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Binary linear programming approach to graph convex

covering problems

Radu Buzatu

Abstract. A binary linear programming (BLP) formulation of graph convex covering
problems is proposed for the first time. Since the general convex covering problem
of a graph is NP-complete, BLP approach will facilitate the use of convex covers and
partitions of graphs in different real applications.
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1 Introduction

We denote by G = (V ; E) a simple undirected graph with vertex set V and edge
set E. A set S ⊆ V is called nontrivial if 3 ≤ |S| ≤ |V | − 1.

Let us remind some notions defined in [1]. The metric segment, denoted by
〈v, u〉, is the set of all vertices lying on a shortest path between vertices v, u ∈ V . A
set S ⊆ V is called convex if 〈v, u〉 ⊆ S for any two vertices v, u ∈ S.

The family of sets P(G) is called a convex cover of graph G = (V ; E) if the
following properties hold:

a) every set of P(G) is convex in G;

b) V =
⋃

S∈P(G) S;

c) S 6⊆
⋃

C∈P(G)
C 6=S

C for every set S ∈ P(G).

If in addition to properties a), b) and c), the family P(G) satisfies the property
d), set out below, then P(G) is said to be a nontrivial convex cover of G.

d) 3 ≤ |S| ≤ |V | − 1 for each set S ∈ P(G);

e) S ∩ C = ∅ for any two sets S,C ∈ P(G), S 6= C.

If a convex coverP(G) satisfies the property e), then this family is called a convex
partition of G. Similarly, if P(G) is a convex partition that satisfies the property d),
then it is called a nontrivial convex partition of G. If a convex cover P(G) consists
of p sets, then we say that this family is a convex p-cover of G. By analogy, convex
p-partition, nontrivial convex p-partition and nontrivial convex p-cover of graph G
are defined. A vertex v ∈ V is called resident in P(G) if v belongs to only one set
of P(G).
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Deciding whether a graph G has a convex p-cover for a fixed p ≥ 2 is said
to be convex p-cover problem. The general convex p-cover problem of a graph is
NP-complete [4, 7]. It remains NP-complete even if nontrivial or pairwise disjoint
convex sets are considered [5, 7]. Several classes of graphs for which there exist
convex p-covers or convex p-partitions were identified in [4–6,8,9]. Particularly, it is
NP-complete to decide whether a graph can be partitioned into an arbitrary number,
greater than or equal to two, of nontrivial convex sets [9]. At the same time, there
is a polynomial algorithm that determines whether a graph can be covered by an
arbitrary number of nontrivial convex sets [9].

Integer linear programming is a good approach for solving NP-hard combinatorial
problems. Consequently, it is of interest to propose an integer linear programming
formulation for graph convex covering problems. The goal of linear programming
is to optimize a linear function subject to linear constraints. In this context, we
will formulate a binary linear programming (BLP) model for optimization problems
related to convex covers and partitions of graphs. Several good survey on integer
linear programming are available, e.g., [2, 3].

The minimum convex cover number ϕmin
c (G) of a graph G is the least p ≥ 2

for which G has a convex p-cover. Likewise, the minimum convex partition number
θmin
c (G) of G is the least p ≥ 2 for which G has a convex p-partition.

In the same way, we define the following numbers:

ϕmin
cn (G) is minimum nontrivial convex cover number of G;

θmin
cn (G) is minimum nontrivial convex partition number of G;

ϕmax
cn (G) is maximum nontrivial convex cover number of G;

θmax
cn (G) is maximum nontrivial convex partition number of G.

Additional information about these invariants can be found in papers [7–9]. It
is clear that for any graph G, ϕmin

c (G) ≤ θmin
c (G). If G can be partitioned into

nontrivial convex sets, then θmin
c (G) ≤ θmin

cn (G) and:

ϕmin
cn (G) ≤ θmin

cn (G) ≤ θmax
cn (G) ≤ ϕmax

cn (G).

Anyway, if G can be covered by nontrivial convex sets, then:

ϕmin
c (G) ≤ ϕmin

cn (G) ≤ ϕmax
cn (G).

The problems of determining the numbers ϕmin
c (G), θmin

c (G), ϕmin
cn (G), θmin

cn (G),
ϕmax

cn (G) and θmax
cn (G) are denoted by MinCC, MinCP, MinNCC, MinNCP, MaxNCC

and MaxNCP, respectively.

2 BLP formulation

In order to solve graph convex covering problems efficiently a BLP approach is
proposed.

Consider a graph G with vertex set V = {v1, vn, ..., vn}.We define n subsets S1,
S2, ... , Sn of V , and two types of binary variables. For each vertex vj ∈ V there are
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variables xij ∈ {0, 1}, indicating whether vj will belong or not to Si. Additionally,
there are variables ylij ∈ {0, 1} which will enforce the convexity constraints of Sl.
We define

xij =

{

1, vj ∈ Si

0, vj /∈ Si

and

ylij =

{

1, {vi, vj} ⊆ Sl

0, {vi, vj} 6⊆ Sl.

We denote by X the set of all variables xij and by Y the set of all variables ylij.
The BLP model (BLPM) that corresponds to MinCP is presented below.

minimize
∑n

i=1 xii (1)

subject to
∑n

i=1 xii ≥ 2 (2)

∑n
i=1 xij = 1, j = 1, n (3)

∑

vk∈〈vi,vj〉
xlk − |〈vi, vj〉|ylij ≥ 0, l, i, j = 1, n (4)

xli + xlj − ylij ≤ 1, l, i, j = 1, n (5)

ylij − xli ≤ 0, l, i, j = 1, n (6)

ylij − xlj ≤ 0, l, i, j = 1, n (7)

xij − xii ≤ 0, i, j = 1, n (8)

xij, ylij ∈ {0, 1}, l, i, j = 1, n (9)

Theorem 1. Each feasible solution of BLPM with objective function (1) and re-
strictions (2)–(9) corresponds to a feasible solution of MinCP and vice versa.

Proof. Let (X,Y ) be a feasible solution of the BLPM. Each entry in (X,Y ) is zero
or one because of the integrality condition (9). Constraints (8) ensure that if there
is a vertex vj belonging to Si, then vi ∈ Si. Restrictions (3) require that each vertex
vi ∈ V belongs to exactly one set of S1, S2, . . . , Sn. Considering these constraints,
we define the family P = {Si : Si 6= ∅, 1 ≤ i ≤ n} that partitions graph G. By
restriction (2), P consists of at least two sets. It follows that P satisfies properties
b), c) and e). Moreover, constraints (4)–(7) yield that if both vi and vj are in the
same set Sl then 〈vi, vj〉 ⊆ Sl, thus fulfilling the convexity property a) for each set
of P. This therefore means that P is an admissible convex partition of G.

Let P(G) be a convex partition of G such that |P(G)| ≥ 2, in other words, it is
a feasible solution of MinCP. For each set S ∈ P(G), we choose one resident vertex
vi ∈ S in P(G) and set xij to one if vj ∈ S, otherwise set to zero. In the same
manner, we set ylij to one if xli = 1 and xlj = 1, otherwise set to zero. In light of
all the above arguments, we can conclude that (X,Y ) does not violate any of the
constraints. For this reason, (X,Y ) is a feasible solution for the BLP.
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Corollary 1. An optimal solution of BLPM with objective function (1) and restric-
tions (2)–(9) corresponds to an optimal solution of MinCP.

Now we present the BLP model for MaxNCC.

maximize
∑n

i=1 xii (10)

subject to
∑n

i=1 xii ≥ 2 (11)
∑n

j=1,j 6=i xij − 2xii ≥ 0, i = 1, n (12)

∑n
i=1,i6=j xij + Mxjj ≥ 1, j = 1, n (13)

∑n
i=1,i6=j xij + Mxjj ≤ M , j = 1, n (14)

∑

vk∈〈vi,vj〉
xlk − |〈vi, vj〉|ylij ≥ 0, l, i, j = 1, n (15)

xli + xlj − ylij ≤ 1, l, i, j = 1, n (16)

ylij − xli ≤ 0, l, i, j = 1, n (17)

ylij − xlj ≤ 0, l, i, j = 1, n (18)

xij − xii ≤ 0, i, j = 1, n (19)

xij, ylij ∈ {0, 1}, l, i, j = 1, n (20)

Theorem 2. Each feasible solution of BLPM with objective function (10) and re-
strictions (11)–(20) corresponds to a feasible solution of MaxNCC and vice versa.

Proof. Let (X,Y ) be a feasible solution of the BLPM. Restriction (20) enforce the
binary nature of the variables xij and ylij. By constraints (19), each nonempty set
Si contains the vertex vi. Moreover, constraints (13) and (14) mean that for each
nonempty set Sj the vertex vj is not contained in

⋃

1≤i≤n,i6=j Si, and there is no
vertex vi such that vi /∈

⋃

1≤j≤n Sj. Considering these constraints, we define the
family P = {Si : Si 6= ∅, 1 ≤ i ≤ n} that covers graph G. By restriction (11),
|P| ≥ 2. Constraints (12) yield that every set Si ∈ P has at least three elements.
This ensures that every set of P is nontrivial. It is clear that P satisfies properties
b), c) and d). The remaining constraints (15)–(18) imply that each set of P is
convex, thus property a) also holds. Therefore, for a feasible solution of the BLPM
there is a feasible solution of MaxNCC.

As in the proof of Theorem 1, it can easily be verified that for a feasible solution
of MaxNCC there exists a feasible solution of the BLPM.

Corollary 2. An optimal solution of BLPM with objective function (10) and re-
strictions (11)–(20) corresponds to an optimal solution of MaxNCC.

Regarding other optimization problems MinCC, MinNCC, MinNCP and MaxNCP,
we obtain the following corollaries:
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Corollary 3. An optimal solution of BLPM with objective function (1) and restric-
tions (11), (13)–(20) corresponds to an optimal solution of MinCC.

Corollary 4. An optimal solution of BLPM with objective function (1) and restric-
tions (11)–(20) corresponds to an optimal solution of MinNCC.

Corollary 5. An optimal solution of BLPM with objective function (1) and restric-
tions (2)–(9), (12) corresponds to an optimal solution of MinNCP.

Corollary 6. An optimal solution of BLPM with objective function (10) and re-
strictions (2)–(9), (12) corresponds to an optimal solution of MaxNCP.

The above showed is a description of BLP models designed to solve optimization
problems of convex cover problem of graphs. We should mention that similar BLP
models can be formulated for general convex p-cover problems of graphs.

For example, by replacing objective function (1) with a constant and restriction
(2) with

∑n
i=1 xii = p (21)

we obtain the BLP formulation of convex p-partition problem with constant objective
function and restrictions (3)–(9), (21).

In view of proofs of Theorems 1 and 2, the correctness of the following corollaries
follows:

Corollary 7. An optimal solution of BLPM with constant objective function and
restrictions (3)–(9), (21) corresponds to a feasible solution of convex p-partition.

Corollary 8. An optimal solution of BLPM with constant objective function and
restrictions (3)–(9), (12), (21) corresponds to a feasible solution of nontrivial convex
p-partition.

Corollary 9. An optimal solution of BLPM with constant objective function and
restrictions (13)–(20), (21) corresponds to a feasible solution of convex p-cover.

Corollary 10. An optimal solution of BLPM with constant objective function and
restrictions (12)–(20), (21) corresponds to a feasible solution of nontrivial convex
p-cover.

3 Conclusion

We have proposed a binary linear programming formulation for convex cov-
ering problems of graphs. This yields that problems of determination of invariants
ϕmin

c (G), θmin
c (G), ϕmin

cn (G), θmin
cn (G), ϕmax

cn (G), θmax
cn (G), and problems of existence

of convex p-covers, convex p-partitions, nontrivial convex p-covers and nontrivial
convex p-partitions of a given graph G can be solved by using linear programming
software packages, that essentially simplifies the use of convex covers of graph in
applied problem solving.
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[5] Artigas D., Dantas S., Dourado M. C., Szwarcfiter J. L. Partitioning a graph into

convex sets. Discrete Mathematics, 311 (2011), 1968–1977.

[6] Grippo L. N., Matamala M., Safe M. D., Stein M. J. Convex p-partitions of bipartite

graphs. Theoretical Computer Science, 609 (2016), 511–514.

[7] Buzatu R., Cataranciuc S. Convex graph covers. Computer Science Journal of Moldova, 23
n.3 (69) (2015), 251–269.

[8] Buzatu R., Cataranciuc S. Nontrivial convex covers of trees. Bulletin of Academy of Sciences
of Republic of Moldova, Mathematics, n.3 (82) (2016), 72–81.

[9] Buzatu R., Cataranciuc S. On nontrivial covers and partitions of graphs by convex sets.
Computer Science Journal of Moldova, 26 n.1 (76) (2018), 3–14.

Radu Buzatu

Moldova State University
60 A. Mateevici, MD-2009, Chişinǎu, Republic of Moldova
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