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On self-adjoint and invertible linear relations

generated by integral equations

V.M. Bruk

Abstract. We define a minimal operator L0 generated by an integral equation with
an operator measure and prove necessary and sufficient conditions for the operator
L0 to be densely defined. In general, L

∗

0 is a linear relation. We give a description
of L

∗

0 and establish that there exists a one-to-one correspondence between relations
L̂ with the property L0 ⊂ L̂⊂L

∗

0 and relations θ entering in boundary conditions. In
this case we denote L̂ = Lθ . We establish conditions under which linear relations Lθ

and θ together have the following properties: a linear relation (l.r) is self-adjoint; l.r

is closed; l.r is invertible, i.e., the inverse relation is an operator; l.r has the finite-
dimensional kernel; l.r is well-defined; the range of l.r is closed; the range of l.r is a
closed subspace of the finite codimension; the range of l.r coincides with the space
wholly; l.r is continuously invertible. We describe the spectrum of Lθ and prove that
families of linear relations Lθ(λ) and θ(λ) are holomorphic together.

Mathematics subject classification: 46G12, 45N05, 47A10.

Keywords and phrases: integral equation, Hilbert space, boundary value problem,
operator measure, linear relation, spectrum.

1 Introduction

In the study of linear operators and relations generated by differential or integral
equations with boundary conditions, a problem often arises: to find such boundary
conditions that determine an operator or a relation with preassigned properties. In
this paper, we consider the integral equation

y(t) = x0 − iJ

∫ t

a
dp(s)y(s) − iJ

∫ t

a
f(s)ds, (1)

where y is an unknown function; f ∈ L2(H; a, b); J is an operator in a separable
Hilbert space H, J = J∗, J2 = E (E is the identical operator); p is an operator-
valued measure defined on Borel sets ∆ ⊂ [a, b] and taking values in the set of linear
bounded operators acting in H;

∫ t
t0

stands for
∫
[t0t) if t0 < t, for −

∫
[t,t0) if t0 > t, and

for 0 if t0 = t. We assume that the measure p is self-adjoint and p has a bounded
variation.

Equation (1) was considered in the paper [11] under the condition that the set
Sp of single-point atoms of measure p can be arranged in the form of an increasing
sequence and this sequence converges to the point b. In this case the operator L0 is
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densely defined, where L0 is the minimal operator generated by equation (1) in the
space L2(H; a, b). This implies that L∗

0 is an operator.

In this paper, we do not impose any conditions on the set Sp. We prove that
the operator L0 is densely defined if and only if µ(Sp) = 0, where µ is the ”usual”
Lebesque measure on [a, b] (i.e., µ([α, β)) = β − α for all α, β ∈ [a, b], α<β). Hence
L∗

0 is a linear relation (a multi-valued operator), in general. We give a description
of the relation L∗

0.

We use different boundary value spaces for L∗
0 and establish that there exists

a one-to-one correspondence between relations L̂ with the property L0 ⊂ L̂ ⊂ L∗
0

and relations θ entering in boundary conditions. In this case we denote L̂ = Lθ.
We establish conditions under which linear relations Lθ and θ (or θ−Φδ, where
Φδ is a bounded operator defined below in the paper) together have the following
properties: 0) a linear relation (l.r) is self-adjoint; 1) l.r is closed; 2) l.r is invertible,
i.e., the inverse relation is an operator; 3) l.r has the finite-dimensional kernel; 4) l.r
is well-defined; 5) the range of l.r is closed; 6) the range of l.r is a closed subspace
of the finite codimension; 7) the range of l.r coincides with the space wholly; 8) l.r
is continuously invertible. The properties 1) – 8) are borrowed from [1,2].

We describe the spectrum of the linear relation Lθ and prove that families of
linear relations Lθ(λ) and θ(λ) are holomorphic together.

We note that linear relations were first employed in work [16] (see also [17])
for the description of self-adjoint extensions of differential operators in terms of
boundary conditions.

2 Preliminary assertions

Let H be a separable Hilbert space with scalar product (·, ·) and norm ‖·‖. We
consider a function ∆ → P(∆) defined on Borel sets ∆ ⊂ [a, b] and taking values
in the set of bounded linear operators acting in H. The function P is called an
operator measure on [a, b] (see, for example, [3, ch. 5]) if it is zero on the empty set
and the equality P (

⋃
∞

n=1 ∆n) =
∑

∞

n=1 P(∆n) holds for disjoint Borel sets ∆n, where
series converges weakly. Further, we extend to a segment [a, b0] ⊃ [a, b0) ⊃ [a, b] any
measure P on [a, b], letting P(∆) = 0 for each Borel sets ∆ ⊂ (b, b0].

By V∆(P) we denote V∆(P) = ρ(∆) = sup
∑

k ‖P(∆k)‖, where the supremum
is taken over all finite sums of disjoint Borel sets ∆k ⊂∆. The number V∆(P) is
called the variation of the measure P on the Borel set ∆. Suppose that the measure
P has the bounded variation on [a, b]. Then for ρ-almost all ξ ∈ [a, b] there exists an
operator function ξ→ΨP(ξ) such that ΨP possesses the values in the set of bounded
linear operators acting in H, ‖ΨP(ξ)‖ = 1, and the equality P(∆) =

∫
∆ ΨP(ξ)dρ

holds for each Borel set ∆⊂ [a, b]. This integral converges with respect to the usual
operator norm [3, ch. 5].

A function h is integrable with respect to the measure P on a set ∆ if there
exists the Bochner integral

∫
∆ΨP(t)h(t)dρ =

∫
∆(dP)h(t). Then the function y(t) =∫ t

t0
(dP)h(s) is continuous from the left.
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By SP denote a set of single-point atoms of the measure P (i.e., a set t ∈
[a, b] such that P({t}) 6= 0). The set SP is at most countable. The measure P

is continuous if SP = ∅; it is self-adjoint if (P(∆))∗ = P(∆) for each Borel set
∆ ⊂ [a, b]; it is non-negative if (P(∆)x, x) > 0 for all Borel sets ∆ ⊂ [a, b] and all
elements x ∈ H.

In following Lemma 1, p1, p2, q are operator measures having bounded variations
on [a, b] and taking values in the set of linear bounded operators acting inH. Suppose
that the measure q is self-adjoint. We assume that these measures are extended on
the segment [a, b0]⊃ [a, b0)⊃ [a, b] in the manner described above.

Lemma 1. [10] Let f , g be functions integrable on [a, b0] with respect to the measure
q; y0, z0 ∈ H. Then any functions

y(t)=y0 − iJ

∫ t

t0

dp1(s)y(s) − iJ

∫ t

t0

dq(s)f(s),

z(t)=z0 − iJ

∫ t

t0

dp2(s)z(s) − iJ

∫ t

t0

dq(s)g(s) (a 6 t0 < b0, t0 6 t 6 b0)

satisfy the following formula (analogous to the Lagrange one):

∫ c2

c1

(dq(t)f(t), z(t))−

∫ c2

c1

(y(t), dq(t)g(t))=(iJy(c2), z(c2)) − (iJy(c1), z(c1))+

+

∫ c2

c1

(y(t), dp2(t)z(t)) −

∫ c2

c1

(dp1(t)y(t), z(t))−

−
∑

t∈Sp1∩Sp2∩[c1,c2)

(iJp1({t})y(t),p2({t})z(t))−

−
∑

t∈Sq∩Sp2∩[c1,c2)

(iJq({t})f(t),p2({t})z(t))−

−
∑

t∈Sp1∩Sq∩[c1,c2)

(iJp1({t})y(t),q({t})g(t)) −

−
∑

t∈Sq∩[c1,c2)

(iJq({t})f(t),q({t})g(t)) , t0 6 c1 6 c2 6 b0. (2)

Further suppose that p is a self-adjoint measure with the bounded variation. We
consider the equation

y(t) = x0 − iJ

∫ t

a
dp(s)y(s) − iJ

∫ t

a
f(s)dµ(s), (3)

where µ is the ”usual” Lebesque measure on [a, b] extended to [a, b0] by the equality
µ(∆)=0 for each Borel set ∆ ⊂ (b, b0]; x0 ∈ H; f ∈L2(H; a, b) and f=0 on (b, b0].

From the measure p we construct a continuous measure p0 in the following way.
We set p0({α}) = 0 for α∈Sp and we set p0(∆) = p(∆) for all Borel sets such that
∆ ∩ Sp = ∅. The measure p0 is self-adjoint. We replace p by p0 in (3). Then we
obtain the equation
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y(t) = x0 − iJ

∫ t

a
dp0(s)y(s) − iJ

∫ t

a
f(s)dµ(s). (4)

Equations (3), (4) have unique solutions (see [9],[10]).
By W denote the operator solution of the equation

W (t, λ)x0 = x0 − iJ

∫ t

a
dp0(s)W (s, λ)x0 − iJλ

∫ t

a
W (s, λ)x0dµ(s),

where x0 ∈ H, λ ∈ C (the set of complex numbers). Using (2), we get

W ∗(t, λ)JW (t, λ) = J

by the standard method (see [11]). The functions t→W (t, λ) and t→W−1(t, λ) =
JW ∗(t, λ)J are continuous with respect to the uniform operator topology. Conse-
quently there exist constants ε1 > 0, ε2 > 0 such that the inequality

ε1 ‖x‖
2

6 ‖W (t, λ)x‖2
6 ε2 ‖x‖

2 (5)

holds for all x ∈ H, t ∈ [a, b0], λ ∈ C ⊂ C (C is a compact set). The function
λ→W (t, λ)x is holomorphic for fixed t.

Lemma 2. [9, 10] A function y is a solution of the equation

y(t) = x0 − iJ

∫ t

a
dp0(s)y(s) − iJλ

∫ t

a
y(s)dµ(s) − iJ

∫ t

a
f(s)dµ(s)

if and only if y has the form

y(t) = W (t, λ)x0 −W (t, λ)iJ

∫ t

a
W ∗(s, λ)f(s)dµ(s),

where x0 ∈ H, λ ∈ C, a 6 t 6 b0.

3 Linear operators and relations generated by the integral equation

In this section, we introduce a minimal operator L0 generated by equation (3)
and give a description of the adjoint relation L∗

0.
Let B1, B2 be Banach spaces. A linear relation T is understood as any linear

manifold T ⊂ B1 × B2. The terminology on the linear relations can be found, for
example, in [1, 2, 12, 13]. Linear operators are treated as linear relations, this is
why the notation {x1, x2} ∈ T is used also for an operator T . Since all considered
relations are linear, we shall often omit the word ”linear”. In what follows we make
use of the following notations: {·, ·} is an ordered pair; D(T ) is the domain of T ;
R(T ) is the range of T ; kerT is a set of elements x ∈ B1 such that {x, 0} ∈ T ;
KerT is a set of ordered pairs of the form {x, 0} ∈ T ; T−1 is the relation inverse
for T , i.e., the relation formed by the pairs {x′, x}, where {x, x′} ∈ T . A relation
T is called surjective if R(T ) = B2. A relation T is called invertible or injective if
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kerT = {0} (i.e., the relation T−1 is an operator); it is called continuously invertible
if it is closed, invertible, and surjective (i.e., T−1 is a bounded everywhere defined
operator).

Suppose B1 = B2 = B and T is a closed relation, T ⊂ B × B. The following
notations are used: ρ(T ) is a resolvent set of T , i.e., a set of points λ ∈ C such
that the relation T − λE is continuously invertible; σp(T ) is a point spectrum of
T , i.e. a set of λ ∈ C such that ker(T − λE) 6= {0}; σc(T ) (σr(T )) is a continuous
spectrum (a residual spectrum) of T , i.e., a set of λ ∈ C such that the relation
T − λE is invertible, R(T − λE) 6= B, and R(T − λE) = B (T − λE is invertible,
R(T − λE) 6=B, respectively).

Let H be a Hilbert space, T ⊂ H × H a linear relation. A relation T ∗ is called
adjoint for T if T ∗ consists of all pairs {y, y′} such that equality (x′, y)=(x, y′) holds
for all pairs {x, x′} ∈ T . A relation T is called symmetric if T ⊂ T ∗ and self-adjoint
if T = T ∗.

By L2(H,µ; a, b0) denote the space of µ-measurable functions y with values in H

such that
∫ b0
a ‖y(t)‖2 dµ(t) <∞. This space coincides with the space H = L2(H; a, b)

since µ(∆) = 0 for each Borel set ∆ ⊂ (b, b0].
Let us introduce the minimal operator L0 in the following way. The domain

D(L0) consists of all functions y ∈ H for each of which there exists a function f ∈ H

such that (3) holds and y satisfies conditions

y(a) = y(b0) = y(α) = 0 (6)

for all α ∈ Sp. Then we set L0y = f . By Lemma 1, it follows that the operator L0

is symmetric.

Lemma 3. Equalities (3), (4) hold together for any functions y ∈ D(L0), f = L0y.

Proof. We denote p1 = p − p0. Then p1({α}) = p({α}) if α ∈ Sp and p1(∆) = 0
for any Borel set ∆ such that ∆ ∩ Sp=∅. By (3), it follows that

y(t) = x0 − iJ

∫ t

a
(dp0)y(s) − iJ

∫ t

a
(dp1)y(s) − iJ

∫ t

a
f(s)dµ(s).

Now equalities (6) imply the desired assertion.

It follows from Lemma 3 that any function y ∈ D(L0) is continuous. Moreover,
using Lemma 3, the equalities µ({a}) = µ([b, b0]) = 0, and (6), we obtain that the
operator L0 is independent of whether the measure p has single-point atoms at the
points a, b. Therefore, without loss of generality, it can be assumed that the b0 = b,
and p({a})=p({b})=0 (i.e., a, b /∈ Sp), and µ is the ”usual” Lebesque measure on
[a, b]. Further we write ds instead of dµ(s).

Lemma 4. [10] The operator L0 is closed. The function y belongs to D(L0 − λE)
if and only if the equalities

y(t)=W (t, λ)iJ

∫ t

a
W ∗(s, λ)f(s)ds,
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y(α)=W (α, λ)iJ

∫ α

a
W ∗(s, λ)f(s)ds = 0

hold, where α ∈ Sp ∪ {b}, f = (L0 − λE)y.

Corollary 1. The function f ∈ H belongs to the range R(L0 − λE) if and only if
the function f satisfies condition

∫ α

a
W ∗(s, λ)f(s)ds = 0 (7)

for all α ∈ Sp ∪ {b}.

Remark 1. Condition (7) is equivalent to the following

∫ β

α
W ∗(s, λ)f(s)ds = 0, α, β ∈ Sp ∪ {a, b}. (8)

Let Sp be a closure of the set Sp. Then a set Tp = (a, b) \ Sp is open and
Tp is a union of at most a countable number of disjoint open intervals Gk, i.e.,

Tp =
⋃

k

k=1Gk, Gk ∩ Gj = ∅ for k 6= j, where k is a natural number (equal to
the number of intervals if this number is finite) or the symbol ∞ (if the number of
intervals is infinite). Let G be the set of the intervals Gk.

Further, by χA denote the characteristic function of a set A.

Lemma 5. The operator L0 is densely defined if and only if µ(Sp) = 0.

Proof. Suppose z ∈ D(L0). By (6), it follows that z(α) = 0 if α ∈ Sp. Since z is
continuous, we have z(α) = 0 if α ∈ Sp. Assume that there exists a function f ∈ H

such that the equality (f, z)H = 0 holds for all z ∈ D(L0). By y denote a solution
of equation (4). Suppose that Gk = (αk, βk) ∈ G and z ∈ D(L0). By Lemma 4,
it follows that zk = χ[αk,βk]z ∈ D(L0). We apply Lagrange’s formula (2) to the
functions y, f and zk, L0zk for c1 = αk, c2 = βk, p1 = p2 = p0, q = µ. Then we
obtain (y, L0zk)H = (f, zk)H = 0. Hence,

(y, L0zk)H =

∫ βk

αk

(y(s), (L0zk)(s))ds = (f, zk)H = 0

for each function z ∈ D(L0). By (5), it follows that a set of functions t→W (t, 0)x
is closed in the space L2(H; [αk, βk]), where x ∈ H. Using Corollary 1 and equality
(8), we obtain that there exists ck ∈ H such that y(t) = W (t, 0)ck (αk 6 t 6 βk).
Lemma 2 implies that

W (t, 0)ck = W (t, 0)ck −W (t, 0)iJ

∫ t

αk

W ∗(s, 0)f(s)ds, αk 6 t 6 βk.

Taking into account the invertibility of the operator W (t, 0), we obtain f(t) = 0 for
almost all t ∈ Gk. Here k is arbitrary (1 6 k 6 k if k is finite and k ∈ N if k = ∞,
N is the set of natural numbers). Hence f(t) = 0 for almost all t ∈ ∪kGk.
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Suppose that µ(Sp) = 0. Then f(t) = 0 almost everywhere on [a, b]. Thus D(L0)
is dense in H.

Now assume that µ(Sp) > 0. It is established above that z(s) = 0 for any
z ∈ D(L0) if s ∈ Sp. Then (z, v)H = 0 for any z ∈ D(L0) if v ∈ H and v(t) = 0
for t ∈ [a, b] \ Sp. We take v such that v(t) 6= 0 for t ∈ Sp. Then obtain that the
operator L0 is not densely defined. The lemma is proved.

Lemma 6. Suppose y ∈ D(L0), L0y = f . Then f(t) = 0 for almost all t ∈ Sp.

Proof. The statement of the lemma is obvious if µ(Sp) = 0. Suppose µ(Sp) > 0.
By Jp denote a set of isolated points of the set Sp. Clearly, µ(Sp\Jp) > 0. Let
y ∈ D(L0). Then y(α) = 0 for all α ∈ Sp (see the proof of Lemma 5). Using
Lemma 4 and the invertibility of W (t, 0), we get

∫ α

a
W ∗(s, 0)f(s)ds = 0, α ∈ Sp. (9)

Let t0 ∈ Sp\Jp. Then there exists a sequence {tn} such that tn ∈ Sp, tn 6= t0 and
{tn} converges to t0. By (9), it follows that

(tn − t0)
−1

∫ tn

t0

W ∗(s, 0)f(s)ds = 0.

Using the invertibility of W ∗(t, 0), we obtain f(t0) = 0 for almost all t0 ∈ Sp\Jp.
The lemma is proved.

Let H0 ⊂ H be a subspace consisting of functions vanishing on [a, b] \ Sp and let
H1 ⊂ H be a subspace consisting of functions vanishing on Sp. Then H = H0 ⊕ H1.
We note that H0 = {0} if and only if µ(Sp) = 0. By L10 denote restriction of
L0 to H1. It follows from the proof of Lemma 5 that the operator L10 is densely
defined in H1. Lemma 6 implies that R(L10) ⊂ H1. Therefore, L∗

10 is an operator,
L∗

10 ⊂ H1 × H1. Moreover, D(L0) ∩ H0 = {0}.
By Lemmas 5, 6, it follows that if µ(Sp) > 0, then L∗

0 is a relation and

L∗
0 = (H0 × H0) ⊕ L∗

10, (10)

i.e., L∗
0 consists of all pairs {y, f} of the form

{y, f}={u, v} + {z, L∗
10z}={u+ z, v + L∗

10z},

where u, v ∈ H0, z ∈ D(L∗
10).

We denote wk(t, λ)=χ[αk ;βk)(t)W (t, λ)W−1(αk, λ), where (αk, βk)=Gk, Gk ∈G.
Let kerk(λ) be a linear space of functions t→wk(t, λ)ξk, ξk ∈H. By (5), it follows
that the space kerk(λ) is closed in H. The spaces kerk(λ) and kerj(λ) are orthogonal
for k 6= j. Denote Kn(λ) = ker1(λ) ⊕ ... ⊕ kern(λ), where n = 1, ...,k if k is finite
and n ∈ N if k = ∞. Clearly, Kn(λ)⊂Km(λ) for n < m. Let K be a closure of the
set ∪nKn(λ).
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Lemma 7. The equality ker(L∗
0 − λE) = H0 ⊕K holds.

Proof. It follows from Corollary 1 and (8) that the range R(L10 − λE) consists of
all functions f ∈ H orthogonal to functions of the form wk(·, λ)ξk, where ξk ∈ H.
The equality ker(L∗

10 − λE) ⊕R(L10 − λE) = H1 implies that ker(L∗
10 − λE) = K.

Now the desired statement follows from (10). The lemma is proved.

Let W̃n(t, λ) = (w1(t, λ), ..., wn(t, λ)) be the operator one-row matrix, where

n = 1, ...,k if k is finite and n ∈ N if k = ∞. For fixed t, λ, the operator W̃n(t, λ)
mapsHn onto H continuously, whereHn is the Cartesian product of n copies ofH; it
is convenient to treat elements from Hn as one-column matrices and to assume that
W̃n(t, λ)ξ̃n =

∑n
k=1wk(t, λ)ξk, where we denote ξ̃n = col(ξ1, ..., ξn) ∈ Hn, ξk ∈ H.

By Wn(λ) denote the operator ξ̃n→W̃n(·, λ)ξ̃n. The operator Wn(λ) maps Hn onto
Kn(λ) ⊂ H continuously and one-to-one.

Lemma 8. [11] There exist ε1, ε2 > 0 such that the inequalities

ε1

n∑

k=1

∆k ‖τk‖
2
6‖Wn(λ)τ̃n‖

2
H

6 ε2

n∑

k=1

∆k ‖τk‖
2, τ̃n =(τ1, ..., τn)∈Hn, (11)

ε1

n∑

k=1

∆−1
k ‖ϕk‖

2
6‖Wn(λ)τ̃n‖

2
H

6ε2

n∑

k=1

∆−1
k ‖ϕk‖

2

hold, where n 6 k if k is finite and n ∈ N if k = ∞,

∆k = βk − αk, ϕk =

∫ βk

αk

w∗
k(s, λ)wk(s, λ)τkds, (αk, βk) = Gk ∈ G.

Suppose k = ∞. In this case, let H−, H+, H0 be linear spaces of sequences,
respectively, τ̃ = {τk}, ϕ̃ = {ϕk}, ξ̃ = {ξk} such that the series

∑
∞

k=1 ∆k‖τk‖
2,∑

∞

k=1 ∆−1
k ‖ϕk‖

2,
∑

∞

k=1‖ξk‖
2 converge, where τk, ϕk, ξk ∈H. These spaces become

Hilbert spaces if we introduce scalar products by the formulas

(τ̃ , η̃)−=
k∑

k=1

(∆kτk, ηk), τ̃ , η̃∈H−, (ϕ̃, ψ̃)+ =
k∑

k=1

(∆−1
k ϕk, ψk), ϕ̃, ψ̃∈H+,

(ξ̃, ζ̃)0 = (ξ̃, ζ̃) =

k∑

k=1

(ξk, ζk), ξ̃, ζ̃ ∈ H0. (12)

By ‖·‖
−
, ‖·‖+, ‖·‖0 = ‖·‖ denote the norms in H−, H+, H0, respectively.

The spaces H+, H− can be treated as spaces with positive and negative norms
with respect to H0 (see [3, ch.1], [13, ch.2]). So H+ ⊂ H0 ⊂ H− and ε3 ‖ϕ̃‖− 6

‖ϕ̃‖0 6 ε4 ‖ϕ̃‖+, where ϕ̃ ∈ H+, ε3, ε4 > 0, i.e., the space H0 is equipped with
the spaces H+, H−. The ”scalar product” (ϕ̃, τ̃) = (ϕ̃, τ̃)0 is defined for ϕ̃ ∈ H+,
τ̃ ∈ H−. If τ̃ ∈ H0, then (ϕ̃, τ̃ )0 coincides with the scalar product in H0.

Suppose k is finite. To consider both cases together, we define the scalar products
in space Hk by formulas (12). By H−, H+, H0 = Hk denote spaces equipped with
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the scalar products (·, ·)−, (·, ·)+, (·, ·)0, respectively. We note that if k is finite, then
the norms ‖·‖

−
, ‖·‖+, ‖·‖0 are equivalent.

Suppose k = ∞. Let M ⊂ H− be a set of sequences vanishing starting from
a certain number (its own for each sequence). The set M is dense in the space
H−. The operator Wn(λ) is a restriction of Wn+1(λ) to Hn. By W ′(λ) denote
an operator defined on M such that W ′(λ)τ̃ = Wn(λ)τ̃n for all n ∈ N, where
τ̃ = (τ̃n, 0, ...). It follows from (11) that the operator W ′(λ) admits an extension by
continuity to the space H−. By W(λ) denote the extended operator. Moreover, we

denote W̃ (t, λ)τ̃ = (W(λ)τ̃ )(t), where τ̃ = {τk} ∈ H−. For almost all fixed t, the

operator W̃ (t, λ) maps H− into H.

Suppose k is finite. In this case, we put W(λ) = Wk(λ).

We find the form of the adjoint operator W∗(λ). This operator maps continu-
ously H onto H+ and W∗(λ) is zero on H0. Suppose f ∈ H, ξ̃ ∈ M, ξ̃ = {ξ̃n, 0, ...}.
Then

(ξ̃,W∗(λ)f)=(W(λ)ξ̃, f)H =

=

∫
⋃

k

k=1 Gk

(W̃ (t, λ)ξ̃, f(t))dt =

∫
⋃

k

k=1 Gk

(ξ̃, W̃ ∗(t, λ)f(t))dt,

where Gk∈G. Since W∗(λ)f ∈H+ and the set M is dense in H−, we get

W∗(λ)f =

∫
⋃

k

k=1 Gk

W̃ ∗(t, λ)f(t)dt =

∫ b

a
W̃ ∗(t, λ)f(t)dt. (13)

Thus we obtain the following statement.

Lemma 9. The operator W(λ) maps H− onto ker(L∗
10−λE) continuously and one-

to-one. A function z belongs to ker(L∗
10 − λE) if and only if there exists an element

τ̃ = {τn} ∈ H− such that z(t) = (W(λ)τ̃ )(t) = W̃ (t, λ)τ̃ . The adjoint operator
W∗(λ) maps H onto H+ continuously and acts by formula (13). Moreover, W∗(λ)
maps ker(L∗

10 − λE) onto H+ one-to-one and kerW∗(λ) = H0 ⊕R(L10 − λE).

Theorem 1. An ordered pair {y, f} ∈ H×H belongs to L∗
0 −λE if and only if there

exist functions u1, u2 ∈ H0, h ∈ H1, an element τ ∈ H− such that the equalities

y=u1 + v, f=u2 + h, v(t)=W̃ (t, λ)τ̃ −

k∑

k=1

wk(t, λ)iJ

∫ t

a
w∗

k(s, λ)h(s)ds (14)

hold. The series in (14) converges in H and h = (L∗
10 − λE)v.

Proof. The first two equalities in (14) follow from (10). The operator L10 is densely
defined in H1. Besides, wk(t, λ) = 0 for almost all t∈Sp. The equality (L∗

10−λE)v =
h and the third equality in (14) are proved in the same way as the analogous equality
in [11].
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By standard transformations, the third equality in (14) is reduced to the form

v(t) = W̃ (t, λ)ξ̃ − 2−1W̃ (t, λ)iJ̃

∫ t

a
W̃ ∗(s, λ)h(s)ds+

+ 2−1W̃ (t, λ)iJ̃

∫ b

t
W̃ ∗(s, λ)h(s)ds, (15)

where ξ̃ = {ξk} ∈ H−, ξk = τk − 2−1iJ

∫ βk

αk

w∗
k(s, λ)h(s)ds, J̃ is an operator in H−

acting by the formula J̃{ξk}={Jξk}.

4 Self-adjoint extensions of the minimal operator

In this section, we construct a boundary triplet for which ”the Green formula”
is valid and describe self-adjoint extensions of L0.

We denote H− = H0 ×H−, H+ = H0 ×H+. It follows from Theorem 1 and (15)
that any pair {y, f} ∈ L∗

0 has the form

y = u1 + v, f = u2 + h, h = L∗
10v, (16)

where v has form (15) for λ = 0. With each pair {y, f} ∈ L∗
0 represented by (16),

(15) for λ = 0, we associate a pair of boundary values {Y, Y ′} ∈ H− × H+, where

Y ={u1, ξ̃}∈H−= H0×H−, Y ′={u2,W
∗(0)h}∈H+ = H0×H+. (17)

By γ denote the operator taking each pair {y, f} ∈ L∗
0 to the pair {Y, Y ′}, i.e.,

γ{y, f} = {Y, Y ′}. We put γ1{y, f} = P1γ{y, f}, γ2{y, f} = P2γ{y, f}. (Here and
next, Pj indicates the natural projection onto a set Cj in the Cartesian product
C = C1 × C2, j = 1, 2).

Theorem 2. The range R(γ) of the operator γ coincides with H− × H+ and ”the
Green formula”

(f, z)H − (y, g)H = (Y ′, Z) − (Y,Z ′) (18)

holds, where {y, f}, {z, g} ∈ L∗
0, γ{y, f} = {Y, Y ′}, γ{z, g} = {Z,Z ′}.

Proof. The equality R(γ) = H−×H+ follows from Lemma 9 and equality (10). Let
us prove (18). Suppose that the pair {y, f} has form (16) and the pair {z, g} has
the form z = x1 + r, g = x2 + q, q = L∗

10r, where x1, x2 ∈ H0, the function r = r(t)

is obtained if we replace v(t) by r(t), ξ̃ by ζ̃, h(s) by q(s) in (15) for λ = 0. Then

(f, z)H − (y, g)H = (u2, x1)H0 − (u1, x2)H0 + (L∗
10v, r)H1 − (v, L∗

10r)H1. (19)

The operator L10 is densely defined in H1. The following equality

(L∗
10v, r)H1 − (v, L∗

10r)H1 = (W∗(0)h, ζ̃) − (ξ̃,W∗(0)q) (20)

is proved in the same way as the analogous equality in [11]. Now equality (18)
follows from (19), (20), (17). The Theorem is proved.
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We introduce operators Υ− :H− →H0, Υ+ :H+ →H0 by the formulas Υ−τ̃ =

{∆
1/2
k τk}, Υ+ϕ̃= {∆

−1/2
k ϕk}, where τ̃ = {τk} ∈H−, ϕ̃= {ϕk} ∈H+. The operator

Υ− (Υ+) maps H− onto H0 (H+ onto H0, respectively) continuously and one-to-
one. Suppose that {y, f} ∈ L∗

0 has the form (16) and equalities (17) hold. We put

Y =Υ1{y, f}= {u1,Υ−ξ̃}∈H0×H0; Y
′ =Υ2{y, f}= {u2,Υ+W

∗(0)h}∈H0×H0 and
Υ{y, f}= {Υ1{y, f},Υ2{y, f}}. Then R(Υ) = (H0 × H0) × (H0 ×H0). Using (18),
we get

(f, z)H − (y, g)H = (Y ′,Z) − (Y,Z ′), (21)

where {y, f}, {z, g} ∈ L∗
0, Υ{y, f} = {Y,Y ′}, Υ{z, g} = {Z,Z ′}.

It follows from (21) that the ordered triple (H0 × H0,Υ1,Υ2) is a space of
boundary values (a boundary triplet in another terminology) for the operator L0

in the sense of papers [4, 5, 15] (see also [13, Ch. 3]). Let θ be a linear relation,
θ ⊂ (H0 ×H0) × (H0 ×H0). By Lθ denote a linear relation such that Lθ ⊂ L∗

0 and
ΥLθ = θ. By (21), it follows that the linear relations Lθ and θ are self-adjoint or
not together. From here, taking into account the description of self-adjoint relations
(see [16]), we obtain the following statement.

Corollary 2. If U is a unitary operator on H0 × H0, then the restriction of the
relation L∗

0 to the set of pairs {y, f} ∈ L∗
0 satisfying the condition

(U −E)Υ2{y, f} + i(U + E)Υ1{y, f} = 0 (22)

is a self-adjoint extension of L0. Conversely, for any self-adjoint extension L̂ of L0

(L̂ ⊂ L∗
0) there exists a unitary operator U such that this extension is the restriction

of L∗
0 to the set of pairs {y, f} ∈ L∗

0 satisfying (22). A unitary operator U is uniquely
determined by an extension.

Note that dissipative and accumulative extensions of the operator L0 are de-
scribed in a similar way.

5 States of restrictions of L
∗
0

In this section, we consider restrictions of the relation L∗
0 and study their proper-

ties connected with the invertibility. It is convenient to use a special space boundary
values (SBV) from [8] (also see references therein).

Let B1, B2, B1, B2 be Banach spaces, T ⊂ B1 × B2 be a closed linear relation,
δ :T →B1 × B2 be a linear operator, δj =Pjδ, j=1, 2. A quadruple (B1, B2, δ1, δ2)
is called SBV for the relation T if δ maps T onto B1 × B2 continuously and the
restriction of δ1 to KerT is a one-to-one mapping of KerT onto B1. We define
an operator Φδ : B1→ B2 and a relation T0 by the equalities Φδ = δ2(δ1 |KerT )−1,
T0 = ker δ. We note that operator Φδ is bounded. We shall say that the relation
T0 is the minimal relation generated SBV. It follows from the definition of SBV
that there exists a one-to-one correspondence between relations T̂ with the property
T0 ⊂ T̂ ⊂ T and relations θ ⊂ B1 × B2 and this correspondence is determined by
the equality δT̂ = θ. In this case we denote T̂ = Tθ.
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Let S be a linear relation S ⊂ B′
1 × B′

2, where B′
1, B

′
2 are Banach spaces. The

following conditions are borrowed from [1, 2]: 1) S is closed; 2) kerS = {0}; 3)
dimkerS < ∞; 4) the relation S is well-defined (i.e., S is invertible and the range
R(S) is closed); 5) R(S) = R(S); 6) R(S) is a closed subspace in B′

2 of the finite
codimension; 7) R(S) = B′

2; 8) S is continuously invertible. Following [1, 2], we
shall say that the relation S is in the state k if it satisfies condition k).

Theorem 3. [8, 9] Let R(T ) =B2. The relation Tθ is in state k (1 6 k6 8) if and
only if the same is true for the relation θ − Φδ.

We put B1 = H, B2 = H, T = L∗
0, B1 = H− = H0 × H−, B2 = H+ = H0 × H+.

Suppose that equalities (16) hold for a pair {y, f} ∈ L∗
0, but the function v has form

(14) for λ = 0. Define the boundary values {Ỹ , Ỹ ′} = δ̃{y, f} by the formulas

Ỹ = δ̃1{y, f}={u1, τ̃}∈H−, Ỹ ′= δ̃2{y, f}= {u2,W
∗(0)h}∈H+. (23)

Note that Ỹ = {u1, v(a)}, Ỹ
′ = {u2, iJW

−1(b, 0)(v(b) − v(a))} if Sp = ∅. It follows

from Lemma 9 that the quadruple (H−,H+, δ̃1, δ̃2) is SBV for L∗
0, Φ

δ̃
= 0, and

ker δ̃ = L0. Let θ be a linear relation, θ ⊂ H− × H+. By Lθ denote a restriction
of L∗

0 to a set of pairs {y, f} ∈ L∗
0 such that δ̃{y, f} ∈ θ. Theorem 3 implies the

following statement.

Corollary 3. The relation Lθ is in state k (16k68) if and only if the same is true
for the relation θ.

A pair {y, f} ∈ L∗
0 if and only if the pair {y, f − λy} ∈ L∗

0 − λE. To each

pair {y, f − λy} ∈ L∗
0 − λE assign a pair of bounded values by formula δ̃(λ){y, f −

λy}= δ̃{y, f}. Then the quadruple (H−,H+,δ̃1(λ),δ̃2(λ)) is SBV for L∗
0 − λE and

Φ
δ̃(λ)

=

(
λE 0
0 λW∗(0)W(λ)

)
. Theorem 3 implies

Corollary 4. Suppose that the relation θ is closed. A point λ ∈ C belongs to the
point spectrum σp(Lθ) of the relation Lθ if and only if ker(θ − Φ

δ̃(λ)
) 6= {0}. A

point λ belongs to the continuous spectrum σc(Lθ) (to the residual spectrum σr(Lθ) )
if and only if the relation (θ − Φ

δ̃(λ)
)−1 is a densely defined and unbounded (non-

densely defined) operator. A point λ belongs to the resolvent set ρ(Lθ) if and only if
(θ − Φ

δ̃(λ)
)−1 is a bounded everywhere defined operator.

We note that properties 1) – 8) were considered in [9] for linear relations gene-
rated in space L2(H, dm; a, b) (m is a nonnegative operator measure) by an integral
equation in which the measure p is not assumed to be self-adjoint. However, in [9]
the relation Lθ satisfies the condition L0 ⊂ Lθ ⊂ L, where L is a closure of a set
pairs {y, f} ∈ L2(H, dm; a, b) satisfying the integral equation. Then L ⊂ L∗

0 if the
measure p is self-adjoint, but L 6= L∗

0, in general.
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6 Holomorphic restrictions of L
∗
0

In this section, we describe holomorphic restrictions of the relation L∗
0.

Let B be a Banach space. A family of linear manifolds in B is understood as
a function λ → L(λ), where L(λ) is a linear manifold, L(λ) ⊂ B, λ ∈ D ⊂ C. A
family of (closed) subspaces L(λ) is called holomorphic at the point λ0 ∈ C if there
exist a Banach space B0 and a family of bounded linear operators F(λ) : B0 →B

such that the operator F(λ) bijectively maps B0 onto L(λ) for any fixed λ and
the function λ → F(λ) is holomorphic in some neighborhood of λ0. A family of
subspaces is called holomorphic on the domain D if it is holomorphic at all points
belonging to D. Since the closed relation T (λ) is the subspace in B1 × B2, the
definition of holomorphic families is applied to families of linear relations. This
definition generalizes the corresponding definition of holomorphic families of closed
operators [14, Ch. 7].

Lemma 10. [6, 7] Let λ→L(λ) be a family of subspaces in a Banach space B such
that the subspace L(λ0) admits a direct complement in B at some point λ0, i.e.,
there exists subspace (closed) N ⊂ B such that the decomposition into the direct sum
B = L(λ0)+̇N holds. The family λ → L(λ) is holomorphic at λ0 if and only if the
space B is decomposed into the direct sum B = L(λ)+̇N for all λ belonging to some
neighborhood of λ0 and the function λ→P(λ) is holomorphic at λ0, where P(λ) is
the projection of the space B onto L(λ) in parallel to N.

Lemma 11. Suppose B1, B2 are Banach spaces, λ→ L(λ) is a family of closed
linear relations L(λ) ⊂ B1 × B2. If this family is holomorphic at the point λ0 and
L(λ0) is an everywhere defined operator, then there exists a neighborhood of λ0 such
that L(λ) are everywhere defined operators for all λ belonging to this neighborhood.

Proof. Any pair {x1, x2} ∈ B = B1 × B2 is uniquely represented in the form
{x1, x2} = {x1,L(λ0)x1} + {0, x2 − L(λ0)x1}. Hence the decomposition into
the direct sum B = L(λ0)+̇({0} × B2) holds. Using Lemma 10, we obtain
B = L(λ)+̇({0} × B2) for all λ belonging to some neighborhood of λ0. Let P(λ)
be the projection of the space B onto L(λ) in parallel {0} × B2. It follows from
Lemma 10 that the function λ → P1P(λ) is holomorphic at λ0, where P1 is the
natural projection onto B1 in B1 × B2. The operator P1 maps L(λ0) onto B1 con-
tinuously and one-to-one. Hence there exists a neighborhood of λ0 such that the
operator P1 maps L(λ) onto B1 continuously and one-to-one for all λ belonging to
this neighborhood of λ0. Therefore L(λ) are everywhere defined operators for λ from
this neighborhood. The lemma is proved.

Note that under the conditions of Lemma 11 the operator function λ→ L(λ)
is holomorphic at λ0 (see [14, ch.7]). In the case where B1, B2 are Hilbert spaces,
Lemma 11 is proved in [6].

Lemma 12. Suppose G, D are Banach spaces, δ :D→G is a linear, continuous,
and surjective operator such that ker δ admits a direct complement in D, i.e., D =
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ker δ∔ N0, where subspace N0 ⊂ D. Let λ→θ(λ), λ→L(λ) be families of subspaces
θ(λ) ⊂ G, L(λ) ⊂ D such that ker δ ⊂ L(λ) and δL(λ) = θ(λ). Assume that the
subspace L(λ0) admits a direct complement

D = L(λ0) ∔ M1 (24)

for some point λ0∈C or the subspace θ(λ0) admits a direct complement

G = θ(λ0) ∔ M2, (25)

where M1 ⊂ D, M2 ⊂ G. Then the family λ→L(λ) is holomorphic at the point λ0

if and only if the family λ→θ(λ) is holomorphic at λ0.

Proof. By δ0 denote the restriction of δ to N0. The operator δ0 maps N0 onto G

continuously and one-to-one. Suppose equality (24) holds. Then for any y ∈ D there
exist unique elements z0 ∈ L(λ0), m1 ∈ M1 such that y = z0 + m1. This implies
δy = δz0 + δm1. If δz0 + δm1 = 0, then z0 + m1 ∈ ker δ. Therefore, m1 = 0 and
δz0 = 0. So, equality (25) holds, where M2 = δM1.

Now suppose equality (25) is valid. We claim that (24) holds. Indeed, D =
δ−1
0 θ(λ0) ∔ ker δ ∔ δ−1

0 M2 = L(λ0) ∔ M1, where M1 = δ−1
0 M2.

Let λ→L(λ) be the holomorphic family at λ0. It follows from Lemma 10 that
D = L(λ)+̇M1 for all λ belonging to some neighborhood of λ0 and the function
λ→P(λ) is holomorphic at λ0, where P(λ) is the projection of the space D onto
L(λ) in parallel to M1. Then Q(λ) = δP(λ)δ−1

0 is the projection of the space G

onto θ(λ) in parallel to M2 = δM1 and the function λ→Q(λ) is holomorphic at λ0.
By Lemma 10, it follows that λ→θ(λ) is the holomorphic family at λ0.

Conversely, suppose λ→ θ(λ) is the holomorphic family at λ0 and Q(λ) is the
projection of the space G onto θ(λ) in parallel to M2. We put P(λ)g = g if g ∈ ker δ
and put P(λ)h = δ−1

0 Q(λ)δh if h ∈ N0. We extend P(λ) to D letting P(λ)(g+h) =
P(λ)g+P(λ)h. Then P(λ) is the projection of the space D onto L(λ) in parallel to
M1 = δ−1

0 M2. Arguing as above, we obtain that the family λ→L(λ) is holomorphic
at λ0. The Lemma is proved.

In Lemma 12, we take G = H−× H+; D = L∗
0; λ→ θ(λ) is family of linear

relations θ(λ) ⊂ H− × H+; δ = δ̃ is a linear operator taking each pair {y, f} ∈ L∗
0

to a pair of boundary values {Ỹ , Ỹ ′} ∈ H− × H+; L(λ) = Lθ(λ) is the restriction of

L∗
0 to a set of pairs {y, f} such that δ̃{y, f} ∈ θ(λ). Then ker δ̃ = L0 and G, D are

Hilbert spaces. Lemma 12 implies the following assertion.

Corollary 5. The family of relations Lθ(λ) is holomorphic at a point λ0 if and only
if the family of relations θ(λ) is holomorphic at λ0.

The following statement follows directly from Lemma 11, Corollaries 4, 5.

Theorem 4. Suppose that the relation θ(λ0)−Φ
δ̃(λ0)

(or the relation Lθ(λ0) −λ0E)

is continuously invertible and the family λ → θ(λ) (or the family Lθ(λ)) is holo-
morphic at the point λ0. Then there exists a neighborhood of λ0 such that the rela-
tions θ(λ)− Φ

δ̃(λ)
, Lθ(λ) − λE are continuously invertible for all λ belonging to this
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neighborhood and the operator functions λ→ (θ(λ)− Φ
δ̃(λ)

)−1, λ→ (Lθ(λ) − λE)−1

are holomorphic at λ0.
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