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Results of the works of V. A. Andrunakievich are very diverse, but they are
mainly related to the structural theory of associative algebras (or rings) and the
theory of radicals as one of the instruments of structural theory. Most of the main
results are published in such journals as “Izvestiya AN SSSR” and “Reports of
the Academy of Sciences of the USSR”, “Uspekhi Matematicheskikh Nauk” and
”Matematicheskii Sbornik”, “Izvestiya AN MSSR” and are well known to special-
ists working in the indicated fields of modern algebra and close to them. Moreover,
already in the first papers of V. A. Andrunakievich, the close interconnection be-
tween the theory of radicals and the structural theory is revealed, and the theory
of special radicals developed by him allowed us to generalize almost all known (by
the appropriate time) structural theorems and to prove a number of new theorems,
which reflect specific features of rings or algebras being examined.

In fact, even a fluent review or analysis of the works of V. A. Andrunakievich
shows that the results obtained by him reveal different possibilities of the devel-

∗ In memory of Yurii Ryabukhin (08.02.1939 – 07.03.2019). ”We publish one of
the latest articles by algebraist Yurii Ryabukhin, full member of the Academy of Sciences of
Moldova and one of the most brilliant disciples of academician Vladimir Andrunachievici (in
transcription from Russian: Andrunakievich). This survey was published, in Russian, in the
book ”Academicianul Vladimir Andrunachievichi: Bibliografie”, Institutul de Matematică şi
Informatică, Chişinău, 2009.
At the 4th Conference of Mathematical Society of the Republic of Moldova, held in 2017
and dedicated to the centenary of V. Andrunachievici, Yurii Ryabukhin devoted a plenar
lecture (based on the mentioned article) to the major contribution of academician Vladimir
Andunachievici to the foundation of the Institute of Mathematics and Computer Science
(IMCS) and to the creation of Schools of Contemporary Mathematics of Moldova.
In 2018 this overview, translated in English, was posted on the IMCS website. We consider
that this text should be brought back into the circuit of valuable mathematical works. We
publish it as a homage to the algebraist Yurii Ryabukhin, which we failed to do during his
last year of life, when he managed to celebrate his 80th birthday. We are grateful to Victor
Shcherbacov and Elena Cojuhari, who translated in English this survey.
Yurii Ryabukhin has been a member of the Editorial Board of BASM since its inception. His
passing away is an irretrievable loss of mathematical community in the Republic of Moldova
and in the whole space of the former USSR. Yu. Ryabukhin was buried in Tiraspol.”
Editorial Board
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opment of the structural theory of algebras, starting with the foundations of this
theory and continuing with the study of the varieties of close algebraic systems.

Moreover, the ideas even of the first works of V. A. Andrunakievich continue to
work even now, and many of the results obtained by him are reflected in monographs,
including the most recent ones.

All this allows us to assert that V. A. Andrunakievich was one of the world’s
leading experts in the structural theory and theory of radicals. At the same time,
many working statements and theorems proved by V. A. Andrunakievich, have al-
ready become classical and understandable to all those interested in construction or
description of algebras, which we try to “prove” or explain. We will consider asso-
ciative algebras over some field F . Such algebras as the algebra F [t] of polynomials
and algebras of series, algebras of linear transformations of spaces (over the field F ),
algebra [F ]n of matrices we consider as the well-known ones. In fact, algebras are
very diverse and we can, for example, take into account more specialized algebras of
triangular or Block-triangular matrices, and in addition to fields, allow skew-fields to
be included (for example, the skew-field of quaternions) in which nonzero elements
form a group of invertible elements, but multiplication is not commutative.

1. Structural theory and theory of radicals of algebras

In describing a finite-dimensional algebra A, one can apply its embeddings or
homomorphisms into the algebras [Φ]n of matrices. In addition to ideals (as kernels
of homomorphisms), one-sided ideals also arise: right ideals as sums of principal
right ideals of the form aA = {ax | x ∈ A} and left ideals.

Due to the finite dimensionality, in the algebra A, the classical radical rad(A)
is constructed as the largest of ideals N that are nilpotent algebras, that is, such
that x1x2 . . . xn = 0 for all xi ∈ N and some natural number n ≥ 2. Passing to the
quotient algebra A = A/rad(A) we get that radA = 0, and, on the other hand, if
R = rad(A), then, of course, rad(R) = R.

In classical structural theory of finite-dimensional algebras (Wedderburn, Molin,
A. I. Mal’tsev and many others), the semisimple algebras Q for which rad(Q) = 0
are completely described, and simple algebras with unity element (in which the
only non-zero ideal is the whole algebra) turned out to be the leading special case.
Namely, simple algebras have the form of algebras [T ]n of matrices over skew-fields T
(and if the ground field Φ is algebraically closed as is the field of complex numbers,
then T = Φ). After this it turns out that for rad(Q) = 0 6= Q, Q =

⊕m
1 Qi is

a finite direct sum of simple algebras Qi = [Ti]ni
. This finishes a description

of all classical semisimple algebras (up to the description of algebras that are
skew-fields).

The finite-dimensional radical algebras R = rad(R) receive only “some descrip-
tion” - in such algebras all elements of r ∈ R are nilpotent, i. e., rn = 0, and
therefore nilalgebras are obtained. But from the finite dimensionality it follows that
all these nilalgebras are nilpotent, and therefore coincide with their radical. Ap-
plying matrix representations, we obtain corresponding descriptions in the form of
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algebras of block-triangular matrices “with zeros on the main diagonal ”. All this is
visually portrayed







[T1]n1 0 0
0 [T2]n2 0

0 0
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0 0 ∗
· · · 0 0





Q =

m
⊕

1

Qi, rad(Q) = 0 R = rad(R), Rm = 0

in the form of written matrix representations, where the diagonal blocks of the
semisimple algebra Q are its minimal ideals, which are always simple algebras. In
this case, with some refinement of the specifics of the ground field, the splitting of any
algebra A is obtained - it turns out that A = S + R, where R = rad(A), the algebra
S is a semisimple subalgebra, S ≈ A/R (and this is refined in the corresponding
classical structural theorems of Wedderburn-Molin-Mal’tsev).

In the course of development of the structural theory, algebraists began to apply
weaker restrictions instead of the finite-dimensionality condition. In particular, after
Artin and Emma Noether algebraists began to consider the minimality condition

for left ideals, when strictly decreasing chains of left ideals break off at a finite step
(and similarly for right ideals).

It turned out that classical nilpotent radical always exists, and the above matrix
representations are obtained, that is, semisimple algebras are again described as
finite direct sums of matrix algebras over skew fields (i.e., simple algebras), and for
radical algebras, as the nilpotent ones, we again obtain representations in the form
of algebras of triangular matrices (and so on), but the skew-fields are not necessarily
finite-dimensional. At the same time, the corresponding minimal left (or right) ideals
began to be actively applied.

We have already noted that the most important case of left ideals is the prin-

cipal left ideals - they have the form Aa = {xa | x ∈ A}. On the other hand, the
algebras of matrices arise as algebras of linear transformations of the corresponding
spaces P , but if the space P is infinite-dimensional, then we have to specify the type
of the emerging matrices, since their size can turn out to be infinite. All this was
taken into account in the series of papers [5-12, 16, 18] of V. A. Andrunakievich, and
it turned out that to prove the structural theorems ”almost the same as the classical
ones”, the conditions of minimality for the principal left ideals are sufficient.

Theorem. Let the algebra A satisfy the chain termination condition

Aa1 ⊃ Aa2 ⊃ . . .

of principal left ideals (that is, the minimality condition only for such “very special”
left ideals). Then the following statements hold:

a. If there are nonzero nilpotent ideals in the algebra A, then its non-zero clas-

sical radical rad(A) (or nilradical) also arises , and it is nilpotent, and therefore
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the algebra R = rad(A) has a corresponding “triangular representation” with a fi-
nite number of blocks and nonzero diagonal blocks. Moreover, if A 6= rad(A), then
rad(A/rad(A)) = 0 and the corresponding non-zero algebra A = A/rad(A) has no
nilpotent ideals except the zero ideal 0.

b. If A is a simple algebra (i.e., xy 6= 0 for some elements x, y ∈ A and
the only ideal in A is the algebra A), then A is the algebra of matrices of linear
transformations of finite rank of the corresponding space over some skew-field T ,
naturally related to algebra A (and all this is refined), but the size of the matrices is
not necessarily finite (as for the algebra of linear transformations of finite rank, but
for an infinite-dimensional space P =Φ P ). If the algebra A has a unity element,
then A ≈ [T ]n for the corresponding skew-field T and some natural number n ≥ 1.

c. If the algebra A is semisimple (that is, it does not have nilpotent ideals), but
not simple, then A =

⊕

i Qi is the direct sum of simple algebras (described in b) and
these algebras Qi run through all minimal ideals of the algebra A, but the number
of these minimal ideals Qi can be infinitely large (i.e., in the corresponding matrix
representation it can turn out to be ”infinitely many” diagonal blocks - compare with
the scheme outlined above). However, if the algebra A has a unity element then
A =

⊕m
1 Qi for some natural number m ≥ 2 and in this situation all Qi = [Ti]ni

for
some ni ≥ 1 and Ti.

When proving these and even more general structural theorems (see [6-12, 15,
16, 18]) V. A. Andrunakievich used, of course, many of the results of other authors,
which is proved by the analysis that he had carried out beginning in [5] and continued
in the following papers. This is what allowed him to generalize the well-known
structural theorems. In particular, the role of idempotents - elements e = e2 6= 0
(see [18]) has been revealed, since the minimal left ideal L of a semisimple algebra
Q always has the form L = Ae for some idempotent e ∈ L, and eAe turns out to be
skew-field, which the ”classics” already noticed as well.

One of the obvious corollaries of this theorem is obtained for the case when in
the algebra A there are no nilpotent elements, i.e., when a2 6= 0 also follows
from a 6= 0. In this situation, of course, the radical is equal to 0, and under the
condition of minimality for the principal left ideals, it turns out that A is a direct
sum of not necessarily finite number of skew-fields.

The best-known particular case is Dedekind’s classical theorem on finite-
dimensional commutative algebras, which turn out to be ”finite” direct sums of
fields (extensions of the fundamental one).

In fact, V. A. Andrunakievich has proved many other structural theorems, since
algebraists by this time ( the 50s of last century) had already begun to study also
the algebras, in which ”the classical radical no longer exists”, since the nilalgebras
(where all the elements are nilpotent) are not necessarily nilpotent.

In connection with this situation, various generalizations of the classical radical
arose, and sometimes ”radicals opposite to the classical”. Therefore, there was a
need for a ”general theory of radicals”, which was created in the works of A.G.
Kurosh, the scientific supervisor of the first investigations of V. A. Andrunakievich.
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Thanks to the research of V. A. Andrunakievich, the theory of hereditary rad-

icals was developed, among which special radicals were allocated by him - these
radicals are most often used when proving structural theorems. More about this
(and the history of the development of the structural theory of rings and algebras)
is given in monographs [44, 62, 65] and in [4-17, 22] by V. A. Andrunakievich, but we
note some details and basic ideas that led to special radicals of associative algebras.

Instead of simple algebras, V. A. Andrunakievich proposed to consider the prime

algebras A in which the inequality 0 6= xAy is always true for nonzero x, y ∈ A. In
such algebras for nonzero ideals J(J ⊳A) always J2 6= 0, since for nonzero ideals
B,C we always have BC = {∑ bicj | bi ∈ B, cj ∈ C} 6= 0. Namely from prime
algebras special classes of M algebras are constructed such that from A ∈ M
and J ⊳ A it follows always J ∈ M , and for the prime algebra C that contains the
algebra A ∈ M , A 6= 0 as an ideal, we always obtain C ∈ M . After this (according
to the construction indicated by A.G. Kurosh and Amitsur, who also constructed
a general theory of radicals), the upper radical SM defined by the class M is
constructed. For the special class M this means that in each algebra A its ideal
SM (A) =

⋂

{J ⊳A | A/J ∈ M} is constructed as the intersection of all the indicated
M -ideals of algebra A. In this case, of course, the indicated algebras A/J are prime,
since all algebras from M are prime.

As a result, there arises the special (according to V.A. Andrunakievich) radical

SM , defined by the given special class M . In this case, always SM (A/SM (A)) = 0
and always SM(SM (A)) = SM (A) for all radicals in the sense of A.G. Kurosh,
but in addition it turns out that when r = SM for the ideal J ⊳ A it is always
r(J) = J

⋂

r(A). At the same time (according to A.G. Kurosh) for the radical
r = SM we construct the class ℜ(r) of all r-radical algebras R = r(R) and the
class ℑ(r) of all r-semi-simple algebras Q for which r(Q) = 0. These classes always
determine each other, since for any algebra A the equality

⋂

{J ⊳ A | Sr(A/J) = 0} = r(A) =
∑

{R ⊳ A | R = r(R)}

is true. In particular, for a special radical in the SM -semi-simple algebra Q, the only
nilpotent ideal is 0, since in the prime algebra for ideals we always have Jm = 0 ⇒
J = 0 for m ≥ 2. Ideals of the algebra Q also turn out to be semisimple algebras,
and the ideals of radical algebras are radical, by specifics of SM .

Remark 1. A non-zero prime algebra Q can have many different non-zero ideals.
The most famous example is the algebra Φ[t] = A of polynomials and all of its
nonzero ideals, always having the form gA = {gf | f ∈ A} (they all are integral
domains, i.e., algebras without divisors of zero - if x 6= 0 6= y, then xy 6= 0). However,
the prime finite-dimensional algebra Q 6= 0 is a simple algebra with unity and has
the form Q = [T ]n for some skew-field T and some natural number n ≥ 2 if Q is
not a skew-field. And in the algebra T , which is a skew-field, there are no nonzero
one-sided ideals (right or left), since Tq = T = qT for 0 6= q ∈ T .

Remark 2. Among the special radicals there is the smallest one - this is the lower

nilradical b = SΠ, constructed from the class Π of all prime algebras. In this case
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semisimple algebras are exactly algebras without nonzero nilpotent ideals. The

upper nilradical k is a special one too, for which all nilalgebras are radical, i.e.,
algebras consisting only of nilpotent elements. At the same time various nilradicals

arise, i.e., such radicals s in the sense of A.G. Kurosh, that b(A) ⊆ s(A) ⊆ k(A) for
all algebras A. In this case many nilradicals are special, i.e., the corresponding class
Π

⋂

ℑ(s) of prime s -semi-simple algebras turns out to be a special class of algebras.
In particular, the locally nilpotent radical l is a special one too, for which all
locally nilpotent algebras are radical (that is, algebras in which all finitely generated
subalgebras are nilpotent).

It follows from the above that special radicals are very diverse, and according
to the natural order it turns out that b ≤ l ≤ k. At the same time, according
to Remarks 1 and 2, for finite-dimensional algebras A we obtain the classical rad-
ical rad(A) = b(A) = k(A); i.e., in this case all nilradicals coincide. Moreover,
there are other special radicals that coincide in the finite-dimensional case with the
classical (nilpotent) radical, many of which are indicated or determined by V. A. An-
drunakievich. For example, if a special class M consists of only algebras with unity
element, then M ⊆ Π1 for the class of all simple algebras with unity element and
all classes M ⊆ Π1 are always special. Of course, the radical SM for M ⊆ Π1

coincides in finite-dimensional algebras with the classical radical (according to Re-
mark 1), and many of the special radicals have the same property - this was noticed
by V. A. Andrunakievich in [14, 17, 22] and continued in the works of many other
authors, including the first monograph [62] on the theory of radicals. On the other
hand, an algebra Q is subdirectly irreducible if it has a smallest nonzero ideal
C, called the heart.1 The subdirectly irreducible algebras with idempotent heart C
form a special radical SΠ0 ≤ SΠ1 , since the heart C is a simple algebra (but not nec-
essarily having the unity element, see the theorem). It is easy to see that all locally
nilpotent algebras SΠ0 are radical and therefore it turns out that L ≤ SΠ0 ≤ SΠ1 .
It is more complicated to see that the following is true:

Proposition. If R is an SΠ0 radical algebra satisfying the maximality condition for
ideals (that is, strictly increasing chains of ideals break off at a finite step), then the
algebra R is nilpotent, i.e., Rm = 0 for some natural number m ≥ 2.

In particular, under this condition for break, locally nilpotent algebras are nilpo-
tent, and therefore the special radicals SΠ0 , l, SΠ1 coincide in finite-dimensional
algebras with the classical (nilpotent) radical.

This is one of the well-known “working statements” of V. A. Andrunakievich,
and if we consider (following V. A. Andrunakievich) annihilators, similar results
are obtained under weaker restrictions. That is why the radical SΠ0 is called the
radical of Andrunakievich (see the monographs [63, 65]), and various special rad-
icals lead to various structural theorems under “comparatively weak restrictions”.
More details can be found in the works of V. A. Andrunakievich [8-19] and in mono-
graphs [44, 65], where there are many results, theorems and “working statements”

1It was translated as ”core” in the English version of [17,22] in American Mathematical Society
Translations: Series 2, 1966, v.52, pp.95-149.
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of V. A. Andrunakievich. It is very surprising, but many of these “working state-
ments” can be very simply proved and are very often used (even in the works of many
other authors, and sometimes, after some refinement, in arbitrary not necessarily
associative algebras). The most famous is

Lemma. (Lemma of V. A. Andrunakievich (see the monograph [65], published in
2004).) Let J ⊳ B ⊳ A, i.e., J is an ideal of the algebra B, and B is an ideal of the
algebra A. Then:

a. If JA is the ideal of the algebra A generated by J , then J3
A ⊆ J .

b. If the quotient algebra B/J is a semi-prime one (i.e. without nonzero nilpotent
ideals), then J is an ideal of the algebra A.

Indeed, JA = J + AJ + JA + AJA and therefore J3
A ⊆ BJB ⊆ J , that is, a is

true. But then b is also true because of the specifics of algebras without nilpotent
ideals.

This is used to prove the equality b(B) = B
⋂

b(A) for the lower nilradical B
(see Remark 2) and for all special or supernilpotent radicals. In the case under
consideration (associative algebras over a field) it turns out that the hereditary
radical r is either supernilpotent i.e., all nilpotent algebras are r-radical, i.e. r ≥ b,
or sub-idempotent, i.e., all r-radical algebras R = R2 and this is equivalent to
the fact that all nilpotent algebras turn out to be r-semisimple. Moreover, all
special radicals are supernilpotent and the sub-idempotent radicals are opposite to
supernilpotent ones. At the same time, “there is a duality for hereditary radicals”,
introduced into consideration by V. A. Andrunakievich (but more on this later), and
the corresponding sub-idempotent radicals are also “very often” used together with
special radicals to prove structural theorems.

Theorem. Consider only the hereditary radicals r, i.e., such that r(B) = B
⋂

r(A),
when B is an ideal of the algebra A. Then:

a. Among the radicals s such that for a given radical r the equalities r(A)
⋂

s(A) =
0 hold for all algebras A, there always exists a largest radical r′. Moreover, the
radical s = r′ is dual, that is, s = s′′ = (s′)′. The class ℜ(r′) of all r′-radical
algebras coincides with the class of all strongly r-semi-simple algebras, i.e. the al-
gebras Q such that r(Q) = 0 for all homomorphic images of Q of the correspond-
ing algebra Q = r′(Q). The equality written above can be rewritten in the form
r(s(A)) = s(r(A)) = 0 by symmetry.

b. The largest sub-idempotent radical is the hereditarily idempotent radical f ,
i.e., algebras R = f(R) are algebras such that F = F 2 for all ideals F of the
algebra R. Therefore, for a supernilpotent radical s, the dual radical s′ is always
sub-idempotent, i. e., equality s′ ≤ b′ − f = f ′′ holds (according to a), since s ≥ b
for the lower nilradical b = SΠ. For sub-idempotent radicals r the dual radical r′′ is
always supernilpotent and is special - the equality r′ = SΠ(r) holds for the special
class Π(r) of all subdirectly irreducible algebras with an idempotent core C = r(C).
In other words, r′ = SΠ(r) ≥ SΠ0 = a = a′′ ≥ b′′ ≥ b (but a 6= b), i.e., the radical a
is the smallest dual supernilpotent (and special) radical, since a = f ′.
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All of the above is proved in the papers of V. A. Andrunakievich [17, 19, 20, 21,
22] and his doctoral dissertation, and then applied to prove a number of structural
theorems related to the corresponding sub-idempotent radicals, which is reflected
in the monograph [44]. The results obtained were applied or generalized by many
authors, as is shown in the monographs [62-65], where the lattices of radicals were
studied and many of the results of V. A. Andrunakievich (and sometimes of his
pupils too) are given with many details. Moreover, it turned out that the ideas of
V. A. Andrunakievich and his “working statements” also work in “not necessarily
associative algebras”.

2. Additive theory of ideals

One of the most famous results is the Fundamental Theorem of Arithmetic - the
natural number is always represented in a unique way in the form n = pk1

1 . . . pkr

r of
products of powers of prime (pairwise distinct) numbers. Translating this theorem
into the language of ideals mZ = {mz | z ∈ Z} of the ring Z of integers, we find
that there exist unique representations nZ = pk1

1 Z
⋂

. . .
⋂

pkr

r Z of the corresponding
ideals in the form of intersection of primary ideals - the ideals of the form pkZ (for
prime numbers p). Moreover, for the ideal nZ its radical or root

√
nZ = {z ∈ Z |

zm ∈ nZ for m ≥ 1} is constructed, and for the primary ideal pkZ its radical is the
unique maximal ideal containing pkZ, and this is the ideal pZ for the corresponding
prime number p. It can be seen that it always follows from xy ∈ pZ that x ∈ pZ
or y ∈ pZ, and if xy ∈ pkZ and y /∈ pkZ, x 6= 0, then xs ∈ pkZ for some s ≥ 1
- this characterizes the primary ideals and their radicals. It is not less clear that√

nZ =
⋂r

1 piZ.
It turned out that similar results are obtained for commutative rings (or algebras)

with the maximality condition for ideals (the best known example, apart from the
ring Z, is the algebra of polynomials of a finite number of variables, according to
Hilbert’s theorem). In this ring A for an ideal B the radical

√
B consisting of a ∈ A

such that am ∈ B for some m ≥ 1 is always constructed. If we take into account
products of ideals, then, thanks to the maximality condition, it turns out that always
(
√

B)m ⊆ B for some sufficiently large number m ≥ 1. After this, there arise prime

ideals P , i.e., such that B ⊆ P or C ⊆ P follows from BC ⊆ P (these are analogues
of the prime ideals pZ), and then primary ideals of Q, for which

√
Q is a prime ideal

(and this is an analogue of the primary ideals pkZ). According to Emmy Noether
the following theorems are true:

Theorem. (Existence theorem.) For an ideal B, there always exists a repre-
sentation in the form of an intersection

⋂r
1 Qi of a finite number of primary ideals

Qi.

Theorem. (Intersection theorem.) The intersection of primary ideals with the
same radical P is a primary ideal Q with the same radical P =

√
Q.

Theorem. (Uniqueness theorem.) For an ideal B, there exists an irreducible
representation B =

⋂r
1 Qi in the form of intersection of primary ideals, i.e., such that
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all
⋂

i6=j Qi 6= B. The irreducible representation is unique; therefore, the set of prime

ideals Pi =
√

Qi is also unique, for which the unique and irreducible representation√
B =

⋂

i Pi for radicals is also obtained.

These theorems are fundamental for Noetherian primarity, and in fact, many
other beautiful “work” statements about primary and simple ideals are also ob-
tained. After that, a situation appeared that resembled something that happened in
the structural theory: the search for “generalizations” of classical Noetherian pri-
marity to the noncommutative case began, but under the condition of maximality
for the ideals (or one-sided ideals) of the rings under consideration. However, the
necessary generalizations were not obtained for a relatively long time (about fifty
years), then “tertiarity” arose (in the works of the French algebraists Léonce Lesieur
and Robert Croisot) as one of the possible generalizations, and numerous “almost
generalizations” arose either not coincident in commutative rings with Noetherian
primarity or such that one of the “defining” theorems mentioned above was violated.
V. A. Andrunakievich has joined the search for possible generalizations, and then
his disciples (I.M. Goyan was one of the first) too. After clarifying the statement
of problems, V. A. Andrunakievich explained the emerging “difficulties” (with the
active help of pupils) - a bit unexpectedly it turned out that the following is true.

Theorem. When considering the generalizations of classical primarity to the non-
commutative case, there is only one generalisation – primarity, for which the exis-
tence theorem, the intersection theorem and the uniqueness theorem hold. In this
case, the ideals Q arise as primary ideals (in corresponding already non-commutative
rings), that are irreducible with respect to intersection (i.e., such that B ⊇ Q or
C ⊇ Q follows from B ∩ C ⊇ Q).

This was proved in a series of works by V. A. Andrunakievich [31-35] and “every-
thing explained”. Moreover, in the definition of irreducible ideals, only the specifi-
city of the lattice of ideals is just taken into account (and if the lattice satisfies the
maximality or minimality condition, then this already allows us to prove the “Exis-
tence theorem”). Therefore, in the “final” paper [35] (published in “Izvestia of the
Academy of Sciences of the USSR”), an analogous theorem was proved exactly for
lattices. In this case the right or left quotients (of ideals or elements of the emerging
multiplicative lattices) were the main tool, according to Andrunakievich’s formula-
tion of the way of solving the problem. We note that the corresponding “quotient”
or conditions for the termination of chains of quotients have already been applied
by V. A. Andrunakievich in the proof of structural theorems (see, for example, [15,
18, 26, 27], and in more detail - a monograph [45]).

At the same time, it turned out that an appropriate “primary theory” can be
constructed for many algebraic systems (for subgroups of groups, subsemigroups of
semigroups, submodules of modules, etc.). On the other hand, restrictions can be
weakened; for example, only the ideals of an algebra with the maximality condition
for ideals can be considered, and the requirements of “defining theorems”can be
weakened. As a result, various generalizations of the “diprimarity” type are obtained
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only for two-sided ideals (and in the commutative case the classical Noetherian
primarity is obtained), and sometimes (for stronger restrictions), generalizations of
classical Artin-Rees theorems are obtained. In this area, I. M. Goyan - the pupil of
V. A. Andrunakievich (there are also others) worked most actively and works. He
considered generalizations that do not necessarily coincide in the commutative case
with classical primarity.

3. Modules, one-sided ideals and radicals

It has already been noted that in describing the structure of algebras repre-

sentations are often used, i.e., homomorphisms of algebras into the algebras £(M)
of linear transformations of spaces, that is, ρ : A → £(M). If the space is finite-
dimensional, then matrix representations are obtained, since ρ(A) turns out to be
a subalgebra of the algebra [Φ]n of matrices isomorphic to the algebra £(M) (see
the theorems in the first section). Therefore, one can speak simply about “matrix
representations”, and in the general case, but in this case we obtain matrices that
have not necessarily a finite size. Some possibilities and refinements of such repre-
sentations were considered in the papers of V. A. Andrunakievich [6, 9, 11] and the
works of many other authors.

If the representation ρ : A → £(M) is given, then the space M turns into the
module Ma (right), according to the rule xa = xρ(a) ∈ M . This means that the
element xa ∈ M is defined for all x ∈ M , a ∈ A, and the resulting multiplication is
connected in the module by the laws x(ab) = (xa)b, x(a + b) = xa + xb, (x + y)a =
xa + ya as for spaces, but with replacing of multiplication by elements of a field Φ
by multiplication by elements of algebra A. On the other hand, according to the
indicated laws, if the module MA is given, then according to the rule xρ(a) = xa ∈ M
the corresponding representation ρ : A → £(M) is obtained. In other words, the
definition of a module is equivalent to specifying a representation, and we can assume
that the algebra A has the unit e 6= 0 (since it is always possible to ”attach” one) -
in this case it turns out that ρ(e) = εM , i.e., xe = x for all x ∈ M . By symmetry,
with the help of multiplication x → ax the left modules AM are determined and the
corresponding representations, too.

From the above it turns out that for the algebra A kernels Kerρ = {a ∈ A |
xa = 0 for x ∈ MA} = (0 : M)A runs through all ideals of the algebra A. The
corresponding factor-algebra A/(0 : MA) = A already is isomorphically embedded
in the algebra £(M) - the rule xa = xa transforms the module MA to the module
MA with annihilator (0 : M)A = 0, i. e., exact representation of the algebra A is
constructed. Considering submodules in the module MA one can see that for the
cyclic submodule xA = {xa | a ∈ A}, the annihilator (0 : x)A = {a ∈ A | xa = 0}
is a right ideal of the algebra A, and xA ≈ A/(0 : x)A (when algebra A has a unity).
By “symmetry”we obtain a relationship between the left ideals of the algebra A and
the annihilators of the left A-modules. In addition, one can take into account that
the algebra A naturally converts to the modules AA and AA, and the submodules of
the module AA are right ideals of the algebra A, and the submodules of the module
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AA are left ideals in A (and so on).

Due to these relationships that algebras are often described with the help of
appropriate modules (or representations). In particular, one can take into account
simple or irreducible modules MA for which M is the only submodule except
the zero one, with xa 6= 0 for some x ∈ M , a ∈ A, and therefore MA = xA for
each x 6= 0. At the same time, it turns out that for an irreducible module its
algebra E = End(MA) of endomorphisms is a skew-field (that is, it coincides with
the group of automorphisms) according to the classical Schur’s lemma. After that
we get a description of the primitive algebras, i.e., the algebras Q which have exact
irreducible representation or exact simple module MQ (this is the Jacobson “density
theorem” that gives a description of the algebra Q as a “very special” subalgebra in
the algebra of linear transformations of the space MQ =E M over the corresponding
skew-field E).

As a result, there arises one of the most special radicals – the Jacobson radical

j, naturally associated with irreducible modules. In this, V. A. Andrunakievich
noticed that the class π of primitive algebras is special, and therefore the radical
j = Sπ is special too. At the same time, we obtain a well-known description of the
radical j(A) as the intersection of the kernels of all irreducible representations of the
algebra A or of the annihilators (0 : M)A of irreducible modules. In fact, it turned
out that the class of irreducible modules is one of the special classes of modules
(analogues of special classes of algebras), which was shown by V. A. Andrunakievich
by introducing prime modules – such modules MA that xa 6= 0 for some x ∈ M ,
a ∈ A and (0 : M)A = (0 : N)A for any nonzero submodule NA of the module MA.
In this, special classes of modules consist of prime modules (compare with special
classes of algebras).

Theorem. Prime algebras are precisely algebras that have an exact prime module.
Therefore, for the lower nilradical of b and any algebra A, the radical b(A) coincides
with the intersection of annihilators of the prime modules MA. A similar construc-
tion is obtained for all special radicals by means of the corresponding special class
of modules (among which there is the class of irreducible modules, as it was already
noted). Moreover, analogous representations are obtained for all hereditary radicals
(and then for all radicals), using appropriate classes of modules.

The arising representations of radicals were obtained in a series of works by
V. A. Andrunakievich (together with his pupil and co-author) [24, 28, 29, 30]. At the
same time, it turned out that radicals of algebras are represented as the intersection
of very special one-sided ideals – it suffices to note that (0 : M)A =

⋂{(0 : x)A |
0 6= x ∈ M} for right modules, which is indicated by the corresponding right ideals
(0 : x)A. In particular, for the radical j = Sπ, the representation j(A) is obtained
as the intersection of the right ideals (0 : x)A for elements of irreducible A modules.
If the algebra A has a unity, then the right ideals (0 : x)A (from the indicated
representation) are all maximal right ideals of the algebra A. Due to this, we obtain
structural theorems on primitive algebras, including simple algebras with unity.
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Representations of radicals with the help of respective classes of modules are con-
sidered in great detail in the monograph [65], where many other results of V. A. An-
drunakievich (and his pupils) are mentioned. On the other hand, in the last series
of papers of V. A. Andrunakievich [56-60], radicality and primitivity “modulo” a
right ideal P have been considered – for P = 0, from the proved general theorems
of V. A. Andrunakievich the well-known structural theorems on primitive algebras
and simple algebras with unity are obtained.

4. Radical algebras and adjoint multiplication

In the proof of structural theorems, as a rule, only semisimple algebras having
zero radicals are sufficiently well described (under appropriate restrictions). It is
well illustrated for special radicals and described in great detail in the monograph
[44] based on the papers of V. A. Andrunakievich. However, even in the first papers,
V. A. Andrunakievich also proved a number of theorems about radical algebras in
the sense of radical j, that is, algebras R = j(R). Moreover, thanks to the research
carried out by V. A. Andrunakievich in his Ph.D. thesis, a certain “parallelism”
arose between such radical algebras and skew-fields – algebras Q for which Q \ 0 is
a multiplicative group of invertible elements. At the same time, there arose various
radical algebras, and in the course of subsequent studies, the “manifolds of radical
algebras” also arose.

By the beginning of these studies (1946-1947), the embeddings of algebras with-
out zero divisors into skew-fields were already actively used (similarly to the em-
beddings of the algebras Φ[t] of polynomials into the fields Φ(t) of fractions of the
form fg−1, where f , g ∈ Φ[t], and g 6= 0) as were embeddings of semigroups into
groups. On the other hand, the “circle operation”, or adjoint multiplication,
given by the rule x ◦ y = x + y − xy had also been used. It is almost obvious that
for any algebra A we obtain an “adjoint” monoid A(◦), where zero plays the role of
the unity according to the equalities x ◦ 0 = x = 0 ◦ x. Moreover, we have already
“noticed” that R = j(R) if and only if R(◦) is a group. It is this operation that
V. A. Andrunakievich used to prove theorems on embeddings of algebras into rad-
ical algebras, which led to the construction of various and very interesting radical
algebras.

According to V. A. Andrunakievich, the element c ∈ A is radical if c ◦ c∗ = 0 =
c∗◦c for an element c∗ ∈ A (which is the quasi-inverse to the element c). The element
c ∈ A is semi-radical if for all a, b ∈ A the equalities a◦ c = b◦ c, a = b, c◦a = c◦ b
are equivalent. An algebra A is semi-radical if all its elements are semi-radical, and
according to the already noted, algebra R is radical, i.e., R = j(R), if and only if
all elements of R are radical. In particular, it turns out that all radical algebras
are semi-radical, and there arises the problem of embedding of semi-radical algebras
into the radical ones (analogous to the problem of embedding into the skew-fields).

Theorem. There exist semiradical algebras that are not subalgebras of radical alge-
bras (a relevant example is analogous to the classical example, due to A.I. Malcev, of
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an algebra without zero divisors that is not embeddable into a skew-field). However,
if a semiradical algebra satisfies the condition

(∗) d, g ∈ R ⇒ ∃x, y ∈ R | d ◦ x = g ◦ y,

then the algebra R is a subalgebra of an algebra R̂ = R ◦ R∗ consisting of adjoint
fractions of the form a ◦ b∗ with the equality rule a ◦ d∗ = c ◦ g∗ ⇔ d ◦ x = c ◦ y (see
(∗)). In this, operations with adjoint fractions are performed according to the rules:

b1 ◦ z = a2 ◦ t ⇒ (a1 ◦ b∗1) ◦ (a2 ◦ b∗2) = (a1 ◦ z) ◦ (b2 ◦ t)∗,

c = d ◦ x = g ◦ y ⇒ a ◦ d∗ + b ◦ g∗ = (a ◦ x − c + b ◦ y) ◦ c∗,

∀α ∈ Φ | α(a ◦ b∗) = (α(a − b) + b) ◦ b∗ ∈ R ◦ R∗,

then it should be always taken into account that xy = x+y−x◦y. In this situation,
the algebra R̂ = R ◦R∗ is radical, since the equalities (a ◦ b∗)∗ = b ◦ a∗ are always
true. The embedding is performed according to the rule r = r ◦ 0∗ = (r ◦ t) ◦ t∗.
Moreover, for any radical algebra Q each homomorphism ϕ : R → Q of algebras
always and uniquely extends to the homomorphism ϕ̂ : R̂ → ⋃

of radical algebras
now. Therefore, the radical algebra R̂ is uniquely defined to within an isomorphism
which fixes R.

In the course of the proof of this theorem, V. A. Andrunakievich noted that
algebras can be considered as “new” algebraic systems in which, instead of multipli-
cation, the adjoint multiplication is considered, due to which the adjoint monoid A(◦)
is obtained. In this, the distributivity laws are rewritten in the “more complicated”
form x◦(y−t+z) = x◦y−x◦t+x◦z and similarly (y−t+z)◦x = y◦x−t◦x+z◦x.
This is what led to the above construction R ⊆ R̂ = R ◦R∗ for embedding algebras
into radical algebras under the indicated restrictions.

As a simple corollary, it turns out that the commutative algebra K without
zero divisors and without unity is always isomorphically embedded into the radical
algebra K̂ = K◦K∗, since for K the conditions of (∗) and semiradicality are satisfied.
The constructed algebra K̂ is a subalgebra of the arising field Qcl(K) of fractions of
the algebra K. This leads to a variety of radical algebras that are algebras without
zero divisors. On the other hand, if N is a nilalgebra, i.e., for a ∈ N we have
an+1 = 0 for some natural number n = n(a), then the equalities a ◦ a∗ = 0 = a∗ ◦ a
are also obtained when −a∗ = a+a2 + . . .+an. Therefore, all the nilpotent elements
are radical and all nilalgebras are radical algebras. After this, it can be noticed that
in the finite-dimensional algebras the radical j = Sπ coincides with the classical
nilpotent radical, since all finite-dimensional radical algebras are nilalgebras. Using
the construction from the theorem, more facts can be proved.

Proposition. For the algebra K = tA = 〈t〉 of polynomials with zero free term, the
radical algebra J = 〈t〉∗ = K̂ = K ◦ K∗ is constructed (according to the theorem).
In this:
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a. An algebra R is radical if and only if for each r ∈ R there exists a homomor-
phism ϕr : J → R for which ϕr(t) = r, which takes into account the specificity of
algebras K = 〈t〉 and J = 〈t〉∗ (already radical).

b. For algebra J in the field Qcl(K) of fractions the following equality is true:
J = {a(e − b)−1 | a, b ∈ K}, because c ◦ b∗ = (c − b)(e − b)−1 for all c, b ∈ K and
unity e 6∈ K = tA. Therefore, only the powers Jn+1 = tnJ of the algebra J that
form a strictly decreasing chain are nonzero ideals of J .

c. Radical algebra R is a nilalgebra if and only if the algebra J is not isomor-
phically embedded into R. In particular, if the radical algebra R is a subalgebra of
a finitely generated algebra, and the main field Φ is uncountable (as the field of real
numbers is), then R is a nilalgebra, since the dimension is dimJ ≥| Φ |.

The statements a, b are in fact proved in the first papers of V. A. An-
drunakievich [1-4] and are a simple consequence of the above theorem. It is not
less obvious that the algebra J is infinite dimensional, and applying a, b, we
see that if the algebra J is not embedded isomorphically into the radical alge-
bra R (for example, when the algebra R is a finite dimensional one), then for
r ∈ R and the related homomorphism ϕr the following inclusion is always true:
Jn ⊆ Kerϕr, and therefore, rn = 0, i.e. R is a nilalgebra. Moreover, applying
the well-known basis of the field Qcl(K) = Φ(t), we obtain the linearly independent
set {t(e − αt)−l | α ∈ Φ} ⊆ J , and therefore always dimJ ≥| Φ |. It remains
to note that all finitely-generated (and countably generated) algebras have at most
countable dimension.

This result was ”rediscovered” by other authors 10 years after the work of
V. A. Andrunakievich. After 25 years, attention was paid to the fact that radical
algebras form a “variety 2 of algebras” – with the additional operation x → x∗ of tak-
ing a quasi-inverse. On the other hand, in the joint papers of V. A. Andrunakievich,
the construction of the arising theory of the variety of radical algebras was contin-
ued, which led to the construction of very interesting radical algebras that are “free
in some variety”. In fact, we did not notice much else (for example, the theory of
algebras without nilpotent elements), but it is already clear that the ideas of even
the first works of V. A. Andrunakievich “continue to work”.

5. Conclusions and comments

Many of the results of V. A. Andrunakievich have already been included in
monographs, beginning with the monograph [62] of Divinsky (published in Canada)
and concluding with the last monograph [65] on the theory of radicals. The most
well-known are the results of research that are included in the doctoral thesis of
V. A. Andrunakievich (defended in 1958 at Moscow State University). According
to these researches [5] and the works [5-22], it turned out that it is just special and
subidempotent radicals that lead to a variety of structural theorems. Since that
time (early 60s of the last century) V. A. Andrunakievich has already become a

2Varieties formerly were called manifolds in some of the literature.
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leading world specialist in structural theory and the theory of radicals of algebras
or rings (associative ones). Moreover, it turned out that the ideas and working
statements of V. A. Andrunakievich are very useful in similar domains of algebra.
This is reflected, for example, in monographs [63, 65] and in a number of papers of
algebraists from Novosibirsk, where a number of structural theorems on alternative
and Jordan algebras were proved with the help of the “Andrunakievich lemma”, the
“Andrunakievich radical” and “Andrunakievich varieties, similar to the associative
ones”.

In fact, after the investigations of V. A. Andrunakievich and his pupils, the theory
of special radicals and torsions has been developed by many authors for such alge-
braic systems as semigroups with zero, nearrings, or even multi-operator algebras.
For semigroups with zero, this was done by the V. A. Andrunakievich pupil R.S.
Grigor (Florya), and continued by a number of Hungarian and German algebraists.
For more general systems, the representations of radicals with representations in
papers [28, 29, 30] were very useful, which is also reflected in the monographs [64,
65].

By this time (early 70s of the last century), due to V. A. Andrunakievich’s typ-
ical care of people a sufficiently large number of pupils were ensured by ideas and
work, and many of the results obtained are reflected in the monograph [44], where
the theory of hereditary radicals has been developed “in almost all good enough
categories”. Thanks to the general theory, it has been shown that exactly special
radicals are most naturally connected with M ideals and structural theory (see the
first section). This interconnection is a bit weaker for supernilpotent or “weakly
special” radicals. This was the continuation of the works of V. A. Andrunakievich
[20-23] and allowed constructing theory of special radicals in semigroups with zero
(where, of course, it is necessary to take into account the distinctive properties of
semigroups too). After the “duality theorems” of V. A. Andrunakievich (see the
first section and the works [19-23, 25, 39-44]), the study of “lattices of radicals” con-
tinued (by many authors). In addition, in algebras with sufficiently weak “finiteness
conditions”, the supernilpotent radicals coincide with the special ones, according to
V. A. Andrunakievich. However, in the general case “there are a lot” of supernilpo-
tent but not special radicals, which is reflected in the monographs [44, 64, 65] and
was the solution to the problem set in the monograph [62] in connection with the
works of V. A. Andrunakievich.

The ideas of the first researches of V. A. Andrunakievich about radical algebras
(from his Ph.D. dissertation defended in 1947), which are the beginning of the
structural theory of radical algebras, continue to work. The interest in this direction
increased significantly when it was found that “radical algebras form a variety” (and
the free radical algebra was constructed by the English algebraist P. Cohn in view
of the first works of V. A. Andrunakievich and his works on embeddings algebras
into skew fields). In this way, very interesting “radical algebras that are free in
some variety” also appeared together with the concrete variety of radical algebras
considered in the joint papers of V. A. Andrunakievich [51-55], which is reflected in
[61] as well.
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Naturally, the joint works on “radicality relative to right ideals”, where gen-
eralizations of classical structural theorems are also obtained, are associated with
the above-mentioned as well, as it is noted in the works [41-44, 47, 48, 56-59]. On
the other hand, the study of some other special radicals has also been continued
– in this way a structural theory of algebras without nilpotent elements has been
constructed, where the variety of strictly regular algebras also appeared [36-39, 41,
46-52]. Studies of radical algebras and manifolds are still far from complete and can
be continued. A number of problems related to the structural theory of radicals of
rings or algebras has been solved in the course of the investigations already carried
out. However, problems still exist that are related to the locally nilpotent radical
that arose in the investigations of V. A. Andrunakievich (see [15, 25]) and reflected
in the monographs [63, 65]. Let’s hope that these problems will be solved by his
pupils or pupils of his pupils.
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