Binary linear programming approach to graph convex covering problems

Radu Buzatu

Abstract. A binary linear programming (BLP) formulation of graph convex covering problems is proposed for the first time. Since the general convex covering problem of a graph is NP-complete, BLP approach will facilitate the use of convex covers and partitions of graphs in different real applications.

Mathematics subject classification: 05A18, 68R10, 90C05, 90C27, 90C35. Keywords and phrases: binary linear programming, convex cover, convex partition, graph.

1 Introduction

We denote by G = (V; E) a simple undirected graph with vertex set V and edge set E. A set $S \subseteq V$ is called *nontrivial* if $3 \leq |S| \leq |V| - 1$.

Let us remind some notions defined in [1]. The *metric segment*, denoted by $\langle v, u \rangle$, is the set of all vertices lying on a shortest path between vertices $v, u \in V$. A set $S \subseteq V$ is called *convex* if $\langle v, u \rangle \subseteq S$ for any two vertices $v, u \in S$.

The family of sets $\mathcal{P}(G)$ is called a *convex cover* of graph G = (V; E) if the following properties hold:

- a) every set of $\boldsymbol{\mathcal{P}}(G)$ is convex in G;
- b) $V = \bigcup_{S \in \mathcal{P}(G)} S;$
- c) $S \not\subseteq \bigcup_{\substack{C \in \mathcal{P}(G) \\ C \neq S}} C$ for every set $S \in \mathcal{P}(G)$.

If in addition to properties a), b) and c), the family $\mathcal{P}(G)$ satisfies the property d), set out below, then $\mathcal{P}(G)$ is said to be a *nontrivial convex cover* of G.

- d) $3 \leq |S| \leq |V| 1$ for each set $S \in \mathcal{P}(G)$;
- e) $S \cap C = \emptyset$ for any two sets $S, C \in \mathcal{P}(G), S \neq C$.

If a convex cover $\mathcal{P}(G)$ satisfies the property e), then this family is called a *convex* partition of G. Similarly, if $\mathcal{P}(G)$ is a convex partition that satisfies the property d), then it is called a *nontrivial convex partition* of G. If a convex cover $\mathcal{P}(G)$ consists of p sets, then we say that this family is a *convex p-cover* of G. By analogy, *convex* p-partition, nontrivial convex p-partition and nontrivial convex p-cover of graph G are defined. A vertex $v \in V$ is called *resident* in $\mathcal{P}(G)$ if v belongs to only one set of $\mathcal{P}(G)$.

[©]Radu Buzatu, 2019

Deciding whether a graph G has a convex p-cover for a fixed $p \ge 2$ is said to be convex p-cover problem. The general convex p-cover problem of a graph is NP-complete [4,7]. It remains NP-complete even if nontrivial or pairwise disjoint convex sets are considered [5,7]. Several classes of graphs for which there exist convex p-covers or convex p-partitions were identified in [4–6,8,9]. Particularly, it is NP-complete to decide whether a graph can be partitioned into an arbitrary number, greater than or equal to two, of nontrivial convex sets [9]. At the same time, there is a polynomial algorithm that determines whether a graph can be covered by an arbitrary number of nontrivial convex sets [9].

Integer linear programming is a good approach for solving NP-hard combinatorial problems. Consequently, it is of interest to propose an integer linear programming formulation for graph convex covering problems. The goal of linear programming is to optimize a linear function subject to linear constraints. In this context, we will formulate a binary linear programming (BLP) model for optimization problems related to convex covers and partitions of graphs. Several good survey on integer linear programming are available, e.g., [2,3].

The minimum convex cover number $\varphi_c^{min}(G)$ of a graph G is the least $p \geq 2$ for which G has a convex p-cover. Likewise, the minimum convex partition number $\theta_c^{min}(G)$ of G is the least $p \geq 2$ for which G has a convex p-partition.

In the same way, we define the following numbers:

 $\varphi_{cn}^{min}(G)$ is minimum nontrivial convex cover number of G;

 $\theta_{cn}^{min}(G)$ is minimum nontrivial convex partition number of G;

 $\varphi_{cn}^{max}(G)$ is maximum nontrivial convex cover number of G;

 $\theta_{cn}^{max}(G)$ is maximum nontrivial convex partition number of G.

Additional information about these invariants can be found in papers [7–9]. It is clear that for any graph G, $\varphi_c^{min}(G) \leq \theta_c^{min}(G)$. If G can be partitioned into nontrivial convex sets, then $\theta_c^{min}(G) \leq \theta_{cn}^{min}(G)$ and:

$$\varphi_{cn}^{min}(G) \le \theta_{cn}^{min}(G) \le \theta_{cn}^{max}(G) \le \varphi_{cn}^{max}(G).$$

Anyway, if G can be covered by nontrivial convex sets, then:

$$\varphi_c^{\min}(G) \le \varphi_{cn}^{\min}(G) \le \varphi_{cn}^{\max}(G).$$

The problems of determining the numbers $\varphi_c^{min}(G)$, $\theta_c^{min}(G)$, $\varphi_{cn}^{min}(G)$, $\theta_{cn}^{min}(G)$, $\varphi_{cn}^{max}(G)$ and $\theta_{cn}^{max}(G)$ are denoted by MinCC, MinCP, MinNCC, MinNCP, MaxNCC and MaxNCP, respectively.

2 BLP formulation

In order to solve graph convex covering problems efficiently a BLP approach is proposed.

Consider a graph G with vertex set $V = \{v_1, v_n, ..., v_n\}$. We define n subsets S_1 , $S_2, ..., S_n$ of V, and two types of binary variables. For each vertex $v_i \in V$ there are

variables $x_{ij} \in \{0, 1\}$, indicating whether v_j will belong or not to S_i . Additionally, there are variables $y_{lij} \in \{0, 1\}$ which will enforce the convexity constraints of S_l . We define

$$x_{ij} = \begin{cases} 1, & v_j \in S_i \\ 0, & v_j \notin S_i \end{cases}$$

and

$$y_{lij} = \begin{cases} 1, & \{v_i, v_j\} \subseteq S_l \\ 0, & \{v_i, v_j\} \not\subseteq S_l \end{cases}$$

We denote by X the set of all variables x_{ij} and by Y the set of all variables y_{lij} . The BLP model (BLPM) that corresponds to MinCP is presented below.

minimize
$$\sum_{i=1}^{n} x_{ii}$$
 (1)

subject to
$$\sum_{i=1}^{n} x_{ii} \ge 2$$
 (2)

$$\sum_{i=1}^{n} x_{ij} = 1, \qquad \qquad j = \overline{1, n} \tag{3}$$

$$\sum_{v_k \in \langle v_i, v_j \rangle} x_{lk} - |\langle v_i, v_j \rangle| y_{lij} \ge 0, \qquad l, i, j = \overline{1, n}$$
(4)

$$x_{li} + x_{lj} - y_{lij} \le 1,$$
 $l, i, j = 1, n$ (5)

$$y_{lij} - x_{li} \le 0, \qquad \qquad l, i, j = \overline{1, n} \tag{6}$$

$$y_{lij} - x_{lj} \le 0, \qquad l, i, j = \overline{1, n} \tag{7}$$

$$x_{ij} - x_{ii} \le 0, \qquad \qquad i, j = \overline{1, n} \tag{8}$$

$$x_{ij}, y_{lij} \in \{0, 1\},$$
 $l, i, j = \overline{1, n}$ (9)

Theorem 1. Each feasible solution of BLPM with objective function (1) and restrictions (2)-(9) corresponds to a feasible solution of MinCP and vice versa.

Proof. Let (X, Y) be a feasible solution of the BLPM. Each entry in (X, Y) is zero or one because of the integrality condition (9). Constraints (8) ensure that if there is a vertex v_j belonging to S_i , then $v_i \in S_i$. Restrictions (3) require that each vertex $v_i \in V$ belongs to exactly one set of S_1, S_2, \ldots, S_n . Considering these constraints, we define the family $\mathbf{\mathcal{P}} = \{S_i : S_i \neq \emptyset, 1 \leq i \leq n\}$ that partitions graph G. By restriction (2), $\mathbf{\mathcal{P}}$ consists of at least two sets. It follows that $\mathbf{\mathcal{P}}$ satisfies properties b), c) and e). Moreover, constraints (4)–(7) yield that if both v_i and v_j are in the same set S_l then $\langle v_i, v_j \rangle \subseteq S_l$, thus fulfilling the convexity property a) for each set of $\mathbf{\mathcal{P}}$. This therefore means that $\mathbf{\mathcal{P}}$ is an admissible convex partition of G.

Let $\mathcal{P}(G)$ be a convex partition of G such that $|\mathcal{P}(G)| \geq 2$, in other words, it is a feasible solution of MinCP. For each set $S \in \mathcal{P}(G)$, we choose one resident vertex $v_i \in S$ in $\mathcal{P}(G)$ and set x_{ij} to one if $v_j \in S$, otherwise set to zero. In the same manner, we set y_{lij} to one if $x_{li} = 1$ and $x_{lj} = 1$, otherwise set to zero. In light of all the above arguments, we can conclude that (X, Y) does not violate any of the constraints. For this reason, (X, Y) is a feasible solution for the BLP. **Corollary 1.** An optimal solution of BLPM with objective function (1) and restrictions (2)-(9) corresponds to an optimal solution of MinCP.

Now we present the BLP model for MaxNCC.

m

su

aximize	$\sum_{i=1}^{n} x_{ii}$		(10)
bject to	$\sum_{i=1}^{n} x_{ii} \ge 2$		(11)
	$\sum_{j=1, j \neq i}^{n} x_{ij} - 2x_{ii} \ge 0,$	$i = \overline{1, n}$	(12)
	$\sum_{i=1, i \neq j}^{n} x_{ij} + M x_{jj} \ge 1,$	$j = \overline{1, n}$	(13)
	$\sum_{i=1, i \neq j}^{n} x_{ij} + M x_{jj} \le M,$	$j = \overline{1, n}$	(14)
	$\sum_{v_k \in \langle v_i, v_j \rangle} x_{lk} - \langle v_i, v_j \rangle y_{lij} \ge 0,$	$l,i,j=\overline{1,n}$	(15)
	$x_{li} + x_{lj} - y_{lij} \le 1,$	$l,i,j=\overline{1,n}$	(16)
	$y_{lij} - x_{li} \le 0,$	$l,i,j=\overline{1,n}$	(17)
	$y_{lij} - x_{lj} \le 0,$	$l,i,j=\overline{1,n}$	(18)
	$x_{ij} - x_{ii} \le 0,$	$i,j=\overline{1,n}$	(19)
	$x_{ij}, y_{lij} \in \{0, 1\},$	$l,i,j=\overline{1,n}$	(20)

Theorem 2. Each feasible solution of BLPM with objective function (10) and restrictions (11)-(20) corresponds to a feasible solution of MaxNCC and vice versa.

Proof. Let (X, Y) be a feasible solution of the BLPM. Restriction (20) enforce the binary nature of the variables x_{ij} and y_{lij} . By constraints (19), each nonempty set S_i contains the vertex v_i . Moreover, constraints (13) and (14) mean that for each nonempty set S_j the vertex v_j is not contained in $\bigcup_{1 \le i \le n, i \ne j} S_i$, and there is no vertex v_i such that $v_i \notin \bigcup_{1 \le j \le n} S_j$. Considering these constraints, we define the family $\mathbf{\mathcal{P}} = \{S_i : S_i \ne \emptyset, 1 \le i \le n\}$ that covers graph G. By restriction (11), $|\mathbf{\mathcal{P}}| \ge 2$. Constraints (12) yield that every set $S_i \in \mathbf{\mathcal{P}}$ has at least three elements. This ensures that every set of $\mathbf{\mathcal{P}}$ is nontrivial. It is clear that $\mathbf{\mathcal{P}}$ satisfies properties b), c) and d). The remaining constraints (15)–(18) imply that each set of $\mathbf{\mathcal{P}}$ is convex, thus property a) also holds. Therefore, for a feasible solution of the BLPM there is a feasible solution of MaxNCC.

As in the proof of Theorem 1, it can easily be verified that for a feasible solution of MaxNCC there exists a feasible solution of the BLPM. $\hfill \Box$

Corollary 2. An optimal solution of BLPM with objective function (10) and restrictions (11)-(20) corresponds to an optimal solution of MaxNCC.

Regarding other optimization problems MinCC, MinNCC, MinNCP and MaxNCP, we obtain the following corollaries:

Corollary 3. An optimal solution of BLPM with objective function (1) and restrictions (11), (13)–(20) corresponds to an optimal solution of MinCC.

Corollary 4. An optimal solution of BLPM with objective function (1) and restrictions (11)-(20) corresponds to an optimal solution of MinNCC.

Corollary 5. An optimal solution of BLPM with objective function (1) and restrictions (2)-(9), (12) corresponds to an optimal solution of MinNCP.

Corollary 6. An optimal solution of BLPM with objective function (10) and restrictions (2)-(9), (12) corresponds to an optimal solution of MaxNCP.

The above showed is a description of BLP models designed to solve optimization problems of convex cover problem of graphs. We should mention that similar BLP models can be formulated for general convex *p*-cover problems of graphs.

For example, by replacing objective function (1) with a constant and restriction (2) with

$$\sum_{i=1}^{n} x_{ii} = p \tag{21}$$

we obtain the BLP formulation of convex p-partition problem with constant objective function and restrictions (3)–(9), (21).

In view of proofs of Theorems 1 and 2, the correctness of the following corollaries follows:

Corollary 7. An optimal solution of BLPM with constant objective function and restrictions (3)-(9), (21) corresponds to a feasible solution of convex p-partition.

Corollary 8. An optimal solution of BLPM with constant objective function and restrictions (3)–(9), (12), (21) corresponds to a feasible solution of nontrivial convex *p*-partition.

Corollary 9. An optimal solution of BLPM with constant objective function and restrictions (13)–(20), (21) corresponds to a feasible solution of convex p-cover.

Corollary 10. An optimal solution of BLPM with constant objective function and restrictions (12)-(20), (21) corresponds to a feasible solution of nontrivial convex *p*-cover.

3 Conclusion

We have proposed a binary linear programming formulation for convex covering problems of graphs. This yields that problems of determination of invariants $\varphi_c^{min}(G)$, $\theta_c^{min}(G)$, $\varphi_{cn}^{min}(G)$, $\varphi_{cn}^{max}(G)$, $\theta_{cn}^{max}(G)$, and problems of existence of convex *p*-covers, convex *p*-partitions, nontrivial convex *p*-covers and nontrivial convex *p*-partitions of a given graph *G* can be solved by using linear programming software packages, that essentially simplifies the use of convex covers of graph in applied problem solving.

References

- BOLTYANSKY V., SOLTAN P. Combinatorial geometry of various classes of convex sets. Shtiintsa, Kishinev, 1978 (in Russian).
- [2] SCHRIJVER A. Theory of linear and integer programming. John Wiley & Sons, 1998.
- [3] NEMHAUSER G., WOLSEY L. A. Integer and combinatorial optimization. John Wiley & Sons, 1999.
- [4] ARTIGAS D., DANTAS S., DOURADO M. C., SZWARCFITER J. L. Convex covers of graphs. Matemática Contemporânea, Sociedade Brasileira de Matemática, 39 (2010), 31–38.
- [5] ARTIGAS D., DANTAS S., DOURADO M. C., SZWARCFITER J. L. Partitioning a graph into convex sets. Discrete Mathematics, 311 (2011), 1968–1977.
- [6] GRIPPO L. N., MATAMALA M., SAFE M. D., STEIN M. J. Convex p-partitions of bipartite graphs. Theoretical Computer Science, 609 (2016), 511–514.
- BUZATU R., CATARANCIUC S. Convex graph covers. Computer Science Journal of Moldova, 23 n.3 (69) (2015), 251–269.
- [8] BUZATU R., CATARANCIUC S. Nontrivial convex covers of trees. Bulletin of Academy of Sciences of Republic of Moldova, Mathematics, n.3 (82) (2016), 72–81.
- [9] BUZATU R., CATARANCIUC S. On nontrivial covers and partitions of graphs by convex sets. Computer Science Journal of Moldova, **26 n.1 (76)** (2018), 3–14.

RADU BUZATU Moldova State University 60 A. Mateevici, MD-2009, Chişinău, Republic of Moldova E-mail: *radubuzatu@gmail.com* Received June 14, 2019