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The classification of a family of cubic differential

systems in terms of configurations of invariant lines

of the type (3, 3)
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Abstract. In this article we consider the class of non-degenerate real planar cubic
vector fields, which possess two real and two complex distinct infinite singularities
and invariant straight lines, including the line at infinity, of total multiplicity 7. In
addition, the systems from this class possess configurations of the type (3, 3). We
prove that there are exactly 16 distinct configurations of invariant straight lines for
this class and present corresponding examples for the realization of each one of the
detected configurations.
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1 Introduction and the statement of the Main Theorem

We consider here real polynomial differential systems

dx

dt
= P (x, y),

dy

dt
= Q(x, y), (1)

where P, Q are polynomials in x, y with real coefficients, i.e. P, Q ∈ R[x, y]. We
call degree of a system (1) max(deg(P ),deg(Q)). A cubic system (1) is of degree
three.

Let

X = P (x, y)
∂

∂x
+Q(x, y)

∂

∂y

be the polynomial vector field corresponding to a system (1).
An algebraic curve f(x, y) = 0 with f(x, y) ∈ C[x, y] is an invariant curve of a

system of the form (1) where P (x, y), Q(x, y) ∈ C[x, y] if and only if there exists
K[x, y] ∈ C[x, y] such that

X(f) = P (x, y)
∂f

∂x
+Q(x, y)

∂f

∂y
= f(x, y)K(x, y)

is an identity in C[x, y]. Since R ⊂ C, any system (1) over R generates a system of
differential equations over C.
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Using the embedding C
2 →֒ P2(C), (x, y) 7→ [x : y : 1] = [X : Y : Z], (x =

X/Z, y = Y/Z and Z 6= 0), we can compactify the differential equation Q(x, y)dy −
P (x, y)dx = 0 to an associated differential equation over the complex projective
plane. In fact the theory of Darboux in [13] is done for differential equations on the
complex projective plane.

We compactify the space of all the polynomial differential systems (1) of degree
n on S

N−1 with N = (n+1)(n+2) by multiplying the coefficients of each systems by
1/(

∑
(a2

ij + b2ij))
1/2, where aij and bij are the coefficients of the polynomials P (x, y)

and Q(x, y), respectively.

Definition 1 (see [29]). (1) We say that an invariant curve L : f(x, y) = 0,
f ∈ C[x, y] for a polynomial system (S) of degree n has multiplicity m if there exists
a sequence of real polynomial systems (Sk) of degree n converging to (S) in the
topology of S

N−1, N = (n+ 1)(n+ 2), such that each (Sk) has m distinct invariant
curves L1,k : f1,k(x, y) = 0, . . . ,Lm,k : fm,k(x, y) = 0 over C, deg(f) = deg(fi,k) = r,
converging to L as k → ∞, in the topology of PR−1(C), with R = (r + 1)(r + 2)/2
and this does not occur for m+ 1.

(2) We say that the line at infinity L∞ : Z = 0 of a polynomial system (S) of
degree n has multiplicity m if there exists a sequence of real polynomial systems
(Sk) of degree n converging to (S) in the topology of S

N−1, N = (n+1)(n+2), such
that each (Sk) has m − 1 distinct invariant lines L1,k : f1,k(x, y) = 0, . . . ,Lm−1,k :
fm−1,k(x, y) = 0 over C, converging to the line at infinity L∞ as k → ∞, in the
topology of P2(C) and this does not occur for m.

In this work we consider a particular case of invariant algebraic curves, namely
the invariant straight lines of systems (1). A straight line over C is the locus {(x, y) ∈
C

2|f(x, y) = 0} of an equation f(x, y) = ux + vy + w = 0 with (u, v) 6= (0, 0) and
(u, v,w) ∈ C

3. We note that by multiplying the equation by a non-zero complex
number λ, the locus of the equation does not change. So that we have a bijection
between the lines in C

2 and the points in P2(C)\{[0 : 0 : 1]}. This bijection induces
a topology on the set of lines in C

2 from the topology of P2(C) and hence we can
talk about a sequence of lines convergent to a line in C

2.

For an invariant line f(x, y) = ux + vy + w = 0 we denote â = (u, v,w) ∈ C
3

and by [â] = [u : v : w] the corresponding point in P2(C). We say that a sequence of
straight lines fi(x, y) = 0 converges to a straight line f(x, y) = 0 if and only if the
sequence of points [âi] converges to [â] = [u : v : w] in the topology of P2(C).

In view of the above definition of an invariant algebraic curve of a system (1), a
line f(x, y) = ux+ vy + w = 0 over C is an invariant line if and only if there exists
K(x, y) ∈ C[x, y] which satisfies the following identity in C[x, y]:

X(f) = uP (x, y) + vQ(x, y) = (ux+ vy + w)K(x, y).

We point out that if we have an invariant line f(x, y) = 0 over C it could happen
that multiplying the equation by a number λ ∈ C

∗ = C \ {0}, the coefficients of the
new equation become real, i.e. (uλ, vλ,wλ) ∈ R

3. In this case, along with the line
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f(x, y) = 0 sitting in C
2 we also have an associated real line, sitting in R

2 defined
by λf(x, y) = 0.

Note that, since a system (1) is with real coefficients, if its associated complex
system has a complex invariant straight line ux + vy + w = 0, then its conjugate
complex invariant straight line ūx+ v̄y + w̄ = 0 is also invariant.

A line in P2(C) is the locus in P2(C) of an equation F (X,Y,Z) = uX+vY +wZ =
0 where (u, v,w) ∈ C

3 and F (X,Y,Z) ∈ C[X,Y,Z]. The line Z = 0 in P2(C) is called
the line at infinity of the affine plane C

2. This line is an invariant manifold of the
complex differential equation on P2(C). Clearly the lines in P2(C) are in a one-to-one
correspondence with points [u : v : w] ∈ P2(C) and thus we have a topology on the
set of lines in P2(C). We can thus talk about a sequence of lines in P2(C) convergent
to a line in P2(C).

To a line f(x, y) = ux + vy + w = 0, (u, v) 6= (0, 0), f ∈ C[x, y], we associate
its projective completion F (X,Y,Z) = uX + vY + wZ = 0 under the embedding
C

2 →֒ P2(C), (x, y) 7→ [x : y : 1] = [X,Y,Z] indicated above.

We first remark that in the above definition we made an abuse of language. Indeed,
we talk about complex invariant lines of real systems. However we already said that
to a real system one can associate a complex system and to a differential equation
Q(x, y)dy − P (x, y)dx = 0 corresponds a differential equation in P2(C).

We remark that the above definition is a particular case of the definition of
geometric multiplicity given in [12], and namely the ”strong geometric multiplicity”
with the restriction that the corresponding perturbations are cubic systems.

The set CS of cubic differential systems depends on 20 parameters and for this
reason people began by studying particular subclasses of CS. Some of these sub-
classes are on cubic systems having invariant straight lines.

We mention here some papers on polynomial differential systems possessing in-
variant straight lines. For cubic systems see [4,5,7–11,18,20–22,26,35,36] and [27].

The existence of sufficiently many invariant straight lines of planar polynomial
systems could be used for proving the integrability of such systems. During the past
15 years several articles were published on this theme (see for example [30,31]).

According to [1], for a non-degenerate polynomial differential system of degree
m, the maximum number of invariant straight lines including the line at infinity
and taking into account their multiplicities is 3m. This bound is always reached
(see [12]).

In particular, the maximum number of the invariant straight lines (including the
line at infinity Z = 0) for cubic systems with a finite number of infinite singularities
is 9. In [20] the authors classified all cubic systems possessing the maximum number
of invariant straight lines taking into account their multiplicities according to their
configurations of invariant lines. The notion of configuration of invariant lines for a
polynomial differential system was first introduced in [29].

Definition 2 (see [32]). Consider a real planar polynomial differential system (1).
We call configuration of invariant straight lines of this system, the set of (complex)
invariant straight lines (which may have real coefficients), including the line at in-
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finity, of the system, each endowed with its own multiplicity and together with all
the real singular points of this system located on these invariant straight lines, each
one endowed with its own multiplicity.

In [20] the authors used a weaker notion, not taking into account the multiplicities
of real singularities. They detected 23 such configurations. Moreover, in [20] the
necessary and sufficient conditions for the realization of each one of 23 configurations
detected, are determined using invariant polynomials with respect to the action of the
group of affine transformations (Aff(2,R)) and time rescaling (i.e. Aff(2,R)×R

∗)).
In [4] the author detected another class of cubic systems whose configuration of
invariant lines was not detected in [20].

If two polynomial systems are equivalent under the action of the affine group and
time rescaling, clearly they must have the same kinds of configurations of invariant
lines. But it could happen that two distinct polynomial systems which are non-
equivalent modulo the action of the affine group and time rescaling have “the same
kind of configurations” of straight lines. We need to say when two configurations
are considered equivalent.

Definition 3 (see [6]). Suppose we have two cubic systems (S), (S′) both with a
finite number of singularities, finite and infinite, a finite set of invariant straight lines
Li : fi(x, y) = 0, i = 1, . . . , k, of (S) (respectively L′

i : f ′i(x, y) = 0, i = 1, . . . , k′, of
(S′)). We say that the two configurations C,C ′ of invariant lines, including the line
at infinity, of these systems are equivalent if there is a one-to-one correspondence φ
between the lines of C and C ′ such that:

(i) φ sends an affine line (real or complex) to an affine line and the line at
infinity to the line at infinity conserving the multiplicities of the lines and also sends
an invariant line with coefficients in R to an invariant line with coefficients in R;

(ii) for each line L : f(x, y) = 0 we have a one-to-one correspondence between
the real singular points on L and the real singular points on φ(L) conserving their
multiplicities and their order on these lines;

(iii) we have a one-to-one correspondence φ∞ between the real singular points
at infinity on the (real) lines at infinity of (S) and (S′) such that when we list in a
counter-clockwise wise sense the real singular points at infinity on (S) starting from
a point p on the Poincaré disk, p1 = p,...,pk, φ∞ preserves the multiplicities of the
singular points and preserves or reverses the orientation;

(iv) consider the total curves

F :
∏

Fj(X,Y,Z)miZm = 0,F ′ :
∏

F ′
j(X,Y,Z)m

′

iZm = 0

where Fi(X,Y,Z) = 0 (respectively F ′
i (X,Y,Z) = 0) are the projective completions

of, Li (respectively L′
i) and mi,m

′
i are the multiplicities of the curves Fi = 0, F ′

i = 0
and m,m′ are respectively the multiplicities of Z = 0 in the first and in the second
system. Then, there is a one-to-one correspondence ψ between the real singularities
of the curves F and F ′ conserving their multiplicities as singular points of the total
curves.
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Remark 1. In order to describe the various kinds of multiplicity for infinite singu-
lar points we use the concepts and notations introduced in [29]. Thus we denote
by “(a, b)” the maximum number a (respectively b) of infinite (respectively finite)
singularities which can be obtained by perturbation of a multiple infinite singular
point.

The configurations of invariant straight lines which were detected for some fam-
ilies of systems (1), were instrumental for determining the phase portraits of those
families. For example, in [30, 31] it was proved that we have a total of 57 distinct
configurations of invariant lines for quadratic systems with invariant lines of total
multiplicity greater than or equal to 4. These 57 configurations lead to the exis-
tence of 135 topologically distinct phase portraits. In [26, 27, 35, 36] it was proved
that cubic systems with invariant lines of total parallel multiplicity six or seven (the
notion of ”parallel multiplicity” could be found in [36]) have 113 topologically dis-
tinct phase portraits. This was done by using the various possible configurations of
invariant lines of these systems.

Definition 4. Suppose a cubic system (1) possesses 7 invariant straight lines, in-
cluding the line at infinity and taking into consideration their multiplicity. We say
that these lines form a configuration of type (3, 3) if there exists two triplets of
parallel lines, every set with different slope.

Notation 1. We shall denote by CSL2r2c∞
(3,3) the class of cubic systems which have

two real and two complex distinct infinite singularities and possess configurations of
invariant straight lines of the type (3, 3).

Our main result is the following one.

Main Theorem. The class CSL2r2c∞
(3,3) has a total of 16 non-equivalent configu-

rations of invariant lines Config. 7.1a–Config. 7.16a (see Figure 1). We prove
that each one of these configurations is realizable within CSL2r2c∞

(3,3) by constructing
examples for each one of the configurations Config. 7.1a–Config. 7.16a.

Notation 2. We give here the directions as how to read the pictures representing
the configurations. An invariant line with multiplicity k > 1 will appear in a config-
uration in bold face and will have next to it the number k. Real invariant straight
lines are represented by continuous lines, whereas complex invariant straight lines
are represented by dashed lines. The multiplicities of the real singular points of the
system located on the invariant lines, will be indicated next to the singular points.
The maximum number of parallel invariant straight lines will be shown to be three.
Whenever we have three parallel line, clearly at least for one of these will be real.
Due to an affine transformation we can assume this line to be x = 0 and after this
transformation the system will be of the form:

ẋ = x(a1 + 2a2x+ a3x
2), ẏ = Q(ã, x, y).

Here Q(x, y) = a00 + a10x + a01y + a20x
2 + 2a11xy + a02y

2 + a30x
3 + 3a21x

2y +
3a12xy

2 + a03y
3 and ã = (a00, a10, ..., a03). If two invariant lines of the triplet are
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Figure 1. Configurations of the type (3, 3) for cubic systems with 2 real and
2 complex infinite singularities
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complex, then the condition b2 − ac < 0 must hold. This implies that c 6= 0 and due
to time rescaling we may assume c = 1. Setting b2 − a = −u2 (a = b2 + u2) we
obtain the system

ẋ = x[(x+ b)2 + u2],

ẏ = Q(a, x, y).
(2)

which has the triplet of invariant lines: x = 0, x = −b+ iu, x = −b − iu. In case
b 6= 0 we place both complex invariant lines on one side of the real line. If b = 0 we
make the convention to place this line between the two complex lines.

2 Preliminaries

Consider real cubic systems, i.e. systems of the form:

ẋ = p0 + p1(x, y) + p2(x, y) + p3(x, y) ≡ P (a, x, y),

ẏ = q0 + q1(x, y) + q2(x, y) + q3(x, y) ≡ Q(a, x, y)
(3)

with variables x and y and real coefficients. The polynomials pi and qi (i = 0, 1, 2, 3)
are homogeneous polynomials of degree i in x and y:

p0 = a00, p3(x, y) = a30x
3 + 3a21x

2y + 3a12xy
2 + a03y

3,

p1(x, y) = a10x+ a01y, p2(x, y) = a20x
2 + 2a11xy + a02y

2,

q0 = b00, q3(x, y) = b30x
3 + 3b21x

2y + 3b12xy
2 + b03y

3,

q1(x, y) = b10x+ b01y, q2(x, y) = b20x
2 + 2b11xy + b02y

2.

Let a = (a00, a10, a01, . . . , a03, b00, b10, b01, . . . , b03) be the 20-tuple of the coefficients
of systems (3) and denote R[a, x, y] = R[a00, a10, a01, . . . , a03, b00, b10, b01, . . . , b03, x, y].

It is known that on the set of polynomial systems (1), in particular on the set
CS of all cubic differential systems (3), acts the group Aff (2,R) of affine trans-
formations on the plane [32]. For every subgroup G ⊆ Aff (2,R) we have an in-
duced action of G on CS. We can identify the set CS of systems (3) with a subset
of R

20 via the map CS−→ R
20 which associates to each system (3) the 20-tuple

a = (a00, a10, a01, . . . , a03, b00, b10, b01, . . . , b03) of its coefficients.
Let us consider the polynomials

Ci(a, x, y) = ypi(a, x, y) − xqi(a, x, y) ∈ R[a, x, y], i = 0, 1, 2, 3,

Di(a, x, y) =
∂

∂x
pi(a, x, y) +

∂

∂y
qi(a, x, y) ∈ R[a, x, y], i = 1, 2, 3.

Let us apply a translation x = x′ + x0, y = y′ + y0 to the polynomials
P (a, x, y) and Q(a, x, y). We obtain P̃ (ã(a, x0, y0), x

′, y′) = P (a, x′ + x0, y
′ + y0),

Q̃(ã(a, x0, y0), x
′, y′) = Q(a, x′ +x0, y

′ +y0). We construct the following polynomials

Ωi(a, x0, y0) ≡ Res x′

(
Ci

(
ã(a, x0, y0), x

′, y′
)
, C0

(
ã(a, x0, y0), x

′, y′
))
/(y′)i+1,

Ωi(a, x0, y0) ∈ R[a, x0, y0], (i = 1, 2, 3)
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and we denote

G̃i(a, x, y) = Ωi(a, x0, y0)|{x0=x, y0=y} ∈ R[a, x, y] (i = 1, 2, 3).

Notation 3. Let Gi(a,X, Y, Z) (i = 1, 2, 3) be the homogenization of G̃i(a, x, y), i.e.

G1(a,X, Y, Z) = Z8G̃1(a,X/Z, Y/Z),

G2(a,X, Y, Z) = Z10G̃2(a,X/Z, Y/Z),

G3(a,X, Y, Z) = Z12G̃3(a,X/Z, Y/Z),

and H(a,X, Y, Z) = gcd
(
G1(a,X, Y, Z), G2(a,X, Y, Z), G3(a,X, Y, Z)

)
in

R[a,X, Y, Z].

The geometrical meaning of these affine comitants is given by the two following
lemmas (see [20]):

Lemma 1. The straight line L(x, y) ≡ ux+ vy +w = 0, u, v,w ∈ C, (u, v) 6= (0, 0)
is an invariant line for a cubic system (3) if and only if the polynomial L(x, y) is a
common factor of the polynomials G̃1(x, y), G̃2(x, y) and G̃3(x, y) over C, i.e.

G̃i(x, y) = (ux+ vy + w)W̃i(x, y) (i = 1, 2, 3),

where W̃i(x, y) ∈ C[x, y].

Lemma 2. Consider a cubic system (3) and let a ∈ R
20 be its 20-tuple of coeffi-

cients.
1) If L(x, y) ≡ ux + vy + w = 0, u, v,w ∈ C, (u, v) 6= (0, 0) is an invariant

straight line of multiplicity k for a system (3) then [L(x, y)]k | gcd(G̃1, G̃2, G̃3) in
C[x, y], i.e. there exist Wi(a, x, y) ∈ C[x, y] (i = 1, 2, 3) such that

G̃i(a, x, y) = (ux+ vy + w)kWi(a, x, y), i = 1, 2, 3.

2) If the line l∞ : Z = 0 is of multiplicity k > 1 then Zk−1 | gcd(G1,G2,G3), i.e. we
have Zk−1 | H(a,X, Y, Z).

Consider the differential operator L = x ·L2−y ·L1 constructed in [3] and acting
on R[a, x, y], where

L1 =3a00
∂

∂a10
+ 2a10

∂

∂a20
+ a01

∂

∂a11
+

1

3
a02

∂

∂a12
+

2

3
a11

∂

∂a21
+ a20

∂

∂a30
+

3b00
∂

∂b10
+ 2b10

∂

∂b20
+ b01

∂

∂b11
+

1

3
b02

∂

∂b12
+

2

3
b11

∂

∂b21
+ b20

∂

∂b30
,

L2 =3a00
∂

∂a01
+ 2a01

∂

∂a02
+ a10

∂

∂a11
+

1

3
a20

∂

∂a21
+

2

3
a11

∂

∂a12
+ a02

∂

∂a03
+

3b00
∂

∂b01
+ 2b01

∂

∂b02
+ b10

∂

∂b11
+

1

3
b20

∂

∂b21
+

2

3
b11

∂

∂b12
+ b02

∂

∂b03
.
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Using this operator and the affine invariant µ0 = Resultantx

(
p3(a, x, y), q3(a, x, y)

)
/y9

we construct the following polynomials

µi(a, x, y) =
1

i!
L(i)(µ0), i = 1, .., 9,

where L(i)(µ0) = L(L(i−1)(µ0)) and L(0)(µ0) = µ0.

These polynomials are in fact comitants of systems (3) with respect to the group
GL(2,R) (see [3]). The polynomial µi(a, x, y), i ∈ {0, 1, . . . , 9} is homogeneous
of degree 6 in the coefficients of systems (3) and homogeneous of degree i in the
variables x and y. The geometrical meaning of these polynomials is revealed in the
next lemma.

Lemma 3 (see [2, 3]). Assume that a cubic system (S) with coefficients a ∈ R
20

belongs to the family (3). Then:

(i) The total multiplicity of all finite singularities of this system equals 9 − k if
and only if for every i ∈ {0, 1, . . . , k − 1} we have µi(a, x, y) = 0 in the ring R[x, y]

and µk(a, x, y) 6= 0. In this case the factorization µk(a, x, y) =
k∏

i=1

(uix− viy) 6= 0

over C indicates the coordinates [vi : ui : 0] of singularities at infinity which in
perturbations generate finite singularities of the system (S). Moreover the number
of distinct factors in this factorization is less than or equal to four (the maximum
number of infinite singularities of a cubic system) and the multiplicity of each one
of the factors uix− viy gives us the number of the finite singularities of the system
(S) which have coalesced with the infinite singular point [vi : ui : 0].

(ii) The point M0(0, 0) is a singular point of multiplicity k (1 ≤ k ≤ 9) for
the cubic system (S) if and only if for every i such that 0 ≤ i ≤ k − 1 we have
µ9−i(a, x, y) = 0 in R[x, y] and µ9−k(a, x, y) 6= 0.

(iii) The system (S) is degenerate (i.e. gcd(p, q) 6= const) if and only if
µi(a, x, y) = 0 in R[x, y] for every i = 0, 1, . . . , 9.

In order to determine the degree of the common factor of the polynomials
G̃i(a, x, y) for i = 1, 2, 3, we shall use the notion of the kth

subresultant of two
polynomials with respect to a given indeterminate (see for instance, [17],[23]).

The geometrical meaning of the subresultants is based on the following lemma.

Lemma 4 (see [17,23]). Polynomials f(z) and g(z) have precisely k roots in com-
mon (considering their multiplicities) if and only if the following conditions hold:

R(0)
z (f, g) = R(1)

z (f, g) = R(2)
z (f, g) = · · · = R(k−1)

z (f, g) = 0 6= R(k)
z (f, g).

For the polynomials in more than one variables it is easy to deduce from Lemma
4 the following result.
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Lemma 5. Two polynomials f̃(x1, x2, ..., xn) and g̃(x1, x2, ..., xn) have a common
factor of degree k with respect to the variable xj if and only if the following conditions
are satisfied:

R(0)
xj

(f̃ , g̃) = R(1)
xj

(f̃ , g̃) = R(2)
xj

(f̃ , g̃) = · · · = R(k−1)
xj

(f̃ , g̃) = 0 6= R(k)
xj

(f̃ , g̃),

where R
(i)
xj

(f̃ , g̃) = 0 in R[x1, . . . xj−1, xj+1, . . . , xn].

In articles [5, 7–10, 20] several lemmas are proved concerning the number of
triplets and/or couples of parallel invariant straight lines which a cubic system could
have. Taking together these lemmas produce the following theorem.

Theorem 1. If a cubic system (3) possesses a given number of triplets or/and
couples of invariant parallel lines real or/and complex, then the following conditions
are satisfied, respectively:

(i) two triplets ⇒ V1 = V2 = U 1 = 0;
(ii) one triplet and one couple ⇒ V4 = V5 = U2 = 0;
(iii) one triplet ⇒ V4 = U 2 = 0;
(iv) 3 couples ⇒ V3 = 0;
(v) 2 couples ⇒ V5 = 0.

Remark 2. The above conditions depend only on the coefficients of the cubic homo-
geneous parts of the systems (3).

As the mentioned above systems have invariant lines of total multiplicity 7 (where
the line at infinity is considered), they could only have one of the following four
possible types of configurations of invariant lines:

(i) T = (3, 3); (ii) T = (3, 1, 1, 1); (iii) T = (2, 2, 2); (iv) T = (2, 2, 1, 1).

In this article we consider only systems possessing configurations of the type (3, 3)
and in this case, according to the above theorem, the condition V1 = V2 = U 1 = 0
is necessary. The polynomials V1, V2, U 1 are constructed in the following way:

V1(a, x, y) =S23 + 2D2
3, V2(a, x, y) = S26, U1(a) = T31 − 4T37,

where

S14 = (C2, C2)
(2) , S15 = (C2,D2)

(1) , S16 = (C2, C3)
(1) , S17 = (C2, C3)

(2) ,

S19 = (C2,D3)
(1) , S20 = (C2,D3)

(2) , S21 = (D2, C3)
(1) , S22 = (D2,D3)

(1) ,

S23 = (C3, C3)
(2) , S26 = (C3,D3)

(2) , D3 = (S23, S23)
(2) − 6C3 (C3, S23)

(4) ,

T3 = S21/18, T4 = S25/6, T31 = (T8, C3)
(2) /24, T37 = (T9, C3)

(2) /12,

T8 = [5D2(D
2
3 + 27T3 − 18T4) + 20D3S19 + 12 (S16,D3)

(1) − 8D3S17]/5/2
5/33,

T9 = [9D1(9T3 − 18T4 −D2
3) + 2D2(D2D3 − 3S17 − S19 − 9S21) + 18 (S15, C3)

(1) −
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−6C2(2S20 − 3S22) + 18C1S26 + 2D3S14]/2
4/33.

Here Sm, m = 1, . . . , 27 which are constructed by Ci and Di are the comitants
of second degree with respect to the coefficients of the initial systems, whereas
Tn, n = 1, . . . , 142 are T -comitants of cubic systems (3) (see [29] for the definition
of a T -comitant). We note that these invariant polynomials are the elements of the
polynomial basis of T−comitants up to degree six constructed by Iu.Calin.

We rewrite the systems (3) using different coefficients:

ẋ = a+ cx+ dy + gx2 + 2hxy + ky2 + px3 + 3qx2y + 3rxy2 + sy3 ≡ P (x, y),

ẏ = b+ ex+ fy + lx2 + 2mxy + ny2 + tx3 + 3ux2y + 3vxy2 + wy3 ≡ Q(x, y).
(4)

Let L(x, y) = Ux + V y +W = 0 be an invariant straight line of this family of
cubic systems. Then, we have

UP (x, y) + V Q(x, y) = (Ux+ V y +W )(Ax2 + 2Bxy + Cy2 +Dx+Ey + F ),

and this identity provides the following 10 relations:

Eq1 = (p−A)U + tV = 0, Eq6 = (2h−E)U+(2m−D)V −2BW =0,
Eq2 = (3q − 2B)U + (3u−A)V = 0, Eq7 = kU + (n− E)V − CW = 0,
Eq3 = (3r − C)U + (3v − 2B)V = 0, Eq8 = (c− F )U + eV −DW = 0
Eq4 = (s− C)U + V w = 0, Eq9 = dU + (f − F )V − EW = 0,
Eq5 = (g −D)U + lV −AW = 0, Eq10 = aU + bV − FW = 0.

(5)
It is well known that the infinite singularities (real or complex) of systems (4)

are determined by the linear factors of the polynomial

C3 = yp3(x, y) − xq3(x, y).

Remark 3. Let C3 =
∏4

i=1(αix + βiy), i = 1, 2, 3, 4. Since infinite singularities of
systems (4) are located at the ”ends” of the lines αix+ βiy = 0, the invariant affine
lines must be Ux+V y+W = 0, where U = αi and V = βi. In this case, considering
W as a fixed parameter, six equations among (5) become linear with respect to
the parameters {A,B,C,D,E, F} (with the corresponding non-zero determinant)
and we can determine their values, which annihilate some of the equations (5). So
in what follows we will examine only the non-zero equations containing the last
parameter W .

For the proof of the Main Theorem it is useful to consider the following homo-
geneous cubic systems associated to systems (4):

x′ = P3(x, y), y′ = Q3(x, y). (6)

Clearly in the case of two real and two complex distinct infinite singularities
the polynomial C3(x, y) has two real and two complex distinct linear factors. The
following remark concerning the associated homogeneous cubic systems (6) is useful.
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Remark 4. Assume that a cubic system (4) possesses invariant lines of total multi-
plicity three (respectively two) in a real direction. Then the corresponding associated
homogeneous cubic system (4) has one invariant line of total multiplicity at least
three (respectively two) in the same direction.

Indeed, if a system (4) possesses a triplet of parallel invariant lines (distinct or
coinciding) in a real direction then via an affine transformation this system could
be brought to the form

ẋ = x[(x+ b)2 + u], ẏ = Q(a, x, y).

It is clear that if u < 0 (respectively u > 0) then we have three real (respectively
one real and two complex) all distinct invariant lines. In the case u = 0 we either
have one simple and one double invariant lines if b 6= 0, or one triple invariant line
if b = 0. It remains to observe that in all four cases the corresponding associated
homogeneous cubic systems possess the invariant line x = 0 of total multiplicity at
least three. The case of a couple of parallel invariant lines can be examined similarly.

According to [20] (see also [25]) we have the following result.

Lemma 6. Assume that a cubic system (4) has 2 real and 2 complex all distinct
infinite singularities. Then its associated homogeneous cubic systems (6) could be
brought via a linear transformation to the canonical form

(SI)

{
x′ = (u+ 1)x3 + (s+ v)x2y + rxy2, C3 = x(sx+ y)(x2 + y2),

y′ = −sx3 + ux2y + vxy2 + (r − 1)y3.
(7)

3 Systems with the configuration of the type (3, 3). The proof of

the Main Theorem

Considering Lemma 6 systems possessing two real and two complex infinite sin-
gularities via a linear transformation could be brought to the family of systems

ẋ =a+ cx+ dy + gx2 + 2hxy + ky2 + (u+ 1)x3 + (s+ v)x2y + rxy2,

ẏ =b+ ex+ fy + lx2 + 2mxy + ny2 − sx3 + ux2y + vxy2 + (r − 1)y3
(8)

with C3 = x(sx+ y)(x2 + y2).
Since we have two triplets of parallel invariant lines, according to Theorem 1 the

conditions V1 = V2 = U 1 = 0 are necessary for systems (8). In [20, Section 6.1]
it was proved that in this case via a linear transformation and time rescaling the
homogeneous cubic systems associated to systems (8) could be brought either to the
system

ẋ = x3, ẏ = −y3, (9)

or to the system
ẋ = x3 − 3xy2, ẏ = 3x2y − y3. (10)

So we examine each one of these two possibilities.
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3.1 Systems with the associated homogeneous cubic system (9)

Then applying a translation we may assume g = n = 0 in the quadratic parts
of systems (8) with the cubic homogeneities (x3, −y3). In such a way we get the
family of systems

ẋ = a+ cx+ dy + 2hxy + ky2 + x3,

ẏ = b+ ex+ fy + lx2 + 2mxy − y3,
(11)

for which we have C3(x, y) = xy(x2 + y2).

In order to find out the directions of two triplets, according to Remark 4, we
determine the multiplicity of the invariant lines of system (9). For this system we
calculate (see the definition of the polynomial H(X,Y,Z) on page 86, Notation 3):

H(X,Y,Z) = gcd(G1,G2,G3) = 3X3Y 3(X2 + Y 2). (12)

So system (9) possesses two triple invariant lines x = 0 and y = 0 and by Remark 4,
systems (11) could have triplets of parallel invariant lines only in these two directions.

(i) The direction x = 0. Considering (5) and Remark 3 we obtain

Eq7 = k, Eq9 = d− 2hW, Eq10 = a− cW −W 3

and obviously we can have a triplet of parallel invariant lines (which could coincide)
in the direction x = 0 if and only if k = d = h = 0.

(ii) The direction y = 0. In this case we have

Eq5 = l, Eq8 = e− 2mW, Eq10 = b− fW −W 3

and again we conclude that for the existence of a triplet of parallel invariant lines
for systems (11) the conditions e = l = m = 0 have to be satisfied.

Thus we arrive at the family of systems

ẋ = a+ cx+ x3, ẏ = b+ fy − y3 (13)

which possess the invariant lines defined by the equations

x3 + cx+ a = 0, −y3 + fy + b = 0.

We observe that the number of distinct invariant lines and their types (real
and/or complex) depend on the discriminants of the cubic polynomials x3 + cx+ a
and −y3 + fy + b, i.e.

ξ1 = −(27a2 + 4c3), ξ2 = −(27b2 − 4f3),

respectively. Moreover, we observe that the polynomial x3 + cx + a (respectively
−y3 + fy + b) has a triple root if and only if ν1 = a2 + c2 = 0 (respectively ν2 =
b2 + f2 = 0).
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Remark 5. We remark that for systems (13) we could not have simultaneously ν1 =
ν2 = 0, otherwise we get the homogeneous cubic system ẋ = x3, ẏ = −y3 which
possesses invariant lines of total multiplicity nine (see the value (12) of H(X,Y,Z)
for homogeneous system (9)).

In what follows we examine the possibilities provided by the discriminants ξ1
and ξ2.

1) The case ξ1ξ2 > 0 and ξ1 + ξ2 > 0. Then each one of the mentioned cubic
polynomials factorizes in three distinct real factors, i.e. we get the systems

ẋ = (x− α1)(x− β1)(x− δ1), ẏ = (y − α2)(y − β2)(δ2 − y), (14)

where αi, βi, δi ∈ R, i = 1, 2. As all the lines are distinct then via the transformation

(x, y, t) 7→
(
α1 − (α1 − β1)x, α2 − (α1 − β1)y, t/(α1 − β1)

2
)

(15)

we arrive at the following 3-parameter family of systems

ẋ = x(x− 1)(x − a), ẏ = y(y − b)(c − y), a(a+ 1)bc(b− c) 6= 0, (16)

where a =
α1 − δ1
α1 − β1

, b =
α2 − β2

α1 − β1
and c =

α2 − δ2
α1 − β1

. These systems possess 9

finite real singularities which are located at the intersections of these two triplets of
invariant straight lines. As a result we get Config. 7.1a.

2) The case ξ1ξ2 > 0 and ξ1 + ξ2 < 0. Then in each one of the directions x = 0
and y = 0 systems (13) possess one real and two complex invariant lines. After the
translation of the origin of coordinates at the intersections of the real invariant lines
we arrive at the systems

ẋ = x(x2 + 2β1x+ δ1), ẏ = −y(y2 + 2β2y + δ2),

where β2
1 − δ1 < 0 and β2

2 − δ2 < 0. So we can set β2
1 − δ1 = −u2 6= 0 and

β2
2 − δ2 = −v2 6= 0 respectively, the above systems become

ẋ = x
[
u2 + (x+ β1)

2
]
, ẏ = −y

[
v2 + (y + β2)

2
]
.

Since u 6= 0 then we may assume u = 1 due to the rescaling (x, y, t) 7→ (ux, uy, t/u2)
and we get the following 3-parameter family of systems

ẋ = x
[
(x+ a)2 + 1

]
, ẏ = −y

[
(y + b)2 + c2

]
, c 6= 0. (17)

These systems possess 1 real and 8 complex finite singularities which are located at
the intersections of these two triplets of invariant lines (real and complex).

As a result, considering Notation 2 we get Config. 7.2a if ab 6= 0, Config. 7.3a
if ab = 0 and a+ b 6= 0 and Config. 7.4a if a = 0 = b.
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3) The case ξ1ξ2 < 0. Without loss of generality we may assume ξ1 > 0 and
ξ2 < 0 due to the change (x, y, t, a, b, c, f) 7→ (−y,−x,−t, b, a,−f,−c) which con-
serves systems (13). Then we have the following factorization of the right hand sides
of these systems

ẋ = (x− α1)(x− β1)(x− δ1), ẏ = (α2 − y)(y2 + 2β2y + δ2), (18)

where αi, βi, δi ∈ R, i = 1, 2 and β2
2 − δ2 < 0. So we can set β2

2 − δ2 = −u2 6= 0
and then applying the transformation (15) we get the following 3-parameter family
of systems

ẋ = x(x− 1)(x − a), ẏ = −y
[
(y + b)2 + c2

]
, a(a− 1)c 6= 0. (19)

These systems possess 3 real and 6 complex finite singularities which are located at
the intersections of these two triplets of invariant lines (real and complex).

So considering Notation 2 we get Config. 7.5a if b 6= 0 and Config. 7.6a if
b = 0.

4) The case ξ1ξ2 = 0, ξ1 + ξ2 > 0, ν1ν2 6= 0. As it was mentioned earlier due to
the change (x, y, t, a, b, c, f) 7→ (−y,−x,−t, b, a,−f,−c) (which conserves systems
(13)) we may assume ξ1 = 0 and ξ2 > 0 (in this case the condition ν1 6= 0 holds).
Following the same arguments as before, systems (13) can be written in the form (14)
with β1 = α1 6= δ1. Then applying the transformation (15) in which we substitute
β1 by α1 6= δ1 we arrive at the following 2-parameter family of systems

ẋ = x2(x− 1), ẏ = y(y − b)(y − c), bc(b− c) 6= 0. (20)

These systems possess three double real singularities (located at the intersections of
the double invariant line x = 0 with three simple ones) and 3 simple real singularities,
located at the intersections of the simple invariant line x = 1 with the triplet in the
direction y = 0. As a result we obtain Config. 7.7a.

5) The case ξ1ξ2 = 0, ξ1 + ξ2 < 0, ν1ν2 6= 0. We may assume again ξ1 = 0,
ξ2 < 0 and ν1 6= 0. In this case we consider systems (18) with β1 = α1 6= δ1 and
following the same steps and applying the corresponding similar transformation we
get the following 2-parameter family of systems

ẋ = x2(x− 1), ẏ = y
[
(y + b)2 + c2

]
, c 6= 0. (21)

Clearly these systems possess three double singularities (one real and two complex)
on the double line x = 0 and three simple singularities (one real and two complex)
located on the simple invariant line x = 1.

So considering Notation 2 we get the configuration of invariant lines given by
Config. 7.8a if b 6= 0 and Config. 7.9a if b = 0.

6) The case ξ1ξ2 = 0, ξ1 + ξ2 > 0, ν1ν2 = 0. As it was mentioned above we may
consider ξ1 = 0 which implies ξ2 > 0. Then ν2 6= 0 and hence we have ν1 = 0. In
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this case we have a triple line in the direction x = 0 and after a translation we get
the systems

ẋ = x3, ẏ = y(y − b)(y − c)

with bc 6= 0. Then applying the rescaling (x, y, t) 7→ (cx, cy, t/c2) we force c = 1
and we arrive at the following 1-parameter family of systems

ẋ = x3, ẏ = y(y − 1)(y − b), b(b− 1) 6= 0. (22)

It is easy to determine that these systems possess three real singularities, each one
of multiplicity 3, located on the triple invariant line x = 0. This leads to the
configuration Config. 7.10.

7) The case ξ1ξ2 = 0, ξ1 + ξ2 < 0, ν1ν2 = 0. So similarly as before, we may
consider ξ1 = ν1 = 0 and ξ2 < 0. In this case we have a triple line in the direction
x = 0 and after a translation setting some new parameters (see the second equation
of systems (21)) we get the systems

ẋ = x3, ẏ = y
[
c2 + (y + b)2

]

with c 6= 0. Then applying the rescaling (x, y, t) 7→ (cx, cy, t/c2) we arrive at the
following 1-parameter family of systems

ẋ = x3, ẏ = y
[
1 + (y + b)2

]
. (23)

These systems possess three triple singularities (one real and two complex) located on
the triple invariant line x = 0. Considering Notation 2 this leads to the configuration
Config. 7.11a if b 6= 0 and Config. 7.12a if b = 0.

8) The case ξ1 = ξ2 = 0, ν1ν2 6= 0. Then we have two double real invariant
lines (one in the direction x = 0 and the second in the direction y = 0). Due to
ν1ν2 6= 0 none of them could be triple. So after a translation which moves the origin
of coordinates at the intersection of the double lines we arrive at the systems

ẋ = x2(x− a), ẏ = y2(y − b),

where ab 6= 0. Then applying the rescaling (x, y, t) 7→ (ax, ay, t/a2) we get the
following 1-parameter family of systems

ẋ = x2(x− 1), ẏ = y2(y − b), b 6= 0. (24)

It is not difficult to determine that these systems possess four distinct real finite
singularities: one of multiplicity four (located at the intersection of the double lines)
two double and one simple. As a result we obtain the configuration Config. 7.13a.

9) The case ξ1 = ξ2 = 0, ν1ν2 = 0. According to Remark 5 the condition
ν2
1 + ν2

2 6= 0 is necessary and by the same reasons as above we may assume ν1 = 0
and ν2 6= 0. Therefore we have a triple invariant line in the direction x = 0 and a
double one in the direction y = 0. As a result via a translation we get the systems

ẋ = x3, ẏ = y2(y − a),
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with a 6= 0. Then we may assume a = 1 due to the rescaling (x, y, t) 7→ (ax, ay, t/a2)
and we arrive at the system

ẋ = x3, ẏ = y2(y − 1). (25)

We observe that this system has only two distinct finite singularities: one of the
multiplicity six and one triple both located on the invariant line x = 0. So we get
Config. 7.14a.

Thus we have proved the following lemma.

Lemma 7. Systems (13) possess one of the configurations Config. 7.1a – 7.14a if
and only if the corresponding conditions are satisfied. Moreover in each one of the
cases these systems could be brought via affine transformations and time rescaling
to the indicated canonical forms, respectively:
Config. 7.1a ⇔ ξ1ξ2 > 0, ξ1 + ξ2 > 0 ⇒ (16);
Config. 7.2a ⇔ ξ1ξ2 > 0, ξ1 + ξ2 < 0, ab 6= 0 ⇒ (17) with ab 6= 0;

Config. 7.3a ⇔ ξ1ξ2 > 0, ξ1 + ξ2 < 0, ab = 0, a+ b 6= 0 ⇒ (17)
with ab = 0
and a+b 6=0;

Config. 7.4a ⇔ ξ1ξ2 > 0, ξ1 + ξ2 < 0, a = b = 0 ⇒ (17) with a=b=0;
Config. 7.5a ⇔ ξ1ξ2 < 0, b 6= 0 ⇒ (19) with b 6= 0;
Config. 7.6a ⇔ ξ1ξ2 < 0, b = 0 ⇒ (19) with b = 0;
Config. 7.7a ⇔ ξ1ξ2 = 0, ξ1 + ξ2 > 0, ν1ν2 6= 0 ⇒ (20);
Config. 7.8a ⇔ ξ1ξ2 = 0, ξ1 + ξ2 < 0, ν1ν2 6= 0, b 6= 0 ⇒ (21) with b 6= 0;
Config. 7.9a ⇔ ξ1ξ2 = 0, ξ1 + ξ2 < 0, ν1ν2 6= 0, b = 0 ⇒ (21) with b = 0;
Config. 7.10a ⇔ ξ1ξ2 = 0, ξ1 + ξ2 > 0, ν1ν2 = 0 ⇒ (22);
Config. 7.11a ⇔ ξ1ξ2 = 0, ξ1 + ξ2 < 0, ν1ν2 = 0, b 6= 0 ⇒ (23) with b 6= 0;
Config. 7.12a ⇔ ξ1ξ2 = 0, ξ1 + ξ2 < 0, ν1ν2 = 0, b = 0 ⇒ (23) with b = 0;
Config. 7.13a ⇔ ξ1ξ2 = 0, ξ1 + ξ2 = 0, ν1ν2 6= 0 ⇒ (24);
Config. 7.14a ⇔ ξ1ξ2 = 0, ξ1 + ξ2 = 0, ν1ν2 = 0 ⇒ (25).

3.1.1 Systems with the associated homogeneous cubic system (10)

Then applying a translation we may assume g = n = 0 in the quadratic parts of
systems (8) with the cubic homogeneities x3 − 3xy2, 3x2y − y3. In such a way we
get the family of systems

ẋ = a+ cx+ dy + 2hxy + ky2 + x3 − 3xy2,

ẏ = b+ ex+ fy + lx2 + 2mxy + 3x2y − y3,
(26)

for which we have C3(x, y) = −2xy(x2 + y2).

In order to find out the directions of two triplets, according to Remark 4, we
determine the multiplicity of the invariant lines of system (10). For this system we
calculate (see the definition of the polynomial H(X,Y,Z), Notation 3):

H(X,Y,Z) = gcd(G1,G2,G3) = 6XY (X2 + Y 2)3. (27)
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So system (10) possesses two triple invariant lines y = ix and y = −ix and by
Remark 4, systems (26) could have triplets of parallel invariant lines only in these
two complex directions. Therefore we have to examine only these directions and
since the systems are real it is sufficient to consider only one direction.

The direction x + iy = 0. Then U = 1, V = i and considering (5) and Remark
3 we obtain

Eq7 = k + 2m− i(l + 2h), Eq9 = d+ e+ i(f − c) − 2(l + h+ im)W,

Eq10 = a+ ib− (c+ ie)W + ilW 2 −W 3.

So in order to have a triplet of parallel invariant lines in this direction we must force
the equations Eq7 = 0 and Eq9 = 0 to vanish identically. Since all the parameters
are real we obtain: k = −2m, l = −2h, d = −e, f = c, l = −h, m = 0 which
implies k = l = h = m = 0, d = −e and f = c. In this case we arrive at the family
of systems

ẋ = a+ cx− ey + x3 − 3xy2,

ẏ = b+ ex+ cy + 3x2y − y3,
(28)

which possess the following two triplets of complex parallel invariant lines:

(x+ iy)3 + (c+ ie)(x + iy) + a+ ib = 0, (x− iy)3 + (c− ie)(x− iy) + a− ib = 0.

So setting z = x+ iy (then z̄ = x− iy) we get two equations

z3 + (c+ ie)z + a+ ib = 0, z̄3 + (c− ie)z̄ + a− ib = 0

with the corresponding discriminants

27b2 − 27a2 − 4c3 + 12ce2 ± i(54ab + 12c2e− 4e3) ≡ φ± iψ.

It is clear that we could have a multiple complex invariant line if and only if φ =
ψ = 0. Moreover this line could be of multiplicity 3 if and only if a = b = c = e = 0
however in this case we get homogeneous system (10) which possesses invariant lines
of total multiplicity 9 (see (27)).

On the other hand the equations φ = ψ = 0 have real solutions as shows us the
example:

a = 0, b = −4

3

√
2

3
, c = −1, e = −

√
3.

As a result we arrive at the Config. 7.15a if φ2 + ψ2 6= 0 and at the
Config. 7.16a if φ = ψ = 0 (see the above example). It remains to note that
in the canonical systems (28) we may assume b ∈ {0, 1} due to a rescaling in the
case b 6= 0.
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