Binary linear programming approach to graph convex covering problems

Radu Buzatu

Abstract

A binary linear programming (BLP) formulation of graph convex covering problems is proposed for the first time. Since the general convex covering problem of a graph is NP-complete, BLP approach will facilitate the use of convex covers and partitions of graphs in different real applications.

Mathematics subject classification: 05A18, 68R10, 90C05, 90C27, 90C35.
Keywords and phrases: binary linear programming, convex cover, convex partition, graph.

1 Introduction

We denote by $G=(V ; E)$ a simple undirected graph with vertex set V and edge set E. A set $S \subseteq V$ is called nontrivial if $3 \leq|S| \leq|V|-1$.

Let us remind some notions defined in [1]. The metric segment, denoted by $\langle v, u\rangle$, is the set of all vertices lying on a shortest path between vertices $v, u \in V$. A set $S \subseteq V$ is called convex if $\langle v, u\rangle \subseteq S$ for any two vertices $v, u \in S$.

The family of sets $\boldsymbol{P}(G)$ is called a convex cover of graph $G=(V ; E)$ if the following properties hold:
a) every set of $\boldsymbol{P}(G)$ is convex in G;
b) $V=\bigcup_{S \in \boldsymbol{P}(G)} S$;
c) $S \nsubseteq \bigcup_{\substack{C \in \boldsymbol{P}(G) \\ C \neq S}} C$ for every set $S \in \boldsymbol{P}(G)$.

If in addition to properties a), b) and c), the family $\boldsymbol{P}(G)$ satisfies the property d), set out below, then $\boldsymbol{P}(G)$ is said to be a nontrivial convex cover of G.
d) $3 \leq|S| \leq|V|-1$ for each set $S \in \boldsymbol{P}(G)$;
e) $S \cap C=\varnothing$ for any two sets $S, C \in \boldsymbol{P}(G), S \neq C$.

If a convex cover $\boldsymbol{P}(G)$ satisfies the property e), then this family is called a convex partition of G. Similarly, if $\boldsymbol{P}(G)$ is a convex partition that satisfies the property d), then it is called a nontrivial convex partition of G. If a convex cover $\boldsymbol{P}(G)$ consists of p sets, then we say that this family is a convex p-cover of G. By analogy, convex p-partition, nontrivial convex p-partition and nontrivial convex p-cover of graph G are defined. A vertex $v \in V$ is called resident in $\boldsymbol{P}(G)$ if v belongs to only one set of $\boldsymbol{P}(G)$.

[^0]Deciding whether a graph G has a convex p-cover for a fixed $p \geq 2$ is said to be convex p-cover problem. The general convex p-cover problem of a graph is NP-complete $[4,7]$. It remains NP-complete even if nontrivial or pairwise disjoint convex sets are considered $[5,7]$. Several classes of graphs for which there exist convex p-covers or convex p-partitions were identified in [4-6,8,9]. Particularly, it is NP-complete to decide whether a graph can be partitioned into an arbitrary number, greater than or equal to two, of nontrivial convex sets [9]. At the same time, there is a polynomial algorithm that determines whether a graph can be covered by an arbitrary number of nontrivial convex sets [9].

Integer linear programming is a good approach for solving NP-hard combinatorial problems. Consequently, it is of interest to propose an integer linear programming formulation for graph convex covering problems. The goal of linear programming is to optimize a linear function subject to linear constraints. In this context, we will formulate a binary linear programming (BLP) model for optimization problems related to convex covers and partitions of graphs. Several good survey on integer linear programming are available, e.g., [2,3].

The minimum convex cover number $\varphi_{c}^{\min }(G)$ of a graph G is the least $p \geq 2$ for which G has a convex p-cover. Likewise, the minimum convex partition number $\theta_{c}^{\min }(G)$ of G is the least $p \geq 2$ for which G has a convex p-partition.

In the same way, we define the following numbers:
$\varphi_{c n}^{\min }(G)$ is minimum nontrivial convex cover number of G;
$\theta_{c n}^{\min }(G)$ is minimum nontrivial convex partition number of G;
$\varphi_{c n}^{\max }(G)$ is maximum nontrivial convex cover number of G;
$\theta_{c n}^{\max }(G)$ is maximum nontrivial convex partition number of G.
Additional information about these invariants can be found in papers [7-9]. It is clear that for any graph $G, \varphi_{c}^{\min }(G) \leq \theta_{c}^{\min }(G)$. If G can be partitioned into nontrivial convex sets, then $\theta_{c}^{\min }(G) \leq \theta_{c n}^{\min }(G)$ and:

$$
\varphi_{c n}^{\min }(G) \leq \theta_{c n}^{\min }(G) \leq \theta_{c n}^{\max }(G) \leq \varphi_{c n}^{\max }(G) .
$$

Anyway, if G can be covered by nontrivial convex sets, then:

$$
\varphi_{c}^{\min }(G) \leq \varphi_{c n}^{\min }(G) \leq \varphi_{c n}^{\max }(G)
$$

The problems of determining the numbers $\varphi_{c}^{\min }(G), \theta_{c}^{\min }(G), \varphi_{c n}^{\min }(G), \theta_{c n}^{\min }(G)$, $\varphi_{c n}^{\max }(G)$ and $\theta_{c n}^{\max }(G)$ are denoted by MinCC, MinCP, MinNCC, MinNCP, MaxNCC and MaxNCP, respectively.

2 BLP formulation

In order to solve graph convex covering problems efficiently a BLP approach is proposed.

Consider a graph G with vertex set $V=\left\{v_{1}, v_{n}, \ldots, v_{n}\right\}$. We define n subsets S_{1}, S_{2}, \ldots, S_{n} of V, and two types of binary variables. For each vertex $v_{j} \in V$ there are
variables $x_{i j} \in\{0,1\}$, indicating whether v_{j} will belong or not to S_{i}. Additionally, there are variables $y_{l i j} \in\{0,1\}$ which will enforce the convexity constraints of S_{l}. We define

$$
x_{i j}= \begin{cases}1, & v_{j} \in S_{i} \\ 0, & v_{j} \notin S_{i}\end{cases}
$$

and

$$
y_{l i j}= \begin{cases}1, & \left\{v_{i}, v_{j}\right\} \subseteq S_{l} \\ 0, & \left\{v_{i}, v_{j}\right\} \nsubseteq S_{l} .\end{cases}
$$

We denote by X the set of all variables $x_{i j}$ and by Y the set of all variables $y_{l i j}$. The BLP model (BLPM) that corresponds to MinCP is presented below.

$$
\begin{array}{rlr}
\operatorname{minimize} & \sum_{i=1}^{n} x_{i i} & \\
\text { subject to } & \sum_{i=1}^{n} x_{i i} \geq 2 & \\
& \sum_{i=1}^{n} x_{i j}=1, & j=\overline{1, n} \\
& \sum_{v_{k} \in\left\langle v_{i}, v_{j}\right\rangle} x_{l k}-\left|\left\langle v_{i}, v_{j}\right\rangle\right| y_{l i j} \geq 0, & l, i, j=\overline{1, n} \\
& x_{l i}+x_{l j}-y_{l i j} \leq 1, & l, i, j=\overline{1, n} \\
& y_{l i j}-x_{l i} \leq 0, & l, i, j=\overline{1, n} \\
& y_{l i j}-x_{l j} \leq 0, & l, i, j=\overline{1, n} \\
& x_{i j}-x_{i i} \leq 0, & i, j=\overline{1, n} \\
& x_{i j}, y_{l i j} \in\{0,1\}, & l, i, j=\overline{1, n} \tag{9}
\end{array}
$$

Theorem 1. Each feasible solution of BLPM with objective function (1) and restrictions (2)-(9) corresponds to a feasible solution of MinCP and vice versa.

Proof. Let (X, Y) be a feasible solution of the BLPM. Each entry in (X, Y) is zero or one because of the integrality condition (9). Constraints (8) ensure that if there is a vertex v_{j} belonging to S_{i}, then $v_{i} \in S_{i}$. Restrictions (3) require that each vertex $v_{i} \in V$ belongs to exactly one set of $S_{1}, S_{2}, \ldots, S_{n}$. Considering these constraints, we define the family $\boldsymbol{P}=\left\{S_{i}: S_{i} \neq \varnothing, 1 \leq i \leq n\right\}$ that partitions graph G. By restriction (2), \boldsymbol{P} consists of at least two sets. It follows that \boldsymbol{P} satisfies properties b), c) and e). Moreover, constraints (4)-(7) yield that if both v_{i} and v_{j} are in the same set S_{l} then $\left\langle v_{i}, v_{j}\right\rangle \subseteq S_{l}$, thus fulfilling the convexity property a) for each set of \boldsymbol{P}. This therefore means that \boldsymbol{P} is an admissible convex partition of G.

Let $\boldsymbol{P}(G)$ be a convex partition of G such that $|\boldsymbol{P}(G)| \geq 2$, in other words, it is a feasible solution of MinCP. For each set $S \in \boldsymbol{P}(G)$, we choose one resident vertex $v_{i} \in S$ in $\boldsymbol{P}(G)$ and set $x_{i j}$ to one if $v_{j} \in S$, otherwise set to zero. In the same manner, we set $y_{l i j}$ to one if $x_{l i}=1$ and $x_{l j}=1$, otherwise set to zero. In light of all the above arguments, we can conclude that (X, Y) does not violate any of the constraints. For this reason, (X, Y) is a feasible solution for the BLP.

Corollary 1. An optimal solution of BLPM with objective function (1) and restrictions (2)-(9) corresponds to an optimal solution of MinCP.

Now we present the BLP model for MaxNCC.

$$
\begin{array}{llr}
\operatorname{maximize} & \sum_{i=1}^{n} x_{i i} & \\
\text { subject to } & \sum_{i=1}^{n} x_{i i} \geq 2 & \\
& \sum_{j=1, j \neq i}^{n} x_{i j}-2 x_{i i} \geq 0, & i
\end{array}=\overline{1, n}
$$

Theorem 2. Each feasible solution of BLPM with objective function (10) and restrictions (11)-(20) corresponds to a feasible solution of MaxNCC and vice versa.

Proof. Let (X, Y) be a feasible solution of the BLPM. Restriction (20) enforce the binary nature of the variables $x_{i j}$ and $y_{l i j}$. By constraints (19), each nonempty set S_{i} contains the vertex v_{i}. Moreover, constraints (13) and (14) mean that for each nonempty set S_{j} the vertex v_{j} is not contained in $\bigcup_{1 \leq i \leq n, i \neq j} S_{i}$, and there is no vertex v_{i} such that $v_{i} \notin \bigcup_{1 \leq j \leq n} S_{j}$. Considering these constraints, we define the family $\boldsymbol{P}=\left\{S_{i}: S_{i} \neq \varnothing, 1 \leq i \leq n\right\}$ that covers graph G. By restriction (11), $|\boldsymbol{P}| \geq 2$. Constraints (12) yield that every set $S_{i} \in \boldsymbol{P}$ has at least three elements. This ensures that every set of \boldsymbol{P} is nontrivial. It is clear that \boldsymbol{P} satisfies properties b), c) and d). The remaining constraints (15)-(18) imply that each set of \boldsymbol{P} is convex, thus property a) also holds. Therefore, for a feasible solution of the BLPM there is a feasible solution of MaxNCC.

As in the proof of Theorem 1, it can easily be verified that for a feasible solution of MaxNCC there exists a feasible solution of the BLPM.

Corollary 2. An optimal solution of BLPM with objective function (10) and restrictions (11)-(20) corresponds to an optimal solution of MaxNCC.

Regarding other optimization problems MinCC, MinNCC, MinNCP and MaxNCP, we obtain the following corollaries:

Corollary 3. An optimal solution of BLPM with objective function (1) and restrictions (11), (13)-(20) corresponds to an optimal solution of MinCC.

Corollary 4. An optimal solution of BLPM with objective function (1) and restrictions (11)-(20) corresponds to an optimal solution of MinNCC.

Corollary 5. An optimal solution of BLPM with objective function (1) and restrictions (2)-(9), (12) corresponds to an optimal solution of MinNCP.

Corollary 6. An optimal solution of BLPM with objective function (10) and restrictions (2)-(9), (12) corresponds to an optimal solution of MaxNCP.

The above showed is a description of BLP models designed to solve optimization problems of convex cover problem of graphs. We should mention that similar BLP models can be formulated for general convex p-cover problems of graphs.

For example, by replacing objective function (1) with a constant and restriction (2) with

$$
\begin{equation*}
\sum_{i=1}^{n} x_{i i}=p \tag{21}
\end{equation*}
$$

we obtain the BLP formulation of convex p-partition problem with constant objective function and restrictions (3)-(9), (21).

In view of proofs of Theorems 1 and 2, the correctness of the following corollaries follows:

Corollary 7. An optimal solution of BLPM with constant objective function and restrictions (3)-(9), (21) corresponds to a feasible solution of convex p-partition.

Corollary 8. An optimal solution of BLPM with constant objective function and restrictions (3)-(9), (12), (21) corresponds to a feasible solution of nontrivial convex p-partition.

Corollary 9. An optimal solution of BLPM with constant objective function and restrictions (13)-(20), (21) corresponds to a feasible solution of convex p-cover.

Corollary 10. An optimal solution of BLPM with constant objective function and restrictions (12)-(20), (21) corresponds to a feasible solution of nontrivial convex p-cover.

3 Conclusion

We have proposed a binary linear programming formulation for convex covering problems of graphs. This yields that problems of determination of invariants $\varphi_{c}^{\min }(G), \theta_{c}^{\min }(G), \varphi_{c n}^{\min }(G), \theta_{c n}^{\min }(G), \varphi_{c n}^{\max }(G), \theta_{c n}^{\max }(G)$, and problems of existence of convex p-covers, convex p-partitions, nontrivial convex p-covers and nontrivial convex p-partitions of a given graph G can be solved by using linear programming software packages, that essentially simplifies the use of convex covers of graph in applied problem solving.

References

[1] Boltyansky V., Soltan P. Combinatorial geometry of various classes of convex sets. Shtiintsa, Kishinev, 1978 (in Russian).
[2] Schrijver A. Theory of linear and integer programming. John Wiley \& Sons, 1998.
[3] Nemhauser G., Wolsey L. A. Integer and combinatorial optimization. John Wiley \& Sons, 1999.
[4] Artigas D., Dantas S., Dourado M. C., Szwarcfiter J. L. Convex covers of graphs. Matemática Contemporânea, Sociedade Brasileira de Matemática, 39 (2010), 31-38.
[5] Artigas D., Dantas S., Dourado M. C., Szwarcfiter J. L. Partitioning a graph into convex sets. Discrete Mathematics, 311 (2011), 1968-1977.
[6] Grippo L. N., Matamala M., Safe M. D., Stein M. J. Convex p-partitions of bipartite graphs. Theoretical Computer Science, 609 (2016), 511-514.
[7] Buzatu R., Cataranciuc S. Convex graph covers. Computer Science Journal of Moldova, 23 n. 3 (69) (2015), 251-269.
[8] Buzatu R., Cataranciuc S. Nontrivial convex covers of trees. Bulletin of Academy of Sciences of Republic of Moldova, Mathematics, n. 3 (82) (2016), 72-81.
[9] Buzatu R., Cataranciuc S. On nontrivial covers and partitions of graphs by convex sets. Computer Science Journal of Moldova, 26 n. 1 (76) (2018), 3-14.

Radu Buzatu
Received June 14, 2019
Moldova State University
60 A. Mateevici, MD-2009, Chişinău, Republic of Moldova
E-mail: radubuzatu@gmail.com

[^0]: © Radu Buzatu, 2019

