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Optimal control of a stochastic system related

to the Kermack-McKendrick model

Mario Lefebvre

Abstract. A stochastic optimal control problem for a two-dimensional system of
differential equations related to the Kermack-McKendrick model for the spread of
epidemics is considered. The aim is to maximize the expected value of the time
during which the epidemic is under control, taking the quadratic control costs into
account. An exact and explicit solution is found in a particular case.
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1 Introduction and theoretical result

Let x (t) represent the percentage of individuals susceptible (and/or suspected)
of being infected with a given virus in a certain population, and let y(t) be the
percentage of infected carriers. We consider the following controlled two-dimensional
system of differential equations to model the spread of epidemics:

ẋ(t) = −kx(t)y(t),

ẏ(t) = kx(t)y(t) + f [x(t), y(t)] + b[x(t), y(t)]u(t) + {v[x(t), y(t)]}1/2 Ḃ(t),

where k is a positive constant, u(t) is the control variable, the function v(·, ·) is
positive and B(t) is a standard Brownian motion.

If u(·) and v(·, ·) are identical to zero, then the above system is a modification of
the classic two-dimensional Kermack-McKendrick model for the spread of epidemics
that they proposed in their paper published in [1].

The absolute value of the variable u(t) can be interpreted as the percentage
increase of money spent to fight the disease, compared to the planned budget.

Let x (0) = x and y(0) = y be such that 0 < x + y < d, where d is a value for
which the epidemic is considered to be under control. We define the first-passage
time

T (x, y) = inf {t > 0 : x(t) + y(t) = 0 or d} .

Our aim is to find the value u∗ of the control variable that minimizes the expected
value of the cost criterion

J(x, y) :=

∫ T

0

{

1
2q[x(t), y(t)]u2(t) + λ

}

dt,
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where q(·, ·) is a positive function and λ is a negative constant. Hence, the aim is to
maximize the expected time during which the epidemic is under control, taking the
quadratic control costs into account.

Depending on the application, an individual can be removed from the group of
infected individuals because he/she is cured or because he/she is dead. Therefore,
the optimizer might try to avoid having x(t) + y(t) = 0.

This type of optimal control problem, for which the final time is a random
variable, has been termed LQG homing by Whittle [6]. Such problems are generally
very difficult to solve explicitly, especially in two or more dimensions. LQG homing
problems have been considered, in particular, by the author and Zitouni [3, 4].
Makasu [5] solved explicitly a two-dimensional LQG homing problem. In Lefebvre
[2], the author solved a related problem, namely that of ending the epidemic as soon
as possible. However, he considered the three-dimensional version of the Kermack-
McKendrick model.

Let

F (x, y) := inf
u(t),0≤t≤T

E[J(x, y)].

We will make use of dynamic programming to derive the partial differential equation
(p.d.e.) that the value function F satisfies.

Let u := u(0). We deduce from Bellman’s principle of optimality that

F (x, y) = inf
u(t),0≤t≤T

E

[ ∫ ∆t

0

(

1

2
qu2(t) + λ

)

dt +

∫ T

∆t

(

1

2
qu2(t) + λ

)

dt

]

= inf
u(t),0≤t≤∆t

E

[
∫ ∆t

0

(

1

2
qu2(t) + λ

)

dt

+ F
(

x − kxy∆t, y + (kxy + f + bu)∆t + v1/2B(∆t)
)

+ o(∆t)

]

= inf
u(t),0≤t≤∆t

E

[ (

1

2
qu2 + λ

)

∆t + F
(

x − kxy∆t, y + (kxy + f + bu)∆t

+ v1/2B(∆t)
)

+ o(∆t)

]

.

Indeed, the optimal policy must be such that, whatever the control chosen in the
interval [0,∆t], and the resulting x(∆t) and y(∆t), the value of u(t) must be optimal
from ∆t.

Assume next that F is differentiable with respect to x and twice differentiable
with respect to y. Using the facts that E[B(∆t)] = 0 and that E[B2(∆t)] =
V [B(∆t)] = ∆t, Taylor’s formula enables us to write that

E

[

F
(

x − kxy∆t, y + (kxy + f + bu)∆t + v1/2B(∆t)
)

]

= F (x, y) − kxy∆t
∂F (x, y)

∂x
+ (kxy + f + bu)∆t

∂F (x, y)

∂y
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+
1

2
v∆t

∂2F (x, y)

∂y2
+ o(∆t).

Hence, we have

0 = inf
u(t),0≤t≤∆t

{(

1

2
qu2 + λ

)

∆t − kxy∆tFx + (kxy + f + bu)∆tFy

+
1

2
v∆tFyy + o(∆t)

}

.

Finally, if we divide both sides of the above equation by ∆t, and if we let ∆t decrease
to 0, we obtain the following dynamic programming equation:

0 = inf
u

{

1

2
qu2 + λ − kxyFx + (kxy + f + bu)Fy +

1

2
vFyy

}

. (1)

We deduce from Eq. (1) that the optimal control u∗ can be expressed in terms
of the function F as follows:

u∗ = − b

q
Fy.

Substituting this expression into Eq. (1), we obtain the following proposition.

Proposition 1.1. The value function satisfies the following second-order non-linear
p.d.e.:

− b2

2q
F 2

y + λ − kxyFx + (kxy + f)Fy + 1
2vFyy = 0, (2)

where all the functions are evaluated at t = 0. The boundary conditions are

F (x, y) = 0 if x + y = 0 or d.

We will try to solve Eq. (2) by making use of the method of similarity solutions.
More precisely, based on the boundary conditions, we look for a solution of the form

F (x, y) = H(w),

where w := x + y is the similarity variable. We find that Eq. (2) is transformed
into the non-linear ordinary differential equation

− b2

2q
[H ′(w)]2 + λ + fH ′(w) + 1

2vH ′′(w) = 0. (3)

The new boundary conditions are

H(w) = 0 if w = 0 or d. (4)

We can now state the following result.

Proposition 1.2. If the ratio b2/q and the functions f and v can be expressed in
terms of the similarity variable w, then the optimal control can be deduced from the
solution of (3), (4).
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2 A particular case

Let us choose the following particular values for the various terms that appear
in the problem set up in the previous section:

λ = −1, b ≡ 1, q ≡ 1, v ≡ 1 and f(x, y) = −(x + y).

Thus, we assume that the functions b, q and v are all identical to 1. Moreover, we
take d = 1. Notice that Proposition 1.2 then applies, because the ratio b2/q and v
are both constant functions, and f(x, y) = −w.

Hence, the epidemic is deemed under control as long as the sum x(t) + y(t) is
smaller than 1 percent. In practice, it is probably very difficult to have the sum
x(t) + y(t) equal to zero, especially in the case of a large population. Therefore,
the objective is to keep this sum below 1% of the population for as long as possible,
taking the quadratic control costs into account.

Next, the differential equation that we must solve becomes

−1
2 [H ′(w)]2 − 1 − wH ′(w) + 1

2H ′′(w) = 0,

which is a Riccati equation for H ′(w). Making use of the mathematical software
Maple, we find that the solution of the above equation that satisfies the boundary
conditions H(0) = H(1) = 0 is the following:

H(w) = −1

2
ln







(

w
√

π(1 − e) + iwπ (erf(iw) − erf(i)) +
√

πew2
)2

π






,

where erf is the error function. From H(w), we obtain the value function F (x, y),
and hence the optimal control u∗ = −Fy explicitly. It can be expressed as a function
of w = x + y:

u∗ =

√
π(e − 1) + iπ[erf(i) − erf(iw)]

−√
πew2 +

√
π(e − 1)w + iπ[erf(i) − erf(iw)]w

for 0 ≤ w ≤ 1.

See Figure 1. This optimal solution is very different from the one found for the
problem considered in Lefebvre [2]. Indeed, in this paper, the optimal control was
actually a constant.

3 Concluding remarks

In this note, we were able to obtain an explicit solution to a two-dimensional
LQG homing problem by making use of the method of similarity solutions. It would
be interesting to obtain at least approximate solutions to problems for which we
cannot make use of this method. We could also try to solve the appropriate partial
differential equation numerically.
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Figure 1. Optimal control u∗, as a function of w = x + y.

Finally, we could try to find suboptimal controls, either by making some ap-
proximations, or by choosing the form of the control variable (for instance, a linear
control).
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