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Polynomial differential systems with explicit expression

for limit cycles

Mouna Yahiaoui, Rachid Boukoucha

Abstract. In this paper we give an explicit expression of invariant algebraic curves
of multi-parameter planar polynomial differential systems of degree nine, then we
prove that these systems are integrable and we introduce an explicit expression of
a first integral. Moreover, we determine sufficient conditions for these systems to
possess two limit cycles: one of them is algebraic and the other one is shown to be
non-algebraic, explicitly given. Concrete examples exhibiting the applicability of our
result are introduced.
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1 Introduction

An important problem of the qualitative theory of differential equations [6, 12]
is to determine the limit cycles of a system of the form



















x′ =
dx

dt
= P (x, y),

y′ =
dy

dt
= Q(x, y),

(1)

where P (x, y) and Q(x, y) are real polynomials in the variables x and y. Here,
the degree of system (1) is denoted by n = max {deg P,deg Q}. In the literature
equivalent mathematical objects to refer to these planar differential systems appear
as a vector field

χ = P (x, y)
∂

∂x
+ Q (x, y)

∂

∂y
.

A limit cycle of system (1) is an isolated periodic solution in the set of all its
periodic solutions of system (1), and it is said to be algebraic if it is contained in the
zero level set of a polynomial function [1, 10]. In 1900 Hilbert [9] in the second part of
his 16th problem proposed to find an estimation of the uniform upper bound for the
number of limit cycles of all polynomial vector fields of a given degree, and also to
study their distribution or configuration in the plane R

2, even more difficult problem
is to give an explicit expression of them [2, 4]. This was one of the main problems in
the qualitative theory of planar differential equations in the 20th century. In [3, 8]

c© Mouna Yahiaoui, Rachid Boukoucha, 2019

65



66 MOUNA YAHIAOUI, RACHID BOUKOUCHA

examples of explicit limit cycles which are not algebraic are given. To distinguish
when a limit cycle is algebraic or not, usually, it is not easy. Thus, the well known
limit cycle of the van der Pol differential system exhibited in 1926, was not proved
until 1995 by Odani [11] that it was not algebraic. The van der Pol system can
be written as a polynomial system (1) of degree 3, but its limit cycle is not known
explicitly.

2 Some useful notions

Let us recall some useful notions.

System (1) is integrable on an open set Ω of R
2 if there exists a non-constant C1

function H : Ω → R, called a first integral of the system on Ω, which is constant on
the trajectories of the system (1) contained in Ω, i.e. if

dH (x, y)

dt
=

∂H (x, y)

∂x
P (x, y) +

∂H (x, y)

∂y
Q (x, y) ≡ 0 in the points of Ω.

Moreover, H = h is the general solution of this equation, where h is an arbitrary
constant.

Since for such vector fields the notion of integrability is based on the existence of
a first integral [5, 7], the following question arises: Given the polynomial differential
system (1), how to recognize if this polynomial differential system has a first Integral?
and how to compute it when it exists?

A curve U (x, y) = 0, where U (x, y) is a polynomial with real coefficients, is
an invariant algebraic curve of system (1) if and only if there exists a polynomial
K = K (x, y) of degree at most n − 1 satisfying

∂U (x, y)

∂x
P (x, y) +

∂U (x, y)

∂y
Q (x, y) = K (x, y)U (x, y) . (2)

The polynomial K (x, y) is called the cofactor of U (x, y) = 0, if the cofactor
is identically zero, then U (x, y) is a polynomial first integral for system (1). The
corresponding cofactor of U (x, y) is always polynomial whether U (x, y) is algebraic
or non-algebraic. If U is real, the curve U (x, y) = 0 is an invariant under the flow
of differential system (1) and the set

{

(x, y) ∈ R
2, U (x, y) = 0

}

is formed by orbits
of system (1). There are strong relationships between the integrability of system (1)
and its number of invariant algebraic solutions.

In this paper we give an explicit expression of invariant algebraic curves, then
we prove that these systems are integrable and we introduce an explicit expression
of a first integral of multi-parameter planar polynomial differential system of degree
nine of the form
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

















x′ =
dx

dt
= x + P5(x, y) + xR8(x, y),

y′ =
dy

dt
= y + Q5(x, y) + yR8(x, y),

(3)

where

P5(x, y) = − (a + 2) x5+(4 + 4b) x4y−(2a + 4) x3y2+(8 + 4b) x2y3−(a + 2) xy4+4y5,

Q5(x, y) = −4x5−(a + 2) x4y+(4b − 8) x3y2−(2a + 4) x2y3+(4b − 4) xy4−(a + 2) y5

and R8(x, y) = (a + 1) x8 − 4bx7y + (4a + 4) x6y2 − 12bx5y3 + (6a + 6) x4y4

−12bx3y5 + (4a + 4) x2y6 − 4bxy7 + (a + 1) y8,

in which a, b are real constants.

Moreover, we determine sufficient conditions for a polynomial differential system
to possess two limit cycles: one of them is algebraic and the other one is shown to
be non-algebraic, explicitly given. Concrete examples exhibiting the applicability of
our result are introduced.

3 Main result

Our main result is contained in the following theorem.

Theorem 1. Consider a multi-parameter planar polynomial differential system (3),
then the following statements hold.

1) The origin of coordinates O (0, 0) is the unique critical point at finite distance.

2) The curve U (x, y) = x4 + y4 + 2x2y2 − 1, is an invariant algebraic curve of
system (3)with cofactor

K (x, y) = (−4)
(

x2 + y2
)2
(

(−a − 1)
(

x2 + y2
)2

+ 4bxy
(

x2 + y2
)

+ 1
)

.

3) The system (3) has the first integral

H (x, y) =

=

(

x2 + y2
)2

+
(

1 −
(

x2 + y2
)2
)

exp
(

a arctan y
x

+ b cos
(

2 arctan y
x

))

f(arctan y
x
)

(

(x2 + y2)2 − 1
)

exp
(

a arctan y
x

+ b cos
(

2 arctan y
x

))

,

where f(arctan y
x
) =

∫ arctan y

x

0 exp(−as − b cos 2s)ds.

4) The system (3) has an explicit limit cycle, given in Cartesian coordinates by
(Γ1): x4 + y4 + 2x2y2 − 1 = 0.
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5) If a > 0 and b ∈ R−{0}, then system (3) has non-algebraic limit cycle (Γ2),
explicitly given in polar coordinates (r, θ) by the equation

r (θ, r∗) =









exp (aθ + b cos 2θ)

(

e2πa

1 − e2πa
f(2π) + f(θ)

)

−1 + exp (aθ + b cos 2θ)

(

e2πa

1 − e2πa
f(2π) + f(θ)

)









1
4

,

where f(θ) =
∫ θ

0 exp(−as − b cos 2s)ds .

Moreover, the non-algebraic limit cycle (Γ2) lies inside the algebraic limit cycle
(Γ1).

Proof. Proof of statement (1).

By definition, A (x0, y0) ∈ R
2 is a critical point of system (3) if







x0 + P5 (x0, y0) + x0R8 (x0, y0) = 0,

y0 + Q5 (x0, y0) + y0R8 (x0, y0) = 0,

we have y0P5 (x0, y0) − x0Q5 (x0, y0) = 4x6
0 + 4y6

0 + 12x2
0y

4
0 + 12x4

0y
2
0 = 0, then

x0 = 0, y0 = 0 is the unique of this equation. Thus the origin is the unique critical
point at finite distance.

This completes the proof of statement (1) of Theorem 1.

Proof of statement (2).

A computation shows that U (x, y) = x4 + y4 + 2x2y2 − 1 satisfies the linear
partial differential equation (2), the associated cofactor being

K(x, y) = (−4)
(

x2 + y2
)2
(

(−a − 1)
(

x2 + y2
)2

+ 4bxy
(

x2 + y2
)

+ 1
)

,

then the curve U (x, y) = 0 is an invariant algebraic curve of system (3) with cofactor
K(x, y).

This completes the proof of statement (2) of Theorem 1.

Proof of statements (3), (4) and (5) of Theorem 1.

In order to prove our results (3), (4) and (5) we write the polynomial differential
system (3) in polar coordinates (r, θ), defined by x = r cos θ and y = r sin θ, then
the system becomes



















r′ =
dr

dt
= r + (−2 − a + 2b sin 2θ) r5 + (1 + a − 2b sin 2θ) r9,

θ′ =
dθ

dt
= −4r4.

(4)

Since θ′ is negative for all t ∈ R, the orbits (r(t), θ(t)) of system (4) have the
opposite orientation with respect to those (x(t), y(t)) of system (3).
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Taking θ as an independent variable, we obtain the equation

dr

dθ
=

−1

4r3
+

(

1

4
a +

1

2
−

1

2
b sin 2θ

)

r +

(

−1

4
−

a

4
+

1

2
b sin 2θ

)

r5. (5)

Via the change of variables ρ = r4, this equation (5) is transformed into the
Riccati equation

dρ

dθ
= (−a − 1 + 2b sin 2θ)ρ2 + (a + 2 − 2b sin 2θ)ρ − 1. (6)

This equation is integrable, since it possesses the particular solution ρ = 1.

By introducing the standard change of variables y = ρ−1 we obtain the Bernoulli
equation

dy

dθ
= (−a + 2b sin 2θ)y + (−1 − a + 2b sin 2θ)y2. (7)

By introducing the standard change of variables z = 1
y

we obtain the linear
equation

dz

dθ
= (a − 2b sin 2θ) z + (1 + a − 2b sin 2θ) . (8)

The general solution of linear equation (8) is

z (θ) = 1,

z (θ) =
λ +

∫ θ

0 (1 + a − 2b sin 2w) exp
(∫ w

0 (−a + 2b sin 2s) ds
)

dw

exp
(

∫ θ

0 (−a + 2b sin 2s) ds
) ,

where λ ∈ R.

Then the general solution of equation (7) is

y (θ) = 1,

y (θ) =
exp

(

∫ θ

0 (−a + 2b sin 2s) ds
)

λ +
∫ θ

0 (1 + a − 2b sin 2w) exp
(∫ w

0 (−a + 2b sin 2s) ds
)

dw
,

where λ ∈ R.

Then the general solution of equation (6) is

ρ(θ) = 1,

ρ(θ) =
exp (aθ + b cos 2θ) (h + f(θ))

−1 + exp (aθ + b cos 2θ) (h + f(θ))
,

where h = (1 + λ) exp (−b) ∈ R.

Consequently, the general solution of (5) is

r(θ, h) = 1,
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r(θ, h) =

(

exp (aθ + b cos 2θ) (h + f(θ))

−1 + exp (aθ + b cos 2θ) (h + f(θ))

)1
4

,

where h ∈ R.
From this solution we obtain a first integral in the variables (x, y) of the form

H (x, y) =

=

(

x2 + y2
)2

+
(

1 −
(

x2 + y2
)2
)

exp
(

a arctan y
x

+ b cos
(

2 arctan y
x

))

f(arctan y
x
)

(

(x2 + y2)2 − 1
)

exp
(

a arctan y
x

+ b cos
(

2 arctan y
x

))

.

Hence, statement (3) of Theorem 1 is proved.
The curves H = h with h ∈ R, which are formed by trajectories of the differential

system (3), in Cartesian coordinates are written as

(

x2 + y2
)2

= 1,

(

x2 + y2
)2

=

(

exp
(

a arctan y
x

+ b cos
(

2 arctan y
x

)) (

h + f(arctan y
x
)
)

−1 + exp
(

a arctan y
x

+ b cos
(

2 arctan y
x

)) (

h + f(arctan y
x
)
)

)

,

where h ∈ R.
Notice that system (3) has a periodic orbit if and only if equation (5) has a

strictly positive 2π-periodic solution. This, moreover, is equivalent to the existence
of a solution of (5) that fulfills r (0, r∗) = r (2π, r∗) and r (θ, r∗) > 0 for any θ in
[0, 2π].

The solution r (θ, r0) of the differential equation (5) such that r (0, r0) = r0 is

r (θ, r0) =













exp (aθ + b cos 2θ)

(

r4
0

(

r4
0 − 1

)

exp (b)
+ f(θ)

)

−1 + exp (aθ + b cos 2θ)

(

r4
0

(

r4
0 − 1

)

exp (b)
+ f(θ)

)













1
4

,

where r0 = r (0).
We have the particular solution ρ (θ) = 1 of the differential equation (5) , from

this solution we obtain r4 (θ, 1) = 1 > 0, for all θ ∈ [0, π] is a particular solution of
the differential equation (5).

This is an algebraic limit cycle for the differential systems (3), corresponding of
course to an invariant algebraic curve U (x, y) = 0.

More precisely, in Cartesian coordinates r2 = x2 + y2 and θ = arctan
(

y
x

)

, the
curve (Γ1) defined by this limit cycle is (Γ1): x4 + y4 + 2x2y2 − 1 = 0.

Hence, statement (4) of Theorem 1 is proved.
A periodic solution of system (3) must satisfy the condition r (2π, r0) = r (0, r0),

which leads to a unique value r0 = r∗, given by

r∗ =
4

√

ebf(2π)

1 − e−2πa + ebf(2π)
,
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r∗ is the intersection of the periodic orbit with the OX+ axis.
After the substitution of this value r∗ into r (θ, r0) we obtain

r (θ, r∗) =









exp (aθ + b cos 2θ)

(

e2πa

1 − e2πa
f(2π) + f(θ)

)

−1 + exp (aθ + b cos 2θ)

(

e2πa

1 − e2πa
f(2π) + f(θ)

)









1
4

.

In what follows it is proved that r (θ, r∗) > 0. Indeed

r (θ, r∗) =

=









exp (aθ + b cos 2θ)

(

1

1 − e2πa
f (2π) −

∫ 2π

θ
exp (−aw − b cos 2w) dw

)

−1 + exp (aθ + b cos 2θ)

(

1

1 − e2πa
f (2π) −

∫ 2π

θ
exp (−aw − b cos 2w) dw

)









1
4

.

According to a > 0 and b ∈ R − {0}, hence
1

1 − e2πa
< 0, f (2π) > 0 and

∫ 2π

θ
exp (−aw − b cos 2w) dw ≥ 0 for all [0, π], then we have r (θ, r∗) > 0 for all

θ ∈ [0, π].
This is a limit cycle for the differential system (3). This limit cycle is not

algebraic, due to the expression

exp
(

a arctan
y

x
+ b cos

(

2 arctan
y

x

))

.

More precisely, in Cartesian coordinates r2 = x2 + y2 and θ = arctan
(

y
x

)

, the
curve (Γ2) defined by this limit cycle is (Γ2): F (x, y) = 0 where

F (x, y) =
(

x2 + y2
)2

−

−

exp
(

a arctan y
x

+ b cos
(

2 arctan y
x

))

(

r4
∗

(r4
∗
− 1) exp (b)

+ f(arctan y
x
)

)

−1 + exp
(

a arctan y
x

+ b cos
(

2 arctan y
x

))

(

r4
∗

(r4
∗
− 1) exp (b)

+ f(arctan y
x
)

) .

If the limit cycle is algebraic this curve must be given by a polynomial, but a
polynomial F (x, y) in the variables x and y satisfies that there is a positive integer

n such that
∂(n)F (x, y)

(∂x)n = 0, and this is not the case, therefore the curve (Γ2):

F (x, y) = 0 is non-algebraic and the limit cycle will also be non-algebraic.

According to a > 0 and b ∈ R − {0}, hence
1

1 − e2πa
< 0, f (2π) > 0 and

∫ 2π

θ
exp (−aw − b cos 2w) dw ≥ 0 for all [0, π], we get

exp (aθ + b cos 2θ)

(

1

1 − e2πa
f (2π) −

∫ 2π

θ

exp (−aw − b cos 2w) dw

)

< 0,
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for all [0, π], then we have r (θ, r∗) < 1 for all θ ∈ [0, π].

We conclude that system (3) has two limit cycles, the non-algebraic (Γ2) lies
inside the algebraic one (Γ1).

This completes the proof of statement (5) of Theorem 1.

4 Example

The following examples are given to illustrate our result.

Example 1 If we take a = 3 and b = 1, then system (3) reads























x′ = x − 5x5 + 8x4y − 10x3y2 + 12x2y3 − 5xy4 + 4y5 + 4x9 − 4x8y+
16x7y2 − 12x6y3 + 24x5y4 − 12x4y5 + 16x3y6 − 4x2y7 + 4xy8,

y′ = y − 4x5 − 5x4y − 4x3y2 − 10x2y3 − 5y5 + 4x8y − 4x7y2 + 16x6y3−
12x5y4 + 24x4y5 − 12x3y6 + 16x2y7 − 4xy8 + 4y9.

(9)

The system (9) has the first integral

H (x, y) =

=

(

x2 + y2
)2

+
(

1 −
(

x2 + y2
)2
)

exp
(

3 arctan y
x

+ cos
(

2 arctan y
x

))

f(arctan y
x
)

(

(x2 + y2)2 − 1
)

exp
(

3 arctan y
x

+ cos
(

2 arctan y
x

))

,

where f(arctan y
x
) =

∫ arctan y

x

0 exp(−3s − cos 2s)ds.

The system (9) has an algebraic limit cycle (Γ1) whose expression is (Γ1): x4 +
y4 + 2x2y2 − 1 = 0.

This system (9) has a non-algebraic limit cycle (Γ2) whose expression in polar
coordinates (r, θ) is

r (θ, r∗) =









exp (3θ + cos 2θ)

(

e6π

1 − e6π
f(2π) + f(θ)

)

−1 + exp (3θ + cos 2θ)

(

e6π

1 − e6π
f(2π) + f(θ)

)









1
4

,

where θ ∈ R, with f (θ) =
∫ θ

0 exp(−3s − cos 2s)ds, and the intersection of the limit
cycle with the OX+ axis is the point having r∗

r∗ = 4

√

√

√

√

e
∫ 2π

0 exp(−3s − cos 2s)ds

1 − e−6π + e
∫ 2π

0 exp(−3s − cos 2s)ds
= 0.764 60

We conclude that system (9) has two limit cycles. Since r∗ = 0.764 60 < 1, the
non-algebraic one lies inside the algebraic one.
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Example 2 If we take a = 5 and b = −2, then system (3) reads























x′ = x − 7x5 − 4x4y − 14x3y2 − 7xy4 + 4y5 + 6x9 + 8x8y + 24x7y2 + 24x6y3+
36x5y4 + 24x4y5 + 24x3y6 + 8x2y7 + 6xy8,

y′ = y − 4x5 − 7x4y − 16x3y2 − 14x2y3 − 12xy4 − 7y5 + 6x8y + 8x7y2+
24x6y3 + 24x5y4 + 36x4y5 + 24x3y6 + 24x2y7 + 8xy8 + 6y9,

(10)

The system (10) has the first integral

H (x, y) =

=

(

x2 + y2
)2

+
(

1 −
(

x2 + y2
)2
)

exp
(

5 arctan y
x
− 2 cos

(

2 arctan y
x

))

f(arctan y
x
)

(

(x2 + y2)2 − 1
)

exp
(

5 arctan y
x
− 2 cos

(

2 arctan y
x

))

,

where f(arctan y
x
) =

∫ arctan y

x

0 exp(−5s + 2cos 2s)ds.

The system (10) has an algebraic limit cycle (Γ1) whose expression is (Γ1): x4 +
y4 + 2x2y2 − 1 = 0.

This system (10) has a non-algebraic limit cycle (Γ2) whose expression in polar
coordinates (r, θ) is

r (θ, r∗) =









exp (5θ − 2 cos 2θ)

(

e10π

1 − e10π
f(2π) + f(θ)

)

−1 + exp (5θ − 2 cos 2θ)

(

e10π

1 − e10π
f(2π) + f(θ)

)









1
4

,

where θ ∈ R, with f (θ) =
∫ θ

0 exp(−5s+2cos 2s)ds, and the intersection of the limit
cycle with the OX+ axis is the point having r∗

r∗ = 4

√

√

√

√

e−2
∫ 2π

0 exp(−5s + 2cos 2s)ds

1 − e−10π + e−2
∫ 2π

0 exp(−s + 2cos 2s)ds
= 0.584 60

We conclude that system (10) has two limit cycles. Since r∗ = 0.584 60 < 1, the
non-algebraic limit cycle lies inside the algebraic limit cycle.
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[8] Giné J., Grau M. Coexistence of algebraic and non-algebraic limit cycles, explicitly given,

using Riccati equations. Nonlinearity, 2006, vol. 19, 1939-1950.

[9] Hilbert D. Mathematische Probleme, Lecture, Second Internat. Congr. Math. (Paris, 1900),
Nachr. Ges. Wiss. Gttingen Math. Phys. Kl, 1900, 253-297, English transl, Bull. Amer. Math.
Soc. 8, 1902, 437-479.

[10] Llibre J., Zhao Y. Algebraic Limit Cycles in Polynomial Systems of Differential Equations.
J. Phys. A: Math. Theor, 2007, vol. 40, 14207-14222.

[11] Odani K. The limit cycle of the van der Pol equation is not algebraic. J. of Diff. Equ, 1995,
vol. 115, 146-152.

[12] Perko L. Differential Equations and Dynamical Systems. Third edition. Texts in Applied

Mathematics, 7. Springer-Verlag, New York, 2001.

Mouna Yahiaoui
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