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Abstract. In this work, we study the existence of positive periodic solutions for
fourth-order nonlinear neutral differential equations with variable coefficients. The
results are established by using the Krasnoselskii’s fixed point theorem. An example
is given to illustrate this work.
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1 Introduction

Delay differential equations have received increasing attention during recent years
since these equations have been proved to be valuable tools in the modeling of many
phenomena in various fields of science and engineering, see the monograph [9, 22]
and the papers [1]-[8],[10]-[28],[30]-[33] and the references therein.

Recently, the first-order nonlinear neutral functional differential equation

d

dt
(x(t) − cx(t− τ(t))) = −a(t)x(t) + f(t, x(t− τ(t))),

has been investigated in [25] where |c| < 1. By using Krasnoselskii’s fixed point
theorem, the existence of positive ω-periodic solutions has been established. Ren,
Siegmund and Chen [28] discussed the existence of positive ω-periodic solutions for
the following neutral functional differential equation

d3

dt3
(x(t) − cx(t− τ(t))) = −a(t)x(t) + f(t, x(t− τ(t))),

where |c| < 1. By employing Krasnoselskii’s fixed point theorem, the authors ob-
tained existence results for positive ω-periodic solutions.

In the present article, we study the existence of positive ω-periodic solutions for
the fourth-order nonlinear neutral differential equations

d4

dt4
(x(t) − c(t)x(t− τ)) = a(t)x(t) − f(t, x(t− τ)). (1)
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Throughout this paper we assume that c ∈ C(R,R), a ∈ C(R, (0,∞)), f ∈
C(R × R,R), τ, ω > 0, c and a are ω-periodic functions, f is ω-periodic with re-
spect to first variable. To show the existence of positive ω-periodic solutions, we
transform (1) into integral equation and then use Krasnoselskii’s fixed point theo-
rem. The obtained integral equations split in the sum of two mappings, one is a
contraction and the other is compact.

In this paper, we have two main contributions comparing with the existing re-
sults. First, instead of constant c we take variable coefficient c(t). Second, in
addition to |c(t)| < 1, we consider the range |c(t)| > 1 for c(t), which is new in the
literature.

The organization of this paper is as follows. In section 2, we introduce some
notations and lemmas, and state some preliminary results needed in later sections.
Then we give the Green’s function of (1) which plays an important role in this paper.
Also, we present the inversion of (1), and Krasnoselskii’s fixed point theorem. For
details on Krasnoselskii’s theorem we refer the reader to [29]. In section 3, we present
our main results on existence of positive ω-periodic solutions of (1). An example is
also given to illustrate this work.

2 Preliminaries

For ω > 0, let Cω be the set of all continuous scalar functions x, periodic in t of
period ω > 0. Then (Cω, ‖·‖) is a Banach space with the supremum norm

‖x‖ = sup
t∈R

|x(t)| = sup
t∈[0,ω]

|x(t)| .

Define

C−

ω = {x ∈ Cω, x < 0} .
Denote

M = sup{a(t) : t ∈ [0, ω]}, m = inf{a(t) : t ∈ [0, ω]}, ρ =
4
√
M.

Lemma 1 ([7]). The equation

d4

dt4
u(t) −Mu(t) = h(t), h ∈ C−

ω ,

has a unique ω-periodic solution

u(t) =

∫ t+ω

t

G(t, s)(−h(s))ds,

where

G(t, s) =
exp(−ρ(s− t)) + exp(ρ(s− t− ω))

4ρ3(1 − exp(−ρω))
+

cos(ρ(t− s+ ω
2 ))

4ρ3 sin(ρω
2 )

, s ∈ [t, t+ ω].
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Lemma 2 ([7]). Green’s function G satisfies the following properties

∫ t+ω

t

G(t, s)ds =
1

M
,

and if max{a(t) : t ∈ [0, ω]} < (π
ω
)4, then

G(t, s) > 0, ∀(t, s) ∈ [0, ω] × [t, t+ ω] .

Lemma 3 ([7]). If max{a(t) : t ∈ [0, ω]} < (π
ω
)4 holds, then the equation

d4

dt4
u(t) − a(t)u(t) = h(t), h ∈ C−

ω ,

has a unique positive ω-periodic solution

u (t) = (Ph)(t) = (I − TB)−1(Th)(t),

where

(Th)(t) =

∫ t+ω

t

G(t, s)(−h(s))ds, (Bu)(t) = [−M + a(t)] u(t).

Lemma 4 ([7]). If max{a(t) : t ∈ [0, ω]} < (π
ω
)4 holds, then P is completely contin-

uous and

0 < (Th)(t) ≤ (Ph)(t) ≤ M

m
‖Th‖, ∀h ∈ C−

ω .

The following theorem is essential for our results on existence of positive periodic
solution of (1).

Theorem 1. If x ∈ Cω, then x is a solution of (1) if and only if

x(t) = c(t)x(t− τ) + P (−f(t, x(t− τ)) + c(t)a(t)x(t − τ)) (2)

Proof. Let x ∈ Cω be a solution of (1). The (1) can be rewritten as

d4

dt4
(x(t) − c(t)x(t− τ)) −M(x(t) − c(t)x(t− τ))

= (−M + a(t))(x(t) − c(t)x(t − τ)) − f(t, x(t− τ)) + c(t)a(t)x(t − τ)

= B(x(t) − c(t)x(t− τ)) − f(t, x(t− τ)) + c(t)a(t)x(t − τ).

From Lemma 1, we have

x(t) − c(t)x(t− τ)

= TB(x(t) − c(t)x(t− τ)) + T (−f(t, x(t− τ)) + c(t)a(t)x(t− τ)).

This yields

(I − TB)(x(t) − c(t)x(t− τ)) = T (−f(t, x(t− τ)) + c(t)a(t)x(t − τ)).
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Therefore

x(t) − c(t)x(t− τ) = (I − TB)−1T (−f(t, x(t− τ)) + c(t)a(t)x(t − τ))

= P (−f(t, x(t− τ)) + c(t)a(t)x(t− τ)).

Obviously

x(t) = c(t)x(t− τ) + P (−f(t, x(t− τ)) + c(t)a(t)x(t− τ)).

This completes the proof.

Corollary 1. If x ∈ Cω, then x is a solution of (1) if and only if

x(t) =
1

c(t+ τ)
[x(t+ τ) + P (−c(t+ τ)a(t+ τ)x(t) + f(t+ τ, x(t)))] . (3)

Lastly in this section, we state Krasnoselskii’s fixed point theorem which enables
us to prove the existence of positive ω-periodic solutions to (1). For its proof we
refer the reader to ([29], p. 31).

Lemma 5 (Krasnoselskii [29]). Let D be a closed convex nonempty subset of a
Banach space (B, ‖·‖). Suppose that A and B map D into B such that

(i) Ax+By ∈ D ∀x, y ∈ D,
(ii) A is completely continuous operator in D,
(iii) B is a contraction operator.

Then there exists z ∈ D with z = Az +Bz.

3 Positive Periodic solutions

To apply Lemma 5, we need to define a Banach space B, a closed convex subset
D of B and construct two mappings, one is contraction and the other is a completely
continuous. So we let (B, ‖·‖) = (Cω, ‖·‖) and D = {ϕ ∈ Cω : M1 ≤ ϕ ≤M2}, where
M1 is non-negative constant and M2 is positive constant.

3.1 Positive periodic solutions in the case |c(t)| > 1

In this subsection, we obtain the existence of positive ω-periodic solution for (1)
by considering the two cases; 1 < c(t) <∞ and −∞ < c(t) < −1 for all t ∈ [0, ω].

Theorem 2. Suppose that max{a(t) : t ∈ [0, ω]} < (π
ω
)4, 1 < c1 ≤ c(t) ≤ c2 < ∞

and

m ≤ c(t)a(t)x − f(t, x) ≤ c1M, ∀(t, x) ∈ [0, ω] ×
[

m

(c2 − 1)M
,

c1M

(c1 − 1)m

]
. (4)

Then (1) has at least one positive ω-periodic solution x in the subset D1 of B where

D1 =
{
ϕ ∈ Cω : m

(c2−1)M ≤ ϕ ≤ c1M
(c1−1)m

}
.
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Proof. We express (3) as

ϕ(t) = (B1ϕ)(t) + (A1ϕ)(t) := (H1ϕ)(t),

where A1, B1 : D1 → B are defined by

(A1ϕ)(t) =
1

c(t+ τ)
P (−c(t+ τ)a(t+ τ)ϕ(t) + f(t+ τ, ϕ(t))),

and

(B1ϕ)(t) =
ϕ(t+ τ)

c(t+ τ)
.

It is obvious that A1ϕ and B1ϕ are continuous and ω-periodic. Now we prove that
A1x + B1y ∈ D1, ∀x, y ∈ D1. By Corollary 1, Lemma 4 and the condition (4) we
obtain

(A1x) (t) + (B1y) (t)

=
1

c(t+ τ)
[P (−c(t+ τ)a(t+ τ)x(t) + f(t+ τ, x(t))) + y(t+ τ)]

≤ 1

c1

[
M

m
‖T (−c(t+ τ)a(t+ τ)x(t) + f(t+ τ, x(t)))‖ +

c1M

(c1 − 1)m

]

=
M

mc1
max
t∈[0,ω]

∣∣∣∣
∫ t+ω

t

G(t, s)(c(s + τ)a(s + τ)x(s) − f(s+ τ, x(s)))ds

∣∣∣∣ +
M

(c1 − 1)m

≤ M

mc1

∫ t+ω

t

G(t, s)c1Mds+
M

(c1 − 1)m

≤ M

mc1
c1M

1

M
+

M

(c1 − 1)m
=

c1M

(c1 − 1)m
. (5)

On the other hand

(A1x) (t) + (B1y) (t)

=
1

c(t+ τ)
[P (−c(t+ τ)a(t+ τ)x(t) + f(t+ τ, x(t))) + y(t+ τ)]

≥ 1

c2

[
T (−c(t+ τ)a(t+ τ)x(t) + f(t+ τ, x(t))) +

m

(c2 − 1)M

]

≥ 1

c2

∫ t+ω

t

G(t, s)(c(s + τ)a(s+ τ)x(s) − f(s+ τ, x(s)))ds +
1

c2

m

(c2 − 1)M

≥ 1

c2

∫ t+ω

t

G(t, s)mds +
1

c2

m

(c2 − 1)M

≥ 1

c2
m

1

M
+

1

c2

m

(c2 − 1)M
=

m

(c2 − 1)M
. (6)

Combining (5) and (6), we obtain A1x + B1y ∈ D1, ∀x, y ∈ D1. For ϕ,ψ ∈ D1, we
have

|(B1ϕ)(t) − (B1ψ)(t)| =

∣∣∣∣
ϕ(t+ τ)

c(t+ τ)
− ψ(t+ τ)

c(t+ τ)

∣∣∣∣
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≤ 1

c1
|ϕ(t+ τ) − ψ(t+ τ)|

≤ 1

c1
‖ϕ− ψ‖ ,

which implies that ‖B1ϕ−B1ψ‖ ≤ 1
c1
‖ϕ− ψ‖. Since 0 < 1

c1
< 1, B1 is a contraction

on D1. From Lemma 4, we know that P is completely continuous, so is A1. By
Lemma 5 we obtain that A1 + B1 has a fixed point x ∈ D1, i.e. (1) has a positive
ω-periodic solution x ∈ D1.

Theorem 3. Suppose that max{a(t) : t ∈ [0, ω]} < (π
ω
)4, −∞ < c3 ≤ c(t) ≤ c4 < −1

and
c3

c4
M < f(t, x) − c(t)a(t)x ≤ −c4m, ∀(t, x) ∈ [0, ω] × [0, 1]. (7)

Then (1) has at least one positive ω-periodic solution x in the subset D̃2 of B where
D̃2 = {ϕ ∈ Cω : 0 < ϕ ≤ 1}.

Proof. Let D2 = {ϕ ∈ Cω : 0 ≤ ϕ ≤ 1}. We define A1, B1 : D2 → B as follows

(A1ϕ)(t) =
−1

c(t+ τ)
P (c(t+ τ)a(t+ τ)ϕ(t) − f(t+ τ, ϕ(t))),

and

(B1ϕ)(t) =
ϕ(t+ τ)

c(t+ τ)
.

Now we prove that A1x+B1y ∈ D2, ∀x, y ∈ D2. By Corollary 1, Lemma 4 and the
condition (7) we obtain

(A1x) (t) + (B1y) (t)

=
−1

c(t+ τ)
P (c(t+ τ)a(t+ τ)x(t) − f(t+ τ, x(t))) +

y(t+ τ)

c(t+ τ)

≤ −1

c4

M

m
‖T (c(t+ τ)a(t+ τ)x(t) − f(t+ τ, x(t)))‖

=
−M
mc4

max
t∈[0,ω]

∣∣∣∣
∫ t+ω

t

G(t, s)(f(s + τ, x(s)) − c(s+ τ)a(s + τ)x(s))ds

∣∣∣∣

≤ −M
mc4

∫ t+ω

t

G(t, s)(−c4m)ds

≤ −M
mc4

(−c4m)
1

M
= 1. (8)

On the other hand

(A1x) (t) + (B1y) (t)

=
−1

c(t+ τ)
P (c(t+ τ)a(t+ τ)x(t) − f(t+ τ, x(t))) +

y(t+ τ)

c(t+ τ)
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≥ −1

c3
T (c(t+ τ)a(t+ τ)x(t) − f(t+ τ, x(t))) +

1

c4

≥ −1

c3

∫ t+ω

t

G(t, s)(f(s + τ, x(s)) − c(s+ τ)a(s + τ)x(s))ds +
1

c4

≥ −1

c3

∫ t+ω

t

G(t, s)(
c3

c4
M)ds+

1

c4

≥ −1

c3
(
c3

c4
M)

1

M
+

1

c4
= 0. (9)

Combining (8) and (9), we obtain A1x+B1y ∈ D2, for all x, y ∈ D2. For ϕ,ψ ∈ D2,
we have

|(B1ϕ)(t) − (B1ψ)(t)| =

∣∣∣∣
ϕ(t+ τ)

c(t+ τ)
− ψ(t+ τ)

c(t+ τ)

∣∣∣∣

≤ −1

c4
|ϕ(t+ τ) − ψ(t+ τ)|

≤ −1

c4
‖ϕ− ψ‖ ,

which implies that ‖B1ϕ−B1ψ‖ ≤ −1
c4

‖ϕ− ψ‖. Since 0 < −1
c4
< 1, B1 is a contrac-

tion on D2. From Lemma 4, we know that P is completely continuous, so is A1. By
Lemma 5 we obtain that A1 +B1 has a fixed point x ∈ D2, i.e. (1) has a nonnegative
ω-periodic solution x with 0 ≤ x(t) ≤ 1. Since. f(t, x)− c(t)a(t)x > c3

c4
M , it is easy

to see that x(t) > 0, i.e. (1) has positive ω-periodic solution x ∈ D̃2.

3.2 Positive periodic solutions in the case |c(t)| < 1

In this subsection, we obtain the existence of a positive periodic solution for (1)
by considering the three cases; 0 < c(t) < 1, −1 < c(t) ≤ 0 and c(t) = 0 for all
t ∈ [0, ω].

Theorem 4. Suppose that max{a(t) : t ∈ [0, ω]} < (π
ω
)4, 0 < c5 ≤ c(t) ≤ c6 < 1

and

c5m ≤ f(t, x) − c(t)a(t)x ≤M, ∀(t, x) ∈ [0, ω] ×
[

c5m

(1 − c5)M
,

M

(1 − c6)m

]
. (10)

Then (1) has at least one positive ω-periodic solution x in the subset D3 of B where

D3 =
{
ϕ ∈ Cω : c5m

(1−c5)M ≤ ϕ ≤ M
(1−c6)m

}
.

Proof. We express (2) as

ϕ(t) = (B2ϕ)(t) + (A2ϕ)(t) := (H2ϕ)(t),

where A2, B2 : D3 → B are defined by

(A2ϕ)(t) = P (c(t)a(t)ϕ(t − τ) − f(t, ϕ(t− τ))),
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and

(B2ϕ)(t) = c(t)ϕ(t − τ).

It is obvious that A2ϕ and B2ϕ are continuous and ω-periodic. Now we prove that
A2x + B2y ∈ D3, ∀x, y ∈ D3. By Corollary 1, Lemma 4 and the condition (10) we
obtain

(A2x) (t) + (B2y) (t)

= P (c(t)a(t)x(t − τ) − f(t, x(t− τ))) + c(t)y(t− τ)

≤ M

m
‖T (c(t+ τ)a(t+ τ)x(t) − f(t+ τ, x(t)))‖ + c6

M

(1 − c6)m

=
M

m
max
t∈[0,ω]

∣∣∣∣
∫ t+ω

t

G(t, s)(f(s + τ, x(s)) − c(s+ τ)a(s + τ)x(s))ds

∣∣∣∣ + c6
M

(1 − c6)m

≤ M

m

∫ t+ω

t

G(t, s)Mds + c6
M

(1 − c6)m

≤ M

m
M

1

M
+ c6

M

(1 − c6)m
=

M

(1 − c6)m
. (11)

On the other hand

(A2x) (t) + (B2y) (t)

= P (c(t)a(t)x(t − τ) − f(t, x(t− τ))) + c(t)y(t− τ)

≥ T (c(t+ τ)a(t+ τ)x(t) − f(t+ τ, x(t))) + c5
c5m

(1 − c5)M

≥
∫ t+ω

t

G(t, s)(f(s + τ, x(s)) − c(s+ τ)a(s + τ)x(s))ds + c5
c5m

(1 − c5)M

≥
∫ t+ω

t

G(t, s)c5mds+ c5
c5m

(1 − c5)M

≥ c5m
1

M
+ c5

c5m

(1 − c5)M
=

c5m

(1 − c5)M
. (12)

Combining (11) and (12), we obtain A2x+B2y ∈ D3,∀x, y ∈ D3. For ϕ,ψ ∈ D3, we
have

|(B2ϕ)(t) − (B2ψ)(t)| = |c(t)ϕ(t − τ) − c(t)ψ(t − τ)|
≤ c6 |ϕ(t− τ) − ψ(t− τ)|
≤ c6 ‖ϕ− ψ‖ ,

which implies that ‖B2ϕ−B2ψ‖ ≤ c6 ‖ϕ− ψ‖. Since 0 < c6 < 1, B2 is a contraction
on D3. From Lemma 4, we know that P is completely continuous, so is A2. By
Lemma 5 we obtain that A2 + B2 has a fixed point x ∈ D3, i.e. (1) has a positive
ω-periodic solution x ∈ D3.
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Theorem 5. Suppose that max{a(t) : t ∈ [0, ω]} < (π
ω
)4, −1 < c7 ≤ c(t) ≤ c8 < 0

and
−c7M < f(t, x) − c(t)a(t)x ≤ m, ∀(t, x) ∈ [0, ω] × [0, 1]. (13)

Then (1) has at least one positive ω-periodic solution x in the subset D̃4 of B where
D̃4 = {ϕ ∈ Cω : 0 < ϕ ≤ 1}.

Proof. Let D4 = {ϕ ∈ Cω : 0 ≤ ϕ ≤ 1}. Now we prove that A2x+B2y ∈ D4, ∀x, y ∈
D4. By Corollary 1, Lemma 4 and the condition (13) we obtain

(A2x) (t) + (B2y) (t)

= P (c(t)a(t)x(t − τ) − f(t, x(t− τ))) + c(t)y(t− τ)

≤ M

m
‖T (c(t+ τ)a(t+ τ)x(t) − f(t+ τ, x(t)))‖

=
M

m
max
t∈[0,ω]

∣∣∣∣
∫ t+ω

t

G(t, s)(f(s+ τ, x(s)) − c(s + τ)a(s+ τ)x(s))ds

∣∣∣∣

≤ M

m

∫ t+ω

t

G(t, s)mds

≤ M

m
m

1

M
= 1. (14)

On the other hand

(A2x) (t) + (B2y) (t)

= P (c(t)a(t)x(t − τ) − f(t, x(t− τ))) + c(t)y(t− τ)

≥ T (c(t+ τ)a(t+ τ)x(t) − f(t+ τ, x(t))) + c7

≥
∫ t+ω

t

G(t, s)(f(s + τ, x(s)) − c(s+ τ)a(s + τ)x(s))ds + c7

≥
∫ t+ω

t

G(t, s)(−c7M)ds+ c7

≥ (−c7M)
1

M
+ c7 = 0. (15)

Combining (14) and (15), we obtain A2x + B2y ∈ D4, ∀x, y ∈ D4. From Lemma 4,
we know that P is completely continuous, so is A2. For ϕ,ψ ∈ D4, we have

|(B2ϕ)(t) − (B2ψ)(t)| = |c(t)ϕ(t − τ) − c(t)ψ(t − τ)|
≤ −c7 |ϕ(t− τ) − ψ(t− τ)|
≤ −c7 ‖ϕ− ψ‖ ,

which implies that ‖B2ϕ−B2ψ‖ ≤ −c7 ‖ϕ− ψ‖. Since 0 < −c7 < 1, B2 is a
contraction on D4. By Lemma 5 we obtain that A2 + B2 has a fixed point x ∈
D4, i.e. (1) has a nonnegative ω-periodic solution x with 0 ≤ x(t) ≤ 1. Since.
f(t, x) − c(t)a(t)x > −c7M , it is easy to see that x(t) > 0, i.e. (1) has positive
ω-periodic solution x ∈ D4.
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Theorem 6 ([7]). If max{a(t) : t ∈ [0, ω]} < (π
ω
)4 holds, c(t) = 0 and

0 < f(t, x) ≤M, ∀(t, x) ∈ [0, ω] ×
[
0,
M

m

]
.

Then (1) has at least one positive ω-periodic solution x with 0 < x(t) ≤ M
m

.

Example 1. Consider the forth-order nonlinear neutral differential equation

d4

dt4

(
x(t) −

(
2 +

1

0.9 − 0.1 cos2 t

)
x(t− 4π)

)

=
1

103

(
1 − 1

102
cos2 t

)
x(t) − 1

104
(2 + cos t) − 1

103
exp(sin(x(t− 4π))). (16)

Note that (16) of the form (1) with ω = 2π, c(t) = 2 + 1
0.9−0.1 cos2 t

, a(t) = 1
103 (1 −

1
102 cos2 t), f(t, x(t − 4π)) = 1

104 (2 + cos t) + 1
103 exp(sin(x(t − 4π))) and τ = 4π. It

is easy to verify that the conditions of Theorem 2 are satisfied with m = 99
105 and

M = 1
103 . Thus (16) has at least one positive ω-periodic solution.

Acknowledgements. The authors would like to thank the anonymous referee for
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