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Commutator subgroup of Sylow 2-subgroups

of alternating group and the commutator

width in the wreath product

Ruslan V. Skuratovskii

Abstract. It is proved that the commutator length of an arbitrary element of the
iterated wreath product of cyclic groups Cpi

, pi ∈ N, is equal to 1. The commutator
width of direct limit of wreath product of cyclic groups is found. This paper gives
upper bounds of the commutator width (cw(G)) [1] of a wreath product of groups.
A presentation in the form of wreath recursion [6] of Sylow 2-subgroups Syl2A2k of
A2k is introduced. As a corollary, we obtain a short proof of the result that the
commutator width is equal to 1 for Sylow 2-subgroups of the alternating group A2k ,
where k > 2, permutation group S2k and for Sylow p-subgroups Syl2Apk and Syl2Spk .
The commutator width of permutational wreath product B ≀ Cn is investigated. An
upper bound of the commutator width of permutational wreath product B ≀Cn for an
arbitrary group B is found.

Mathematics subject classification: 20B27, 20B22, 20F65, 20B07, 20E45.
Keywords and phrases: wreath product of groups, minimal generating set of the
commutator subgroup of Sylow 2-subgroups, commutator width of wreath product,
commutator width of Sylow p-subgroups, commutator subgroup of alternating group.

1 Introduction

This work continues previous investigations of author [12, 13, 15, 16, 18], where
minimal generating sets of Sylow 2-subgroups of alternating groups were found.

As is well known the first example of a group G with commutator width greater
than 1 (cw(G) > 1) was given by Fite [4]. The smallest finite examples of such groups
are groups of order 96, two such, nonisomorphic groups were given by Guralnick [20].

We deduce an estimation for commutator width of wreath product Cn ≀B, where
Cn is a cyclic group of order n, taking into consideration the cw(B) of passive group
B. The form of commutators of wreath product A ≀B was shortly considered in [2].
The form of commutator presentation [2] is proposed by us as wreath recursion [9]
and the commutator width of it is studied. We impose weaker condition on the
presentation of wreath product commutator than it was proposed by J. Meldrum.

In this paper we continue the investigations started in [16,17]. We find a minimal
generating set and the structure for commutator subgroup of Syl2A2k .

The study of commutator subgroup serves to the solution of inclusion problem [5]
for elements of Syl2A2k in its derived subgroup (Syl2A2k)′. It was known that the
commutator width of iterated wreath products of nonabelian finite simple groups is
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bounded by an absolute constant [3, 4]. But it was not proven that a commutator

subgroup of
k

≀
i=1

Cpi
consists of commutators. We generalize the passive group of this

wreath product to any group B instead of only wreath product of cyclic groups and
obtain an exact commutator width.

Also we are going to prove that the commutator width of Sylow p-subgroups of
symmetric and alternating groups for p ≥ 2 is 1.

2 Preliminaries

Let G be a group acting (from the right) by permutations on a set X and let
H be an arbitrary group. Then the (permutational) wreath product H ≀ G is the
semidirect product HX ⋋G, where G acts on the direct power HX by the respective
permutations of the direct factors. The cyclic group Cp or (Cp,X) is equipped with
a natural action by the left shift on X = {1, . . . , p}, p ∈ N. It is well known that a
wreath product of permutation groups is an associative construction [2].

The multiplication rule of automorphisms g, h which are presented in the form
of the wreath recursion [6] g = (g(1), g(2), . . . , g(d))σg, h = (h(1), h(2), . . . , h(d))σh, is
given by the formula:

g · h = (g(1)h(σg(1)), g(2)h(σg(2)), . . . , g(d)h(σg(d)))σgσh.

We define σ as (1, 2, . . . , p) where p is determined by context.

The set X∗ is naturally a vertex set of a regular rooted tree, i.e. a connected
graph without cycles and a designated vertex v0 is called the root, in which two
words are connected by an edge if and only if they are of the form v and vx, where
v ∈ X∗, x ∈ X. The set Xn ⊂ X∗ is called the n-th level of the tree X∗ and
X0 = {v0}. We denote by vji the vertex of Xj which has the number i, where

1 ≤ i ≤ X2j

and the numeration starts from 1. Note that a unique vertex vk,i

corresponds to a unique word v in alphabet X. For every automorphism g ∈ AutX∗

and every word v ∈ X∗ determine the section (state) g(v) ∈ AutX∗ of g at v by
the rule: g(v)(x) = y for x, y ∈ X∗ if and only if g(vx) = g(v)y. The subtree of

X∗ induced by the set of vertices ∪k
i=0X

i is denoted by X [k]. The restriction of the
action of an automorphism g ∈ AutX∗ on the subtree X [l] is denoted by g(v)|X[l]

as in [7, 8]. The restriction g(vij )|X[1] is called the vertex permutation (v.p.) of g at
a vertex vij and is denoted by gij . For example, if |X| = 2 then we just have to
distinguish active vertices, i.e., the vertices for which gij is non-trivial [6].

Let us label every vertex of X l, 0 ≤ l < k, by sign 0 or 1 in dependence on the
state of v.p. in it, i.e. if gij is non-trivial then it is labeled by 1 for the case |X| = 2.
The vertex-labeled regular tree obtained by such a way is an element of AutX [k].
All undeclared terms are from [7,8].

Let us fix some notations. For brevity, in the form of wreath recursion we write
the commutator as [a, b] = aba−1b−1 that is inverse to a−1b−1ab. That does not
reduce the generality of our reasoning. For convenience the commutator of two
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group elements a and b is denoted by [a, b] = aba−1b−1, conjugation by an element
b as

ab = bab−1,

We define Gk and Bk recursively, i.e.

B1 = C2, Bk = Bk−1 ≀ C2 for k > 1,

G1 = 〈e〉, Gk = {(g1, g2)π ∈ Bk | g1g2 ∈ Gk−1} for k > 1.

Note that Bk =
k

≀
i=1

C2.

The commutator length of an element g of the derived subgroup of a group
G, which is denoted clG(g), is the minimal n such that there exist elements
x1, . . . , xn, y1, . . . , yn in G such that g = [x1, y1] . . . [xn, yn]. The commutator length
of the identity element is 0. The commutator width of a group G, denoted cw(G),
is the maximum of the commutator lengths of the elements of its derived subgroup
[G,G]. We denote by d(G) the minimal number of generators of the group G.

3 Commutator width of Sylow 2-subgroups of A2k and S2k

The following lemma improves Corollary 4.9 of [2] and it will be deduced from
Corollary 4.9.

Lemma 1. An element of the form (r1, . . . , rp−1, rp) belongs to W ′ = (B ≀ Cp)
′ if

and only if the product of all ri (in any order) belongs to B′, where p ∈ N, p ≥ 2.

Proof. More details of our argument may be given as follows. If we multiply elements
from a tuple (r1, . . . , rp−1, rp) = w, where ri = higa(i)h

−1
ab(i)g

−1
aba−1(i)

, hi, gi ∈ B and

a, b ∈ Cp, then we get the product

x =

p
∏

i=1

ri =

p
∏

i=1

higa(i)h
−1
ab(i)g

−1
aba−1(i)

∈ B′, (1)

so x is the product of appropriate commutators. Therefore, we can represent rp =

r−1
p−1 . . . r−1

1 x. We can rewrite element x ∈ B′ as the product x =
m
∏

j=1
[hj , gj ], m ≤

cw(B).
Note that we impose weaker condition on the product of all ri to belong to B′

than in Definition 4.5. of form P (L) in [2], where the product of all ri belongs to a
subgroup L of B such that L > B′.

In more detail deducing of our representation constructing can be reported
in the following way. If we multiply elements which have the form of a tuple
(r1, . . . , rp−1, rp), where ri = higa(i)h

−1
ab(i)g

−1
aba−1(i)

, hi, gi ∈ B and a, b ∈ Cp, then

we obtain a product

p
∏

i=1

ri =

p
∏

i=1

higa(i)h
−1
ab(i)g

−1
aba−1(i)

∈ B′. (2)
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Note that if we rearrange the elements in (1) as h1h
−1
1 g1g

−1
2 h2h

−1
2 g1g

−1
2 ...hph

−1
p gpg

−1
p

then by the reason of such permutations we obtain a product of appropriate com-
mutators. Therefore, the following equality holds

p
∏

i=1

higa(i)h
−1
ab(i)g

−1
aba−1(i)

=

p
∏

i=1

higih
−1
i g−1

i x0 =

p
∏

i=1

hih
−1
i gig

−1
i x ∈ B′, (3)

where x0, x are products of appropriate commutators. Therefore,

(r1, . . . , rp−1, rp) ∈ W ′ iff rp−1 · . . . · r1 · rp = x ∈ B′. (4)

It follows that one element of the wreath recursion (r1, . . . , rp−1, rp) depends on the

rest of ri. This implies that the product
p
∏

j=1
rj for an arbitrary sequence {rj}

p
j=1

belongs to B′. Thus, rp can be expressed as:

rp = r−1
1 · . . . · r−1

p−1x.

Denote a j-th tuple, consisting of wreath recursion elements by (rj1 , rj2 , ..., rjp).
The fact that the set of forms (r1, . . . , rp−1, rp) ∈ W = (B ≀ Cp)

′ is closed under
multiplication follows from the identity

k
∏

j=1

(rj1 . . . rjp−1rjp) =

k
∏

j=1

p
∏

i=1

rji
= R1R2...Rk ∈ B′, (5)

where rji is i-th element of the j-th tuple, Rj =
p
∏

i=1
rji, 1 ≤ j ≤ k. As it was

shown above Rj =
p−1
∏

i=1
rji ∈ B′. Therefore, the product (5) of Rj, j ∈ {1, ..., k},

which is similar to the product mentioned in [2], has the property R1R2...Rk ∈ B′,
because B′ is a subgroup. Thus, we get a product of the form (1) and the same
argument as above are applies.

Let us prove the sufficiency condition. Let K be the set of elements satisfying
the condition of this theorem. That is, all products of all ri, where each i occurs
once, belong to B′. Then using elements of the form

(r1, e, ..., e, r
−1
1 ), ..., (e, e, ..., e, ri , e, r

−1
i ), ..., (e, e, ..., e, rp−1 , r−1

p−1), (e, e, ..., e, r1r2·...·rp−1)

we can express any element in the form (r1, . . . , rp−1, rp) ∈ W = (B ≀Cp)
′. We need

to prove that we can express all element from W and only elements of W in such
a way. The fact that all elements can be generated by elements of K follows from
randomness of choice of every ri, i < p and the fact that equality (1) holds, so rp is
well defined.
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Lemma 2. Assume a group B and an integer p ≥ 2 are given. If w ∈ (B ≀ Cp)
′,

then we can represent w as the following wreath recursion:

w = (r1, r2, . . . , rp−1, r
−1
1 . . . r−1

p−1

k
∏

j=1

[fj, gj ]),

where r1, . . . , rp−1, fj, gj ∈ B and k ≤ cw(B).

Proof. According to Lemma 1 we have the following wreath recursion

w = (r1, r2, . . . , rp−1, rp),

where ri ∈ B and rp−1rp−2 . . . r2r1rp = x ∈ B′. Therefore we can write rp =
r−1
1 . . . r−1

p−1x. We can also rewrite an element x ∈ B′ as the product of commutators

x =
k
∏

j=1
[fj , gj ] where k ≤ cw(B).

Lemma 3. For any group B and integer p ≥ 2, suppose w ∈ (B ≀Cp)
′ is defined by

the following wreath recursion:

w = (r1, r2, . . . , rp−1, r
−1
1 . . . r−1

p−1[f, g]),

where r1, . . . , rp−1, f, g ∈ B. Then we can represent w as the following commutator

w = [(a1,1, . . . , a1,p)σ, (a2,1, . . . , a2,p)],

where

a1,i = e, for 1 ≤ i ≤ p − 1 ,

a2,1 = (f−1)r
−1
1 ...r−1

p−1 ,

a2,i = ri−1a2,i−1, for 2 ≤ i ≤ p,

a1,p = ga−1
2,p .

Proof. Consider the following commutator

κ = (a1,1, . . . , a1,p)σ · (a2,1, . . . , a2,p) · (a
−1
1,p, a

−1
1,1, . . . , a

−1
1,p−1)σ

−1 · (a−1
2,1, . . . , a

−1
2,p)

= (a3,1, . . . , a3,p),

where

a3,i = a1,ia2,1+(i mod p)a
−1
1,i a

−1
2,i .

At first we compute

a3,i = a1,ia2,i+1a
−1
1,i a

−1
2,i = a2,i+1a

−1
2,i = ria2,ia

−1
2,i = ri, for 1 ≤ i ≤ p − 1.
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Then we make some transformation of a3,p:

a3,p = a1,pa2,1a
−1
1,pa

−1
2,p

= (a2,1a
−1
2,1)a1,pa2,1a

−1
1,pa

−1
2,p

= a2,1[a
−1
2,1, a1,p]a

−1
2,p

= a2,1a
−1
2,pa2,p[a

−1
2,1, a1,p]a

−1
2,p

= (a2,pa
−1
2,1)

−1[(a−1
2,1)

a2,p , a
a2,p

1,p ]

= (a2,pa
−1
2,1)

−1[(a−1
2,1)

a2,pa−1
2,1 , a

a2,p

1,p ].

Now we can see that the form of the commutator κ is similar to the form of w.
Introduce the following notation

r′ = rp−1 . . . r1.

We note that from the definition of a2,i, for 2 ≤ i ≤ p it follows that

ri = a2,i+1a
−1
2,i , for 1 ≤ i ≤ p − 1.

Therefore

r′ = (a2,pa
−1
2,p−1)(a2,p−1a

−1
2,p−2) . . . (a2,3a

−1
2,2)(a2,2a

−1
2,1)

= a2,pa
−1
2,1.

Then
(a2,pa

−1
2,1)

−1 = (r′)−1 = r−1
1 . . . r−1

p−1.

Now we compute the following

(a−1
2,1)

a2,pa−1
2,1 = (((f−1)r

−1
1 ...r−1

p−1)−1)r
′

= (f (r′)−1
)r

′

= f,

a
a2,p

1,p = (ga−1
2,p)a2,p = g.

Finally we conclude that

a3,p = r−1
1 . . . r−1

p−1[f, g].

Thus, the commutator κ is presented exactly in a similar form as w has.

For future using we formulate the previous lemma for the case p = 2.

Corollary 1. For any group B, if w ∈ (B ≀ C2)
′ is defined by the following wreath

recursion

w = (r1, r
−1
1 [f, g]),

where r1, f, g ∈ B then we can represent w as the commutator

w = [(e, a1,2)σ, (a2,1, a2,2)],
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where

a2,1 = (f−1)r
−1
1 ,

a2,2 = r1a2,1,

a1,2 = ga−1
2,2 .

Lemma 4. For any group B and integer p ≥ 2 the inequality

cw(B ≀ Cp) ≤ max(1, cw(B))

holds.

Proof. We can represent any w ∈ (B ≀ Cp)
′ by Lemma 1 with the following wreath

recursion

w = (r1, r2, . . . , rp−1, r
−1
1 . . . , r−1

p−1

k
∏

j=1

[fj, gj ])

= (r1, r2, . . . , rp−1, r
−1
1 . . . , r−1

p−1[f1, g1]) ·

k
∏

j=2

[(e, . . . , e, fj), (e, . . . , e, gj)],

where r1, . . . , rp−1, fj , gj ∈ B and k ≤ cw(B). Now by Lemma 3 we see that w can
be represented as a product of max(1, cw(B)) commutators.

Corollary 2. If W = Cpk
≀ . . . ≀ Cp1 then cw(W ) = 1 for k ≥ 2.

Proof. If B = Cpk
≀ Cpk−1

, then take into consideration that cw(B) > 0 (because
Cpk

≀ Cpk−1
is not a commutative group). Since Lemma 4 implies that cw(Cpk

≀
Cpk−1

) = 1, and using the inequality cw(Cpk
≀ Cpk−1

≀ Cpk−2
) ≤ max(1, cw(B)) from

Lemma 4 we obtain cw(Cpk
≀ Cpk−1

≀ Cpk−2
) = 1. Similarly, if W = Cpk

≀ . . . ≀ Cp1

and inductive assumption for Cpk
≀ . . . ≀ Cp2 holds, then using the associativity of a

permutational wreath product we obtain from the inequality of Lemma 4 and the
equality cw(Cpk

≀ . . . ≀ Cp2) = 1 that cw(W ) = 1.

We define our partially ordered set M as the set of all finite wreath products of
cyclic groups. We make use of directed set N.

Hk =
k

≀
i=1

Cpi
(6)

Moreover, it has already been proved in Corollary 3 that each group of the form
k

≀
i=1

Cpi
has the commutator width equal to 1, i.e cw(

k

≀
i=1

Cpi
) = 1. A partially ordered

set of subgroups is ordered by relation of inclusion of group as a subgroup. Define

the injective homomorphism fk,k+1 from
k

≀
i=1

Cpi
into

k+1
≀

i=1
Cpi

by mapping a generator

of active group Cpi
of Hk into a generator of active group Cpi

of Hk+1. In more details
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the injective homomorphism fk,k+1 is defined as g 7→ g(e, ..., e), where a generator

g ∈
k

≀
i=1

Cpi
, g(e, ..., e) ∈

k+1
≀

i=1
Cpi

.

Therefore this is an injective homomorphism of Hk into subgroup
k

≀
i=1

Cpi
of Hk+1.

The direct limit of the resulting direct system is denoted by lim−→

k

≀
i=1

Cpi
and is

defined as the disjoint of the Hk’s modulo a certain equivalence relation:

lim−→

k

≀
i=1

Cpi
=

∐

k

k

≀
i=1

Cpi

/∼.

Corollary 3. The direct limit lim−→

k

≀
i=1

Cpi
of direct system

〈

fk,j,
k

≀
i=1

Cpi

〉

has the

commutator width 1.

Proof. We make transition to the direct limit in the direct system

〈

fk,j,
k

≀
i=1

Cpi

〉

of

injective mappings from the chain e → ... →
k

≀
i=1

Cpi
→

k+1
≀

i=1
Cpi

→
k+2
≀

i=1
Cpi

→ ....

Since all mappings in chains are injective homomorphisms, it has a trivial kernel.
Therefore the transition to a direct limit boundary preserves the property cw(H) =
1, because each group Hk from the chain is endowed with cw(Hk) = 1.

The direct limit of the direct system is denoted by lim−→

k

≀
i=1

Cpi
and is defined as

disjoint union of the Hk’s modulo a certain equivalence relation:

lim−→

k

≀
i=1

Cpi
=

∐

k

k

≀
i=1

Cpi

/∼.

Since every element g of lim−→

k

≀
i=1

Cpi
coincides with a corresponding element from

some Hk of direct system, then by the injectivity of the mappings for g the property

cw(
k

≀
i=1

Cpi
) = 1 also holds. Thus, it holds for the whole lim−→

k

≀
i=1

Cpi
.

Corollary 4. For prime p and k ≥ 2, the commutator width cw(Sylp(Spk)) = 1 and
for prime p > 2 and k ≥ 2, the commutator width cw(Sylp(Apk)) = 1.

Proof. Since Sylp(Spk) ≃
k

≀
i=1

Cp (see [10, 11, 13]), then cw(Sylp(Spk)) = 1. As

well known in the case p > 2 we have SylpSpk ≃ SylpApk (see [16, 19]), then
cw(Sylp(Apk)) = 1.

Proposition 1. The inclusion B′
k < Gk holds.
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Proof. Induction on k. For k = 1 we have B′
k = Gk = {e}. Let us fix some

g = (g1, g2) ∈ B′
k. Then g1g2 ∈ B′

k−1 by Lemma 1. As B′
k−1 < Gk−1 by induction

hypothesis therefore g1g2 ∈ Gk−1 and by the definition of Gk it follows that g ∈
Gk.

Corollary 5. The set Gk is a subgroup in the group Bk.

Proof. According to recursive definition of Gk and Bk, where Gk = {(g1, g2)π ∈
Bk | g1g2 ∈ Gk−1} k > 1, Gk is a subset of Bk with condition g1g2 ∈ Gk−1. It
is easy to check the closedness by multiplication of elements of Gk with condition
g1g2, h1h2 ∈ Gk−1, because Gk−1 is a subgroup, so g1g2h1h2 ∈ Gk−1, too. The
inverses can be verified easily.

Lemma 5. For any k ≥ 1 we have |Gk| = |Bk|/2.

Proof. Induction on k. For k = 1 we have |G1| = 1 = |B1|/2. Every element g ∈ Gk

can be uniquely written as the following wreath recursion

g = (g1, g2)π = (g1, g
−1
1 x)π

where g1 ∈ Bk−1, x ∈ Gk−1 and π ∈ C2. Elements g1, x and π are independent,
therefore |Gk| = 2|Bk−1| · |Gk−1| = 2|Bk−1| · |Bk−1|/2 = |Bk|/2.

Corollary 6. The group Gk is a normal subgroup in the group Bk, i.e. Gk � Bk.

Proof. The proof follows immediately from Lemma 5.

Theorem 1. For any k ≥ 1 we have Gk ≃ Syl2A2k .

Proof. Group C2 acts on the set X = {1, 2}. Therefore we can recursively define sets
Xk on which group Bk acts: X1 = X, Xk = Xk−1 × X for k¿1. At first we define
S2k = Sym(Xk) and A2k = Alt(Xk) for all integers k ≥ 1. Then Gk < Bk < S2k

and A2k < S2k .
It follows from [16] that Bk ≃ Syl2(S2k). Since |A2k | = |S2k |/2, therefore

|Syl2A2k | = |Syl2S2k |/2 = |Bk|/2. By Lemma 5 it follows that |Syl2A2k | = |Gk|.
Therefore it remains to show that Gk < Alt(Xk).

Let us fix some g = (g1, g2)σ
i where g1, g2 ∈ Bk−1, i ∈ {0, 1} and g1g2 ∈ Gk−1.

Then we can represent g as follows

g = (g1g2, e) · (g
−1
2 , g2) · (e, e, )σ

i.

In order to prove this theorem it is enough to show that (g1g2, e), (g
−1
2 , g2), (e, e, )σ ∈

Alt(Xk).
Element (e, e, )σ just switches letters x1 and x2 for all x ∈ Xk. Therefore (e, e, )σ

is a product of |Xk−1| = 2k−1 transpositions and therefore (e, e, )σ ∈ Alt(Xk).
Elements g−1

2 and g2 have the same cycle type. Therefore elements (g−1
2 , e) and

(e, g2) also have the same cycle type. Let us fix the following cycle decompositions

(g−1
2 , e) = σ1 · . . . · σn,
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(e, g2) = π1 · . . . · πn.

Note that element (g−1
2 , e) acts only on letters like x1 and element (e, g2) acts only

on letters like x2. Therefore we have the following cycle decomposition

(g−1
2 , g2) = σ1 · . . . · σn · π1 · . . . · πn.

So, element (g−1
2 , g2) has even number of odd permutations and then (g−1

2 , g2) ∈
Alt(Xk).

Note that g1g2 ∈ Gk−1 and Gk−1 = Alt(Xk−1) by induction hypothesis. There-
fore g1g2 ∈ Alt(Xk−1). As elements g1g2 and (g1g2, e) have the same cycle type then
(g1g2, e) ∈ Alt(Xk).

As it was proven by the author in [16] Sylow 2-subgroup of A2k has the structure
Bk−1 ⋉ Wk−1, where definition of Bk−1 is the same that was given in [16].

Recall that we denoted by Wk−1 the subgroup of AutX [k] such that it has active
states only on Xk−1 and the number of such states is even, i.e. Wk−1 ⊳ StGk

(k− 1)

[6]. It was proven that the size of Wk−1 is equal to 22k−1−1, k > 1, and its structure

is (C2)
2k−1−1. The following structural theorem characterizing the group Gk was

proved by us [16].

Theorem 2. A maximal 2-subgroup of AutX [k] that acts by even permutations on
Xk has the structure of the semidirect product Gk ≃ Bk−1 ⋉Wk−1 and is isomorphic
to Syl2A2k .

Note that Wk−1 is a subgroup of the stabilizer of Xk−1, i.e. Wk−1 < StAutX[k](k−
1)�AutX [k] and Wk−1�AutX [k] is normal too, because conjugation keeps the cyclic
structure of permutation so an even permutation maps into even one. Therefore such
conjugation induces an automorphism of Wk−1 and Gk ≃ Bk−1 ⋉ Wk−1.

Remark 1. As a consequence, the structure found by the author in [16] is fully
consistent with the recursive group representation (which is used in this paper)
based on the concept of wreath recursion [9].

Theorem 3. Elements of B′
k have the following form B′

k = {[f, l] | f ∈ Bk, l ∈
Gk} = {[l, f ] | f ∈ Bk, l ∈ Gk}.

Proof. It is enough to show either B′
k = {[f, l] | f ∈ Bk, l ∈ Gk} or B′

k = {[l, f ] | f ∈
Bk, l ∈ Gk} because if f = [g, h] then f−1 = [h, g].

We prove the proposition by induction on k. For the case k = 1 we have B′
1 = 〈e〉.

Consider the case k > 1. According to Lemma 2 and Corollary 1 every element
w ∈ B′

k can be represented as

w = (r1, r
−1
1 [f, g])

for some r1, f ∈ Bk−1 and g ∈ Gk−1 (by induction hypothesis). By Corollary 1 we
can represent w as commutator of

(e, a1,2)σ ∈ Bk and (a2,1, a2,2) ∈ Bk,
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where

a2,1 = (f−1)r
−1
1 ,

a2,2 = r1a2,1,

a1,2 = ga−1
2,2 .

If g ∈ Gk−1 then by the definition of Gk and Corollary 6 we obtain (e, a1,2)σ ∈
Gk.

Remark 2. Theorem 3 improves Corollary 4 for the case Syl2S2k .

Proposition 2. If g is an element of the group Bk then g2 ∈ B′
k.

Proof. Induction on k. We note that Bk = Bk−1 ≀C2. Therefore we fix some element

g = (g1, g2)σ
i ∈ Bk−1 ≀ C2,

where g1, g2 ∈ Bk−1 and i ∈ {0, 1}. Let us consider g2, then two cases are possible:

g2 = (g2
1 , g2

2) or g2 = (g1g2, g2g1).

In the second case we consider the product of coordinates g1g2 · g2g1 = g2
1g

2
2x.

Since according to the induction hypothesis g2
i ∈ B′

k, i ≤ 2, then g1g2 · g2g1 ∈
B′

k, also according to Lemma 1, x ∈ B′
k. Therefore the following inclusion holds

(g1g2, g2g1) = g2 ∈ B′
k. In the first case the proof is even simpler because g2

1 , g
2
2 ∈ B′

by the induction hypothesis.

Lemma 6. If an element g = (g1, g2) ∈ G′
k then g1, g2 ∈ Gk−1 and g1g2 ∈ B′

k−1.

Proof. As B′
k < Gk therefore it is enough to show that g1 ∈ Gk−1 and g1g2 ∈ B′

k−1.
Let us fix some g = (g1, g2) ∈ G′

k < B′
k. Then Lemma 1 implies that g1g2 ∈ B′

k−1.
In order to show that g1 ∈ Gk−1 we firstly consider just one commutator of

arbitrary elements from Gk

f = (f1, f2)σ, h = (h1, h2)π ∈ Gk,

where f1, f2, h1, h2 ∈ Bk−1, σ, π ∈ C2. The definition of Gk implies that f1f2, h1h2 ∈
Gk−1.

If g = (g1, g2) = [f, h] then

g1 = f1hif
−1
j h−1

k

for some i, j, k ∈ {1, 2}. Then

g1 = f1hifj(f
−1
j )2hk(h

−1
k )2 = (f1fj)(hihk)x(f−1

j h−1
k )2,

where x is the product of commutators of fi, hj and fi, hk, hence x ∈ B′
k−1.
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It is enough to consider the first product f1fj. If j = 1 then f2
1 ∈ B′

k−1 by
Proposition 2, if j = 2 then f1f2 ∈ Gk−1 according to the definition of Gk, the
same is true for hihk. Thus, for any i, j, k, f1fj, hihk ∈ Gk−1 holds. Moreover, the
square (f−1

j h−1
k )2 ∈ B′

k according to Proposition 2. Therefore g1 ∈ Gk−1 because of
Proposition 2 and Proposition 1, the same is true for g2.

Now it remains to consider the product of some f = (f1, f2), h = (h1, h2), where
f1, h1 ∈ Gk−1, f1h1 ∈ Gk−1 and f1f2, h1h2 ∈ B′

k−1,

fh = (f1h1, f2h2).

Since f1f2, h1h2 ∈ B′
k−1 by the imposed condition in this item and taking into

account that f1h1f2h2 = f1f2h1h2x for some x ∈ B′
k−1, then f1h1f2h2 ∈ B′

k−1 by
Lemma 1. In other words the closedness by multiplication holds and so according
to Lemma 1, we have an element of commutator G′

k.

In the following theorem we prove two facts at once.

Theorem 4. The following statements are true.

1. An element g = (g1, g2) ∈ G′
k iff g1, g2 ∈ Gk−1 and g1g2 ∈ B′

k−1.

2. The commutator subgroup G′
k coincides with the set of all commutators for

k ≥ 1
G′

k = {[f1, f2] | f1 ∈ Gk, f2 ∈ Gk}.

Proof. For the case k = 1 we have G′
1 = 〈e〉. If k = 2, then we have G′

2 = V4 = 〈e〉,
where V4 is the Klein four-group. As a result cw(G2) = 0. So, further we consider
the case k > 2.

Sufficiency of the first statement of this theorem follows from Lemma 6. So, in
order to prove necessity of the both statements it is enough to show that element

w = (r1, r
−1
1 x),

where r1 ∈ Gk−1 and x ∈ B′
k−1, can be represented as a commutator of elements

from Gk. By Theorem 3 we have x = [f, g] for some f ∈ Bk−1 and g ∈ Gk−1.
Therefore

w = (r1, r
−1
1 [f, g]).

By Corollary 1 we can represent w as the commutator of

(e, a1,2)σ ∈ Bk and (a2,1, a2,2) ∈ Bk,

where a2,1 = (f−1)r
−1
1 , a2,2 = r1a2,1, a1,2 = ga−1

2,2 . It only remains to show that
(e, a1,2)σ,
(a2,1, a2,2) ∈ Gk. Note that

a1,2 = ga−1
2,2 ∈ Gk−1 by Corollary 6.

a2,1a2,2 = a2,1r1a2,1 = r1[r1, a2,1]a
2
2,1 ∈ Gk−1 by Proposition 1 and Proposition 2.

So we have (e, a1,2)σ ∈ Gk and (a2,1, a2,2) ∈ Gk by the definition of Gk.
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Example. The commutator subgroup of Syl′2(A8) consists of elements: {e, (13)(24)×

×(57)(68), (12)(34), (14)(23)(57)(68), (56)(78), (13)(24)(58)(67), (12)(34)(56)(78), (14)×

× (23)(58)(67)}. The commutator Syl′2(A8) ≃ C3
2 that is an elementary abelian 2-

group of order 8. This fact confirms our formula d(Gk) = 2k− 3, because k = 3 and
d(Gk) = 2k − 3 = 3. A minimal generating set of Syl′2(A8) consists of 3 generators:
(1, 3)(2, 4)(5, 7)(6, 8), (1, 2)(3, 4), (1, 3)(2, 4)(5, 8)(6, 7).

Corollary 7. The commutator width of the group Syl2A2k is equal to 1 for k > 2.

Notice that for the case k = 1 we have (Syl2A2)
′ = 〈e〉. If k = 2, then we have

(Syl2A22)′ = V4 = 〈e〉, where V4 is the Klein four-group. As a result cw(Syl2A4) = 0.
For rest of the cases the proof immediately follows from item 2 of Theorem 4.

4 Conclusion

A new approach to the presentation of Sylow 2-subgroups of alternating group
A2k is applied. As a result a short proof of the fact that the commutator width of
Sylow 2-subgroups of alternating group A2k , where k > 2, permutation group S2k

and Sylow p-subgroups Syl2Apk (Syl2Spk) are equal to 1 is obtained. The structure
of commutator subgroup of Sylow 2-subgroups of alternating group Syl2A2k is found.
The commutator width of permutational wreath product B ≀ Cn is investigated.
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