
reduced to a closure operator of L(RR) [7].

e) Hereditary and minimal closure operators

Let C ∈ CO(R) be a hereditary and minimal closure operator. The relations
between the classes of closure operators (Lemmas 1.1, 1.2, 1.3) show that in this
case C can be described both by F

C
1 (since C is weakly hereditary) and by F

C
2

(since C is idempotent). The characterizations of C in this case can be obtained
from the previous results and consist in the following.

Since C is hereditary, Theorem 5.2 shows that F
C
1 is a function of the type F1

with the condition C 4
∗
. Moreover, the minimality of C in this case (because C is

weakly hereditary) is equivalent to the condition C7 for F
C
1 (Proposition 4.8). So

we obtain the following characterization.

Corollary 5.9. The mappings C  F
C
1 and F  C F define a monotone bijection

between the hereditary and minimal closure operators of R-Mod and the abstract

functions of the type F1 which satisfy the conditions C 4
∗

and C7. �

Similarly the hereditary and minimal closure operators C can be described by
the functions F

C
2 . Namely, by Theorem 4.7 C is minimal if and only if F

C
2 is a

function of the type F2 with the condition C 4. Further, we can apply Proposi-
tion 5.5 : since C is minimal, it is idempotent and in this case C is hereditary if
and only if F

C
2 satisfies the condition C7

∗

.

Corollary 5.10. The mappings C  F
C
2 and F  CF define an antimonotone

bijection between the hereditary and minimal closure operators of R-Mod and

the abstract functions of the type F2 which satisfy the conditions C 4 and C7
∗
. �

The rest of this section is dedicated to the cases related to coheredity and con-
sists of three parts, studying the operators which are : f) cohereditary; g) weakly
hereditary and cohereditary; h) hereditary and cohereditary (see Figure 1).

f) Cohereditary closure operators

Let C ∈ CO(R) be a cohereditary closure operator. Then C is minimal
(Lemma 1.3), therefore it is idempotent (Lemma 1.2). Therefore C can be de-
scribed by F

C
2 , which is of the type F2 (Theorem 3.10). Now we must find the

property of F
C
2 which is equivalent to the coheredity of C. With this aim we will

use the following condition (see Section 2) :

C 5. If f : M → M ′ is an R-morphism and N ∈ F(M), then f(N) ∈ F
(

f(M)
)

.
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Proposition 5.11. Let C ∈ CO(R) be an idempotent closure operator. Then C is

cohereditary if and only if the function F
C
2 satisfies the condition C 5.

Proof. (⇒) Let C ∈ CO(R) be a cohereditary closure operator, f : M → M ′ be
an R-morphism, N ⊆ M and N ∈ F

C
2 (M). Then CM(N) = N and f

(

CM(N)
)

=
Cf(M)

(

f(N)
)

, i.e. f(N) = Cf(M)

(

f(N)
)

. Therefore f(N) ∈ F
C
2

(

f(M)
)

and F
C
2

satisfies the condition C 5.
(⇐) Suppose that C ∈ CO(R) is idempotent and F

C
2 satisfies C 5. Then C

can be expressed by F
C
2 and in the situation f : M → M ′ and N ⊆ M we have :

CM(N) =
⋂

α∈A

{Nα ⊆ M | N ⊆ Nα , Nα ∈ F
C
2 (M)},

Cf(M)

(

f(N)
)

=
⋂

β∈B

{N ′
β ⊆ f(M) | f(N) ⊆ N ′

β , N ′
β ∈ F

C
2

(

f(M)
)

}.

Having the relations Nα ∈ F
C
2 (M) (α ∈ A), by C 1

∗

we conclude that
⋂

α∈A

Nα ∈

F
C
2 (M). Now by the property C 5 of F

C
2 we obtain f

(
⋂

α∈A

Nα
)

∈ F
C
2

(

f(M)
)

. There-

fore the submodule f
(

⋂

α∈A

Nα
)

⊆ f(M), which contains f(N), is one of the submod-

ules N ′
β . Then Cf(M)

(

f(N)
)

⊆ f
(

⋂

α∈A

Nα

)

= f
(

CM(N)
)

and the inverse inclusion fol-

lows from the condition (c3) (Definition 1.1). So we have f
(

CM(N)
)

= Cf(M)

(

f(N)
)

,
i.e. C is cohereditary.

Using this result, now we can restrict the bijection of Theorem 3.10 (which is
proved for idempotent operators), demanding for C to be cohereditary and for F

C
2

to satisfy the condition C 5.

Theorem 5.12. The mappings C  F
C
2 and F  CF define an antimonotone

bijection between the cohereditary closure operators of R-Mod and the abstract

functions of the type F2 which satisfy the condition C 5. �

g) Weakly hereditary and cohereditary closure operators

Let C ∈ CO(R) be a weakly hereditary and cohereditary closure operator.
From the first condition it follows that C can be described by the function F

C
1

(Theorem 3.5), and from the second one it is clear (as in the previous case) that C
can be characterized by the function F

C
2 . Now we will formulate these characteri-

zations, combining the foregoing results.
The function F

C
1 in this case is of the type F1 and we must join the effect of

coheredity of C to F
C
1 . We remind that C is cohereditary if and only if it is maximal

and minimal (Lemma 1.3). The maximality of C is equivalent to the condition C 3
∗

for F
C
1 (Proposition 4.1), while the minimality of C means that F

C
1 satisfies the

condition C7 (Proposition 4.8). Therefore by Theorem 3.5 and Propositions 4.1, 4.8
we obtain the following characterization.

Corollary 5.13. The mappings C  F
C
1 and F  C F establish a monotone

bijection between the weakly hereditary and cohereditary closure operators of

R-Mod and the abstract functions of the type F1 which satisfy the conditions

C 3
∗
and C7. �
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The description of the weakly hereditary and cohereditary closure operators by
the functions F

C
2 can be shown in a similar way : by Theorem 5.12 the coheredity

of C is equivalent to the property C 5 of F
C
2 , while the weakly heredity of C is

expressed by the condition C 6 of F
C
2 (Theorem 3.16).

Corollary 5.14. The mappings C  F
C
2 and F  CF define an antimono-

tone bijection between the weakly hereditary and cohereditary closure operators

of R-Mod and the abstract functions of the type F2 which satisfy the conditions

C 5 and C 6. �

h) Hereditary and cohereditary closure operators

In the last case of this work the class of hereditary and cohereditary operators of
R-Mod is studied. It is contained in all previous classes and it is obvious that such
operators can be described both by the functions F

C
1 and F

C
2 .

Indeed, the heredity of C implies that F
C
1 is a function of the type F1 with the

condition C 4
∗

(Theorem 5.2). At the same time, by the case g) (Corollary 5.13) the
coheredity of C implies for F

C
1 the conditions C 3

∗
and C7.

Corollary 5.15. The mappings C  F
C
1 and F  C F define a monotone bijection

between the hereditary and cohereditary closure operators of R-Mod and the

abstract functions of the type F1 which satisfy the conditions C 3
∗

, C 4
∗

and C7. �

It remains to formulate the characterization of the studied closure operators by
the functions F

C
2 . From the case g) we see that in this case F

C
2 is of the type F2

with the conditions C 5 and C 6 (Corollary 5.14). Now we join the effect of heredity
of C to F

C
2 , which is expressed by the condition C7

∗

(Proposition 5.5).

Corollary 5.16. The mappings C  F
C
2 and F  CF define an antimonotone

bijection between the hereditary and cohereditary closure operators of R-Mod

and the abstract functions of the type F2 which satisfy the conditions C 5,
C 6 and C7

∗
. �

We totalize this work by a review of the exposed above results. The previous
investigations show the situation related to the characterization of the principal
types of the closure operators C of R-Mod in the language of C-dense submodules
(i.e. by the function F

C
1 ) or (and) of C-closed submodules (i.e. by the function

F
C
2 ). The description of C ∈ CO(R) by F

C
1 is possible if and only if C is weakly

hereditary. Dually, C can be characterized by F
C
2 if and only if C is idempotent.

These facts determine what types of operators and how can be described by the
dense submodules or (and) by the closed submodules.

In this work all cases are analyzed, which are defined by diverse combinations of
the basic conditions on the operators : weakly heredity – idempotency, maximality –
minimality, heredity – coheredity. Altogether 16 types of operators are described,
from which 7 types possess the double characterizations (by F

C
1 and by F

C
2 ). The

general situation with all results is illustrated in Figure 1.
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Figure 1.
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Table 1. The list of conditions

C1. Mα ⊆ M (α ∈ A), N ∈ F(Mα) ⇒ C 1
∗

. Nα ⊆ M (α ∈ A), Nα ∈ F(M) ⇒

N ∈ F(
∑

α ∈ A

Mα) ;
⋂

α ∈ A

Nα ∈ F(M) ;

C 2. N ⊆ L ⊆ M, N ∈ F(L) ⇒ C 2
∗

. N ⊆ L ⊆ M, N ∈ F(L) ⇒

N + K ∈ F(L + K) ∀K ⊆ M ; N ∩ K ∈ F(L ∩ K) ∀K ⊆ M ;

C 3. K ⊆ N ⊆ M, N ∈ F(M) ⇒ C 3
∗

. K ⊆ N ⊆ M, N/K ∈ F(M/K) ⇒

N/K ∈ F(M/K) ; N ∈ F(M) ;

C 4. N ⊆ L ⊆ M, N ∈ F(M) ⇒ C 4
∗

. N ⊆ L ⊆ M, N ∈ F(M) ⇒

L ∈ F(M) ; N ∈ F(L) ;

C 5. f : M → M ′, N ∈ F(M) ⇒ C 5
∗

. g : M → M ′, N ′ ∈ F
(

g(M)
)

⇒

f(N) ∈ F
(

f(M)
)

; g−1(N ′) ∈ F(M) ;

C 6 = C6
∗

. N ⊆ L ⊆ M, N ∈ F(L), L ∈ F(M) ⇒ N ∈ F(M) (transitivity)

C7. K ⊆ N ⊆ M ⇒ C7
∗

. N ⊆ L ⊆ M ⇒

∀Nα
(

N ⊆ Nα ⊆ M, N ∈ F(Nα)
)

∀Lα
(

N ⊆ Lα ⊆ L, Lα ∈ F(L)
)

∃Kβ

(

K ⊆ Kβ ⊆ M, K ∈ F(Kβ)
)

∃Mβ

(

N ⊆ Mβ ⊆ M, Mβ ∈ F(M)
)

such that Nα = Kβ + N . such that Lα = Mβ ∩ L .
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Part III: Bul. Acad. Ştiinţe Repub. Moldova, Mat., 2014, No. 1(74), 90–100;
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