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Levitan Almost Periodic Solutions of

Infinite-dimensional Linear Differential Equations

David Cheban

Abstract. The known Levitan’s Theorem states that the finite-dimensional linear
differential equation

x
′ = A(t)x + f(t) (1)

with Bohr almost periodic coefficients A(t) and f(t) admits at least one Levitan almost
periodic solution if it has a bounded solution. The main assumption in this theorem
is the separation among bounded solutions of homogeneous equations

x
′ = A(t)x . (2)

In this paper we prove that infinite-dimensional linear differential equation (3) with
Levitan almost periodic coefficients has a Levitan almost periodic solution if it has at
least one relatively compact solution and the trivial solution of equation (2) is Lya-
punov stable. We study the problem of existence of Bohr/Levitan almost periodic
solutions for infinite-dimensional equation (3) in the framework of general nonau-
tonomous dynamical systems (cocycles).

Mathematics subject classification: 34C27, 34G10, 35B15.
Keywords and phrases: Levitan almost periodic solution; linear differential equa-
tion; common fixed point for noncommutative affine semigroups of affine mappings.

1 Introduction

This paper is dedicated to studying the problem of Levitan almost periodicity
of solutions for infinite-dimensional linear differential equation

x′(t) = A(t)x(t) + f(t) (3)

with Levitan almost periodic in time coefficients A(t) and f(t). We prove that if
the coefficients of equation (3) are Levitan almost periodic and equation (3) has a
relatively compact on semi-axis R+ solution, then equation (3) admits at least one
Levitan almost periodic solution if the trivial solution of equation x′(t) = A(t)x(t)
is Lyapunov stable.

Let (X, ρ) be a complete metric space. Denote by C(R,X) the space of all
continuous functions ϕ : R → X equipped with the distance

d(ϕ,ψ) := sup
L>0

min{max
|t|≤L

ρ(ϕ(t), ψ(t)), L−1}.

The space (C(R,X), d) is a complete metric space.
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Let h ∈ R and ϕ ∈ C(R,X). Denote by ϕh the h-translation of function ϕ, i.e.,
ϕh(t) := ϕ(t + h) for any t ∈ R and by Nϕ := {{hk} : ϕhk → ϕ}. Note that the
convergence ϕhk → ϕ as k → ∞ means the convergence uniform on every compact
[−l, l] ⊂ R (l > 0).

Definition 1. Let ε > 0. A number τ ∈ R is called ε-almost period of the function
ϕ if

ρ(ϕ(t+ τ), ϕ(t)) < ε

or all t ∈ R. Denote by T (ϕ, ε) the set of ε-almost periods of ϕ.

Definition 2. A function ϕ ∈ C(R,X) is said to be Bohr almost periodic if the set
of ε-almost periods of ϕ is relatively dense for each ε > 0, i.e., for each ε > 0 there
exists l = l(ε) > 0 such that T (ϕ, ε) ∩ [a, a+ l] 6= ∅ for all a ∈ R.

Definition 3. Let ϕ ∈ C(R,X) and ψ ∈ C(R, Y ). A function ϕ ∈ C(R,X) is called
Levitan almost periodic if there exists a Bohr almost periodic function ψ ∈ C(R, Y )
such that Nψ ⊆ Nϕ, where Y is some metric space (generally speaking Y 6= X).

Remark 1. The function ϕ ∈ C(R,R) defined by equality

ϕ(t) =
1

2 + cos t+ cos
√

2t

is Levitan almost periodic, but it is not Bohr almost periodic (because it is not
bounded).

B. M. Levitan [18] studied the problem of existence of Levitan almost periodic
solutions of equation

x′ = A(t)x+ f(t) (x ∈ R
n) (4)

with the matrix A(t) and vector-function f(t) Levitan almost periodic.

Along with equation (4), consider the homogeneous equation

x′ = A(t)x . (5)

Theorem 1. (Levitan’s theorem [18]-[21]) Linear differential equation (4) with Bohr
almost periodic coefficients admits at least one Levitan almost periodic solution if
it has a bounded solution and each bounded on R solution ϕ(t) of equation (5) is
separated from zero, i.e.

inf
t∈R

|ϕ(t)| > 0.

Denote by

H(A, f) := {(Ah, fh)| h ∈ R},

where by bar we denoted the closure in the space C(R, [Rn])×C(R,Rn), where [Rn]
is the space of all linear operators acting on the space R

n.
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Theorem 2. (Zhikov’s theorem [30]) Linear differential equation (4) with Bohr
almost periodic coefficients admits at least one Levitan almost periodic ”limiting”
solution if it has a bounded solution, i.e., there exists a limiting equation

x′(t) = B(t)x(t) + g(t), (6)

where (B, g) ∈ H(A, f).

Denote by Ω := {(B, g) ∈ H(A, f)| such that equation (6) has a Levitan almost
periodic solution }. Zhikov proved that the set Ω has a second category of Baire.

Open problem (V. V. Zhikov [30]). Is equality Ω = H(A, f) true? In other
words, can we state that every equation (4) admits at least one Levitan almost
periodic solution if (4) has a bounded on R solution?

From our result[11] it follows the positive answer to this question. In this paper
we generalize this result for infinite-dimensional equations (4). In particular we
prove the following statement.

Theorem 3. Let B a uniform convex Banach space and [B] be a Banach space
of all linear bounded operators acting on the space B. Suppose that the following
conditions are fulfilled:

1. the operator-function A ∈ C(R, [B]) and function f(t) are Levitan almost
periodic;

2. B
s
A is a subspace of the Banach space B, where B

s
A := {u ∈ B| sup

t≥0
|ϕ(t, u,A)| <

∞} and ϕ(t, u,A) is a unique solution x(t) of equation

x′(t) = A(t)x(t) (7)

with the initial condition x(0) = u;

3. equation
x′(t) = A(t)x(t) + f(t) (x ∈ B) (8)

has a relatively compact on R+ solution.

Then equation (8) has at least one Levitan almost periodic solution.

Corollary 1. Under the conditions of theorem if the coefficients A(t) and f(t) are
Bohr almost periodic, then equation (8) admits at least one Levitan almost periodic
solution.

Remark 2. Note that Bs
A is closed if the trivial solution of equation (7) is Lyapunov

stable because in this case B
s
A = B (see Lemma 4).

This paper is organized as follow.
In Section 2 we collect some notions and facts from the theory of dynamical sys-

tems (some classes of Poisson stable motions, comparability by character of recur-
rence of Poisson stable motions, nonautonomous dynamical systems, conditionally
compactness).
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Section 3 is dedicated to the study of the problem of existence of a common fixed
point for noncommutative affine semigroup of mappings (Theorems 6).

In Section 4 we study the problem of existence of at least one compatible mo-
tion/solution of linear nonhomogeneous dynamical system (Theorem 7).

Section 5 is dedicated to the application of our general results obtained in Section
4 to the linear ordinary differential (Theorem 8 and Corollary 3) and linear partial
differential (Theorem 9 and Corollary 4) equations.

2 Some notions and facts from the theory of autonomous and

nonautonomous dynamical systems

2.1 Poisson stable motions

Let (X, ρ) be a complete metric space with metric ρ, R be a group of real
numbers, R+ be a semigroup of the nonnegative real numbers, T ⊆ R (R+ ⊆ T) be
a sub-semigroup of additive group R and T+ := {t ∈ T| t ≥ 0}.

Let (X,T, π) be a dynamical system. Let us recall the classes of Poisson stable
motions we study in this paper, see [12,23,24,26,28] for details.

Definition 4. A point x ∈ X is called stationary (respectively, τ -periodic) if
π(t, x) = x (respectively, π(t+ τ, x) = π(t, x)) for all t ∈ T.

Definition 5. For given ε > 0, a number τ ∈ T is called a ε-shift of x (respectively,
ε-almost period of x) if ρ(π(τ, x), x) < ε (respectively, ρ(π(τ + t, x), π(t, x)) < ε for
all t ∈ T).

Definition 6. A point x ∈ X is called almost recurrent (respectively, Bohr almost
periodic) if for any ε > 0 there exists a positive number l such that any segment of
length l contains a ε-shift (respectively, ε-almost period) of x.

Definition 7. If a point x ∈ X is almost recurrent and its trajectory Σx := {π(t, x) :
t ∈ T} is precompact, then x is called (Birkhoff) recurrent.

Definition 8. A point x ∈ X is called Levitan almost periodic [21] (see also [3,9,12,
20]) if there exists a dynamical system (Y,T, σ) and a Bohr almost periodic point
y ∈ Y such that Ny ⊆ Nx.

Definition 9. A point x ∈ X is called almost automorphic if

1. it is stable in the sense of Lagrange, i.e., its trajectory Σx := {π(t, x)| t ∈ T}
is relatively compact and

2. x is Levitan almost periodic.
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2.2 Comparability of motions by the character of recurrence

Following B. A. Shcherbakov [25, 26] (see also [8],[10, ChI]) we introduce the
notion of comparability of motions of dynamical system by the character of their
recurrence. While studying stable in the sense of Poisson motions, this notion plays
the very important role (see, for example,[24,26]).

Let (X,T, π) and (Y,T, σ) be dynamical systems, x ∈ X and y ∈ Y . Denote
Mx := {{tn} : such that {π(tn, x)} converges as n → ∞}, Nx := {{tn} : such that
π(tn, x) → x as n→ ∞} and N

+∞
x := {{tn} ∈ Nx : such that tn → +∞ as n→ ∞}.

Definition 10. A point x0 ∈ X is called comparable by the character of recurrence
with y0 ∈ Y if there exists a continuous mapping h : Σy0 7→ Σx0 satisfying the
condition

h(σ(t, y0)) = π(t, x0) for any t ∈ R.

Definition 11. Let (X,T1, π) and (Y,T2, σ) be two dynamical systems, T1 ⊆ T2

and h : X 7→ Y be a homomorphism of (X,T1, π) on (Y,T2, σ). A triplet
〈(X,T1, π), (Y,T2, σ), h〉 is said to be a nonautonomous dynamical system [12, ChI].

Definition 12. The point y ∈ Y is called (see, for example,[26] and [28]) positively
stable in the sense of Poisson if there exists a sequence tn → +∞ such that σtny → y.

Theorem 4. [7, 25] Let y ∈ Y be Poisson stable in the positive direction, then the
following statement are equivalent:

1. the point x ∈ X is comparable with y ∈ Y by the character of recurrence;

2. N
+∞
y ⊆ N

+∞
y ;

3. for any ε > 0 there exists a δ = δ(ε) > 0 such that d(σ(τ, y), y) < δ implies
ρ(π(τ, x), x) < ε, where d (respectively, ρ) is the distance on the space Y
(respectively, on the space X).

Theorem 5. [25] Suppose that the point x is comparable with y ∈ Y by the character
of recurrence. If the point y is stationary (respectively, τ -periodic, Levitan almost
periodic, almost recurrent in the sense of Bebutov, Poisson stable), the point x is
so.

2.3 Some general fact about nonautonomous dynamical systems

Definition 13. (Conditional compactness). Let (X,h, Y ) be a fibre space, i.e., X
and Y a be two metric spaces and h : X → Y be a homomorphism from X into Y .
The subset M ⊆ X is said to be conditionally relatively compact if the pre-image
h−1(Y ′)

⋂

M of every relatively compact subset Y ′ ⊆ Y is a relatively compact
subset of X, in particular My := h−1(y)

⋂

M is relatively compact for every y.
The set M is called conditionally compact if it is closed and conditionally relatively
compact.
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Example 1. Let K be a compact space, X := K × Y , h = pr2 : X → Ω, then
the triplet (X,h, Y ) is a fibre space, the space X is conditionally compact, but not
compact.

Let 〈(X,T+, π), (Y,T, σ), h〉 be a nonautonomous dynamical system and y ∈ Y
be a positively Poisson stable point. Denote by

E+
y := {ξ| ∃{tn} ∈ N

+∞
y such that πtn |Xy → ξ},

where Xy := {x ∈ X| h(x) = y} and → means the pointwise convergence.

Lemma 1. [12] Let y ∈ Y be a positively Poisson stable point, 〈(X,T+, π),
(Y,T, σ), h〉 be a nonautonomous dynamical system and X be a conditionally com-

pact space, then E+
y is a nonempty compact subsemigroup of the semigroup X

Xy
y

(w.r.t. composition of mappings).

3 Markov-Kakutani’s fixed point theorem for noncommutative

affine semigroup of mappings

Let (X, ρ) be a metric space. Denote by B[a, r] := {x ∈ X| ρ(x, a) ≤ r}, where
a ∈ X and r ≥ 0. For any x1, x2 ∈ X and α ∈ [0, 1] denote by S(α, x1, x2) the
intersection of B[x1, αr] and B[x2, (1 − α)r], where r = ρ(x1, x2).

Definition 14. A metric space (X, ρ) is called:

1. a metric space with a convex structure [29] if there exists a mapping W :
[0, 1] ×X ×X → X satisfying

ρ(u,W (α, x1, x2)) ≤ αρ(u, x1) + (1 − α)ρ(u, x2);

2. strictly convex [29] if for any x, y ∈ X and α ∈ [0, 1] there exists a unique
element x (x = S(α, x1, x2)) such that ρ(x, x1) = αρ(x1, x2) and ρ(x, x2) =
(1 − α)ρ(x1, x2);

3. strongly convex [6, 16] (or strictly convex space with convex round balls) if
(X, ρ) is a strictly convex metric space and for any x1, x2, x3 ∈ X (x2 6= x3)
and α ∈ (0, 1) the inequality ρ(x1, S(α, x2, x3)) < max{ρ(x1, x2), ρ(x1, x3)}
holds.

Definition 15. Let X be a metric space with a convex structure (respectively,
strictly convex or strongly convex). A subset M of X is said to be convex (respec-
tively, strictly convex or strongly convex) if S(α, x1, x2) ∈M for any α ∈ (0, 1) and
x1, x2 ∈M .

Remark 3. 1. Closed balls may be not convex sets and intersection of convex sets
may be non convex set [14].

2. Intersection of convex sets is a convex set in strictly convex metric space [14].
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3. There exist strictly convex metric spaces in which closed balls are not convex
[5].

4. The closed ball B[c, r] for every r > 0 and every c ∈ X is a convex set in the
strongly convex metric space (X, ρ) [6].

Definition 16. A Banach space X is said to be:

1. uniformly convex if the inequality |p1 − p2| ≥ δmax{|p1|, |p2|} implies |12 (p1 +
p2)| ≤ (1 − ϕ(δ))max{|p1|, |p2|} (ϕ(δ) > 0 for any 0 < δ ≤ 2);

2. strictly convex if for any x, y ∈ X with |x| = |y| = 1 and x 6= y, |λx+(1−λ)y| <
1 for any λ ∈ (0, 1).

Remark 4. 1. Uniformly convex Banach spaces are strictly convex, but the converse
is not true.

2. If (X, | · |) is a strictly convex Banach space, then the metric space (X, ρ)
(ρ(x1, x2) := |x1 − x2|) is strictly convex (see, for example,[6, 14]).

3. If M is a convex subset of strictly convex Banach space (X, | · |), then the
metric space (M,ρ) (ρ(x1, x2) := |x1 − x2|) is strictly convex.

4. Every convex closed subset X of the Hilbert space H equipped with metric
ρ(x1, x2) = |x1 − x2| is a strongly convex metric space.

Lemma 2. [11] If (X, | · |) is a uniformly convex Banach space, then the metric
space (X, ρ) (ρ(x1, x2) := |x1 − x2|) is strongly convex.

For any subset C of X we denote by coC (respectively, coC) the convex enve-
lope (respectively, closed convex envelope) of C, i.e., coC (respectively, coC) is the
intersection of all metric-convex (respectively, closed, metric-convex) sets containing
C.

Definition 17. A mapping f : M → M of compact strictly metric-convex space
(M,ρ) is said to be:

1. segment preserving if f([x1, x2]) ⊆ [f(x1), f(x2)], where [x1, x2] := {S(α, x1,
x2)| 0 ≤ α ≤ 1}, for any x1, x2 ∈M ;

2. quasi-affine [27] if f(coA) ⊆ cof(A) for any subset A of M ;

3. strongly quasi-affine if f(coA) ⊆ cof(A) for any subset A of M ;

4. affine if f(S(α, x1, x2)) = S(α; f(x1), f(x2)) for any x1, x2 ∈M and α ∈ [0, 1].

Remark 5. 1. If the mapping f : M →M is quasi-affine, then it is segment preserv-
ing because [x1, x2] = co({x1, x2}).

2. If M = [0, 1] and f : [0, 1] → [0, 1] is a continuous and strongly monotone,
then it is quasi-affine [27].

3. If the mapping f : M →M is affine, then it is quasi-affine.
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Theorem 6. [11] Let (M,ρ) be a compact strongly convex metric space. Suppose
that the following conditions are fulfilled:

1. E is a compact sub-semigroup of the semigroup MM ;

2. every ξ ∈ E is continuous and quasi-affine.

Then there exists a common fixed point x̄ ∈M of E, i.e., ξ(x̄) = x̄ for any ξ ∈ E.

4 Favard’s theory for infinite-dimensional systems

Let (B, | · |) be a Banach space with the norm | · |, T ⊇ R+ be a subsemigroup
of group R and 〈B, ϕ, (Y,R, σ)〉 (or shortly ϕ) be a linear cocycle over dynamical
system (Y,R, σ) with the fibre B, i.e., ϕ is a continuous mapping from T × B × Y
into B satisfying the following conditions:

1. ϕ(0, u, y) = u for any u ∈ B and y ∈ Y ;

2. ϕ(t+ τ, u, y) = ϕ(t, ϕ(τ, u, y), σ(τ, y)) for any t, τ ∈ T, u ∈ B and y ∈ Y ;

3. for any (t, y) ∈ T × Y the mapping ϕ(t, ·, y) : B 7→ B is linear.

Denote by [B] the Banach space of any linear bounded operators A acting on
the space B equipped with the operator norm ||A|| := sup

|x|≤1
|Ax|.

Example 2. Let Y be a complete metric space and (Y,R, σ) be a dynamical system
on Y . Consider the following linear differential equation

x′ = A(σ(t, y))x, (y ∈ Y ) (9)

where A ∈ C(Y, [B]). Note that the following conditions are fulfilled for equation
(9):

a. for any u ∈ B and y ∈ Y equation (9) has exactly one solution that is defined
on R and satisfies the condition ϕ(0, u, y) = u;

b. the mapping ϕ : (t, u, y) → ϕ(t, u, y) is continuous in the topology of R×B×Y .

Under the above assumptions equation (9) generates a linear cocycle 〈B, ϕ, (Y,R, σ)〉
over dynamical system (Y,R, σ) with the fibre B.

Example 3. Consider differential equation

x′ = A(t)x, (10)

whereA ∈ C(R, [B]). Along this equation (10) consider itsH-class, i.e., the following
family of equations

x′ = B(t)x, (11)

where B ∈ H(A). Note that the following conditions are fulfilled for equation (10)
and its H-class (25):
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a. for any u ∈ B and B ∈ H(A) equation (11) has exactly one solution ϕ(t, u,B)
satisfying the condition ϕ(0, u,B) = v;

b. the mapping ϕ : (t, u,B) → ϕ(t, u,B) is continuous in the topology of R×B×
C(R; [B]).

Denote by (H(A),R, σ) the shift dynamical system on H(A). Under the above
assumptions equation (10) generates a linear cocycle 〈B, ϕ, (H(A),R, σ)〉 over dy-
namical system (H(A),R, σ) with the fibre B.

Note that equation (10) and its H-class can be written in the form (9). We put
Y := H(A) and denote by A ∈ C(Y, [B]) defined by equality A(B) := B(0) for any
B ∈ H(A) = Y , then B(τ) = A(σ(B, τ)) (σ(τ,B) := Bτ , where Bτ (t) := B(t + τ)
for any t ∈ R). Thus equation (10) with its H-class can be rewrite as follow

x′ = A(σ(t, B))x (B ∈ H(A)).

Definition 18. Let 〈(X,R+, π), (Y,R, σ), h〉 be a linear nonautonomous (affine)
dynamical system. A nonautonomous dynamical system 〈(W,R+,µ), (Z,R,λ),̺〉 is
said to be linear non-homogeneous, generated by linear (homogeneous) dynamical
system 〈(X,R+, π), (Y,R, σ), h〉 if the following conditions hold:

1. there exits a homomorphism q of the dynamical system (Z,R, λ) onto (Y,R, σ);

2. the spaceWy := (q◦ρ)−1(y) is affine for all y ∈ (q◦̺)(W ) ⊆ Y and the vectorial
space Xy = h−1(y) is an associated space to Wy ([22, p.175]). The mapping
µt : Wy → Wσty is affine and πt : Xy → Xσty is its linear associated function
([22, p.179]), i.e., Xy = {w1−w2 | w1, w2 ∈Wy} and µtw1−µtw2 = πt(w1−w2)
for all w1, w2 ∈Wy and t ∈ R+.

Remark 6. The definition of linear non-homogeneous system, associated with the
given linear system, is given in the work [4], but our definition is more general and
sometimes more flexible.

Let 〈B, ϕ, (Y,R, σ)〉 be a linear cocycle over dynamical system (Y,R, σ) with the
fibre B, f ∈ C(Y,B) and ψ be a mapping from R+ × B × Y into B defined by
equality

ψ(t, u, y) := U(t, y)u+

∫ t

0
U(t− τ, σ(τ, y))f(σ(τ, y))dτ (12)

From the definition of mapping ψ it follows that ψ possesses the following prop-
erties:

1. ψ(0, u, y) = u for any (u, y) ∈ B × Y ;

2. ψ(t+ τ, u, y) = ψ(t, ψ(τ, u, y), σ(τ, y)) for any t, τ ∈ R+ and (u, y) ∈ B × Y ;

3. the mapping ψ : R+ × B × Y 7→ B is continuous;

4. ψ(t, u, y) − ψ(t, v, y) = ϕ(t, u − v, y) for any t ∈ R+, u, v ∈ B and y ∈ Y , i.e.,
the mapping ψ(t, ·, y) : B 7→ B is affine for every (t, y) ∈ R+ × Y .
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Definition 19. A triplet 〈B, ψ, (Y,R, σ)〉 is called an affine (nonhomogeneous) co-
cycle over dynamical system (Y,R, σ) with the fibre B if ψ is a mapping from
R+ × B × Y into B possessing the properties 1.-4.

Remark 7. If we have a linear cocycle 〈B, ϕ, (Y,R, σ)〉 over dynamical system
(Y,R, σ) with the fibre B and f ∈ C(Y,B), then equality (12) defines an affine
cocycle 〈B, ψ, (Y,R, σ)〉 over dynamical system (Y,R, σ) with the fibre B which is
called an affine (nonhomogeneous) cocycle associated with linear cocycle ϕ and the
function f ∈ C(Y,B).

Lemma 3. Let 〈B, ϕ, (Y,R, σ)〉 be a linear cocycle and

B
s
y := {x ∈ B| sup

t≥0
|ϕ(t, x, y)| < +∞}

be a subspace of the Banach space B. Then there exists a positive constant L such
that

|ϕ(t, u, y)| ≤ L|u| (13)

for any t ≥ 0 and u ∈ B
s
y.

Proof. Consider the family of linear bounded operators A := {ϕ(t, ·, y)| t ≥ 0} acting
from B

s
y into B. Note that for any u ∈ B

s
y there exists a positive number C(u) (for

example C(u) = sup
t≥0

|ϕ(t, u, y)|) such that

|Au| ≤ C(u)

for any A ∈ A. Since B
s
y is a subspace of the Banach space B, then by Banach-

Steinhaus theorem the family of operators A is bounded, i.e., there exists a positive
constant L such that (13) takes place. Lemma is proved.

Remark 8. If the Banach space B is finite-dimensional, then it is evident that B
s
y

is a subspace of B.

Below we will give another important class of linear cocycles (with infinite-
dimensional B) for which B

s
y is a subspace of B.

Definition 20. A trivial motion of linear cocycle ϕ is said to be Lyapunov stable
at the point y ∈ Y if for arbitrary positive number ε there exists a positive number
δ = δ(ε, y) such that |x| < δ implies |ϕ(t, x, y)| < ε for any t ≥ 0.

Lemma 4. The following statements are equivalent:

1. the trivial motion of linear cocycle ϕ is Lyapunov stable at the point y ∈ Y ;

2. for any x ∈ B we have sup
t≥0

|ϕ(t, x, y)| <∞, i.e., B
s
y = B;

3. there exists a positive number L = L(y) such that

|ϕ(t, x, y)| ≤ L|x| (14)

for any x ∈ B and t ≥ 0.
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Proof. Let ε be an arbitrary positive number and δ = δ(ε, y) be a positive number
from the Lyapunov stability of trivial motion of cocycle ϕ at point y ∈ Y . Denote
by δ0; = δ(1, y), then |x| < δ0 implies |ϕ(t, x, y)| < 1 for any t ≥ 0. Let now x ∈ B

and |x| ≥ δ0, then we have

x =
2|x|
δ0

x′,

where x′ := xδ0/2|x| and, consequently,

|ϕ(t, x, y)| =
2|x|
δ0

|ϕ(t, x′, y)| < 2|x|
δ0

,

for any t ≥ 0 because |x′| < 1. Thus the first statement implies the second one.
Let now B

s
y = B. Consider the family A := {ϕ(t, ·, y)| t ≥ 0} of linear bounded

operators acting on the Banach space B. By condition 2 for any x ∈ B there exists
a positive number C = C(x) such that |Ax| ≤ C|x| for any A ∈ A. Then by Banach-
Steinhaus theorem the family of operators A is bounded, i.e., there exists a positive
constant L such that ||A|| ≤ L for any A ∈ A, i.e., (14) takes place. This means
that 2 implies 3.

Finally, we notice that 3 implies 1. In fact If ε is an arbitrary positive number
and δ(ε, y) := ε/2L, then evidently from |x| < δ we have |ϕ(t, x, y)| < ε for any
t ≥ 0. Lemma is completely proved.

Lemma 5. [7] Let 〈E,ϕ, (Y,R, σ)〉 be a cocycle and 〈(X,R+, π), (Y,R, σ), h〉 be the
nonautonomous dynamical system generated by the cocycle ϕ. Assume that x0 :=
(u0, y0) ∈ X = E × Y and the set Q+

(u0,y0)
:= {ϕ(t, u0, y0) : t ∈ R+} is compact.

Then the semi-hull H+(x0) := {π(t, x0)| t ∈ R+} is conditionally compact.

Lemma 6. Let 〈B, ψ, (Y,R, σ)〉 be an affine cocycle and 〈(X,R+, π), (Y,R, σ), h〉 be
a nonautonomous dynamical system generated by cocycle ϕ (X := B×Y, π := (ϕ, σ)
and h := pr2). Assume that the following conditions are fulfilled:

1. B
s
y is a subspace of the Banach space B;

2. the point y0 ∈ Y is Poisson stable in the positive direction;

3. there exits a point u0 ∈ B such that ψ(R+, u0, y0) is relatively compact.

Then the following statements hold:

1. the set K := ωx0 ⊂ X = B× Y is conditionally compact, where x0 := (u0, y0);

2. M := coKy0 is a compact convex subset of Xy0 := B × {y0}, where Ky0 :=
ωx0

⋂

Xy0 ;

3. E+
y0

is a compact sub-semigroup of the semi-group MM ;

4. every ξ ∈ E+
y0

is affine and continuous.
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Proof. The first statement follows from Lemma 5.
Since the set K is conditionally compact, then the set Ky0 is compact and,

consequently, the set M = coKy0 is also compact.
The third statement follows from Lemma 1.
Let m be an arbitrary natural number, α1, α2, . . . , αm ∈ R+ with

m
∑

k=1

αk = 1

and x1, x2, . . . , xm ∈ M (xi = (ui, y0) i = 1, 2, . . . ,m). Since the maps from
{ϕ(t, ·, y0)| t ≥ 0} are affine, then we have

ψ(t,

m
∑

k=1

αkuk) =

m
∑

k=1

αkψ(t, uk, y0) (15)

for any t ≥ 0. Let now ξ ∈ E+
y0

, then there exists a sequence {tn} ∈ N
+∞
y0

such that

lim
n→∞

πtn(x) = ξ(x) (16)

for any x ∈M . From (15) we get

ψ(tn,

m
∑

k=1

αkuk, y0) =

m
∑

k=1

αkψ(tn, uk, y0) (17)

for any n ∈ N. Passing to the limit in (17) and taking in consideration (16) we
obtain

ξ(

m
∑

k=1

αkxk) =

m
∑

k=1

αkξ(xk).

Thus the map ξ is affine.
Let x ∈M and ξ ∈ E+

y0
, then x = (u, y0) and there exists a sequence {tn} ∈ N

+∞
y0

such that ξ(x) = lim
n→∞

(ψ(tn, u, y0), σ(tn, y0)) = (ν(u), y0), where

ν(u) = lim
n→∞

ψ(tn, u, y0) (18)

for any (u, y0) ∈M . By Lemma 4 there exists a positive constant L such that

|ψ(tn, u1, y0) − ψ(tn, u2, y0)| ≤ L|u1 − u2| (19)

for any (u1, y0), (u2, y0) ∈M and n ∈ N. Passing to the limit in (19) as n→ ∞ and
taking in consideration (18) we obtain

ρ(ξ(x1), ξ(x2)) ≤ Lρ(x1, x2)

for every map ξ ∈ E+
y0

because ξ(x) = (ν(u), y0) for any x = (u, y0) ∈ M and
ρ(x1, x2) = |u1 − u2| (xi = (ui, y0), i = 1, 2). Lemma is completely proved.
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Theorem 7. Let 〈B, ψ, (Y,R, σ)〉 be an affine cocycle and 〈(X,R+, π), (Y,R, σ), h〉
be a nonautonomous dynamical system generated by cocycle ϕ (X := B × Y, π :=
(ϕ, σ) and h := pr2). Assume that the following conditions are fulfilled:

1. the Banach space B is uniformly convex;

2. B
s
y is a subspace of the Banach space B;

3. the point y0 ∈ Y is Poisson stable;

4. there exits a point u0 ∈ B such that ψ(R+, u0, y0) is relatively compact.

Then there exists at least one point ū ∈ B such that N
+∞
y0

⊆ N
+∞
x̄ , i.e., the point

x̄ is comparable with the point y0.

Proof. Let x0 := (u0, y0) and K := ωx0, then by Lemma 6 we have

1. the set K := ωx0 ⊂ X = B×Y is conditionally compact, where x0 := (u0, y0);

2. M := coKy0 is a compact convex subset of Xy0 := B × {y0}, where Ky0 :=
ωx0

⋂

Xy0 ;

3. E+
y0

is a compact sub-semigroup of the semi-group MM ;

4. every ξ ∈ E+
y0

is affine and continuous.

Since the Banach space B is uniformly convex, then by Lemma 2 it is strongly
convex and according to Theorem 6 there exists at least one point x̄ = (ū, y0) ∈ M
such that ξ(x̄) = x̄ for any ξ ∈ E+

y0
. Now we show that the point x̄ is comparable by

character of recurrence with the point y0. To this end by Theorem 4 it is sufficient to
show that N

+∞
y0

⊆ N
+∞
x̄ . Let {tn} ∈ N

+∞
y0

, then σ(tn, y0) → y0 as n→ ∞. Since Σx̄

is conditionally precompact and {π(tn, x̄)} = Σx̄

⋂

h−1({σ(tn, y0)}), then {π(tn, x̄)}
is a precompact sequence. To show that {tn} ∈ N

+∞
x̄ it is sufficient to prove that the

sequence {π(tn, x̄)} has at most one limiting point. Let pi (i = 1, 2) be two limiting
points of {π(tn, x̄)}, then there are {tki

n
} ⊆ {tn} such that pi := lim

n→∞
π(tki

n
, x0)

(i = 1, 2). Notice that the set

Q :=
⋃

{πtn(Xy)|n ∈ N}

is compact, because X is conditionally compact. Thus {πtn |Xy} ⊆ QXy and accord-
ing to Tykhonov’s theorem this sequence is relatively compact and, consequently,
without loss of generality we can suppose that the subsequences {πtki

n } ⊂ {πtn}
(i = 1, 2) are convergent. Denote by ξi = lim

n→∞
π
t
ki
n , then ξi ∈ E+

y0
(i = 1, 2) and

pi = ξi(x̄) = x̄. Thus we have p1 = x̄ = p2. Theorem is completely proved.

Corollary 2. Let 〈B, ψ, (Y,R, σ)〉 be an affine cocycle. Under the conditions of
Theorem 7 if the point y0 ∈ Y is τ -periodic (respectively, Bohr almost periodic,
almost automorphic, recurrent in the sense of Birkhoff, Levitan almost periodic,
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almost recurrent in the sense of Bebutov, Poisson stable), then there exists at least
one point x̄ ∈ X := B × Y such that x̄ has the same character of recurrence as
y0, i.e., x̄ is τ -periodic (respectively, almost automorphic, recurrent in the sense of
Birkhoff, Levitan almost periodic, almost recurrent in the sense of Bebutov, Poisson
stable).

Proof. This statement follows from Theorems 5 and 7.

Definition 21. A continuous mapping ν : R → B is said to be a full trajectory
of the cocyle 〈B, ϕ, (Y,R, σ)〉 if ϕ(t + s, ν(s), σ(s, y)) = ν(t + s) for any t ≥ 0 and
s ∈ R.

Remark 9. Notice that Lemma 4 and Theorem 7 remain true if we replace the set
B
s
y by its subset B

0
y := {u ∈ B| there exists a full trajectory ν of the cocycle ϕ such

that ν(0) = u and ν(R) is relatively compact}.

5 Applications

5.1 Ordinary linear differential equations

Example 4. Let Y be a complete metric space, (Y,R, σ) be a dynamical system
on Y and [B] be the space of linear bounded operators acting into Banach space B

equipped with the operator norm and f ∈ C(Y,B). Consider the following linear
nonhomogeneous differential equation

x′ = A(σ(t, y))x + f(σ(t, y)), (y ∈ Y ) (20)

where A ∈ C(Y, [B]).
Equation (9) generates a linear cocycle 〈B, ϕ, (Y,R, σ)〉 over dynamical system

(Y,R, σ) with the fibre B. According to Remark 7, by equality (12)a linear nonho-
mogeneous cocycle 〈B, ψ, (Y,R, σ)〉 over dynamical system (Y,R, σ) with the fibre B

is defined . Thus every nonhomogeneous linear differential equations (20) generates
a linear nonhomogeneous cocycle ψ.

Example 5. Consider a linear nonhomogeneous differential equation

x′ = A(t)x+ f(t), (21)

where f ∈ C(R,B) and A ∈ C(R, [B]). Along with equation (21) consider its
H-class, i.e., the following family of equations

x′ = B(t)x+ g(t), (22)

where (B, g) ∈ H(A, f). Notice that the following conditions are fulfilled for equa-
tion (10) and its H-class (11):

a. for any u ∈ B and B ∈ H(A) equation (11) has exactly one solution ϕ(t, u,B)
defined on R and the condition ϕ(0, u,B) = v is fulfilled;
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b. the mapping ϕ : (t, u,B) → ϕ(t, u,B) is continuous in the topology of R×B×
C(R;B).

Denote by (H(A, f),R, σ) the shift dynamical system on H(A, f). Under the
above assumptions the equation (10) generates a linear cocycle 〈B, ϕ, (H(A, f),R, σ)〉
over dynamical system (H(A, f),R, σ) with the fibre B. Denote by ψ a mapping
from R+ × B ×H(A, f) into B defined by equality

ψ(t, u, (B, g)) := U(t, B)u+

∫ t

0
U(t− τ,Bτ )g(τ)dτ,

then ψ possesses the following properties:

(i) ψ(0, u, (B, g)) = u for any (u, (B, g)) ∈ B ×H(A, f);

(ii) ψ(t + τ, u, (B, g)) = ψ(t, ψ(τ, u, (B, g)), (Bτ , gτ )) for any t, τ ∈ R+ and
(u, (B, g)) ∈ B ×H(A, f);

(iii) the mapping ψ : R × B ×H(A, f) 7→ B is continuous;

(iv) ψ(t, λu+ µv, (B, g)) = λψ(t, u, (B, g)) + µψ(t, v, (B, g)) for any t ∈ R+, u, v ∈
B, (B, g) ∈ H(A, f) and λ, µ ∈ R (or C) with the condition λ+µ = 1, i.e., the
mapping ψ(t, ·, (B, g)) : B 7→ B is affine for every (t, (B, g)) ∈ R+ ×H(A, f).

Thus, every linear nonhomogeneous differential equation of the form (21) (and
its H-class (22)) generates a linear nonhomogeneous cocycle 〈B, ψ, (H(A, f),R, σ)〉
over dynamical system (H(A, f),R, σ) with the fibre B.

Theorem 8. Assume that the following conditions are fulfilled:

1. B is a uniformly convex Banach space;

2. B
s
A := {u ∈ B| sup

t≥0
|ϕ(t, u,A)| <∞} is a subspace of the Banach space;

3. the function f ∈ C(R,B) and operator-function A ∈ C(R, [B]) are jointly
Poisson stable;

4. there exits a relatively compact on R+ solution ψ(t, u0, A, f) of equation (21).

Then there exists at least one compatible solution ψ(t, ū, A, f) of equation (21),
i.e., N

+∞
(A,f) ⊆ N

+∞
ψ̄

, where ψ̄ := ψ(·, ū, A, f).

Proof. Let 〈B, ψ, (H(A, f),R, σ)〉 be a cocycle generated by equation (21). By Ex-
ample 5 the cocycle ψ is affine. Now applying Theorem 7 to constructed cocycle ψ
we complete the proof of Theorem.

Corollary 3. Under the conditions of Theorem 8 if the function (A, f) ∈ C(R, [B])×
C(R,B) is τ -periodic (respectively, Bohr almost periodic, almost automorphic, Levi-
tan almost periodic, almost recurrent in the sense of Bebutov, recurrent in the sense
of Birkhoff, Poisson stable), then equation (21) has at least one τ -periodic (respec-
tively, almost automorphic, Levitan almost periodic, almost recurrent in the sense
of Bebutov, recurrent in the sense of Birkhoff, Poisson stable) solution.
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Proof. If the function (A, f) ∈ C(R, [B])×C(R,B) is τ -periodic (respectively, Levi-
tan almost periodic, almost recurrent in the sense of Bebutov, Poisson stable), then
this statement follows from Theorem 8.

Suppose that (A, f) ∈ C(R, [B]) × C(R,B) is Bohr almost periodic (respec-
tively, almost automorphic, recurrent in the sense of Birkhoff), then it is Levitan
almost periodic. By above arguments equation (21) has at least one Levitan almost
periodic solution ψ̄. On the other hand the solution ψ̄ is relatively compact and
uniformly continuous on R because (A, f) ∈ C(R, [B]) × C(R,B) is bounded on R.
Thus the function ψ̄ is Levitan almost periodic and stable in the sense of Lagrange
and, consequently, it is almost automorphic (respectively, recurrent in the sense of
Birkhoff).

5.2 Linear partial differential equations

5.2.1 Linear homogeneous differential equations

Let (B, | · |) be a Banach space with the norm | · |, 〈B, ϕ, (Y,R, σ)〉 (or shortly
ϕ) be a linear cocycle over dynamical system (Y,R, σ) with the fiber B, i.e., ϕ is a
continuous mapping from R+ × B × Y into B satisfying the following conditions:

1. ϕ(0, u, y) = u for all u ∈ B and y ∈ Y ;

2. ϕ(t+ τ, u, y) = ϕ(t, ϕ(τ, u, y), σ(τ, y)) for all t, τ ∈ R+, u ∈ B and y ∈ Y ;

3. for all (t, y) ∈ R+ × Y the mapping ϕ(t, ·, y) : B 7→ B is linear.

Denote by [B] the Banach space of all linear bounded operators A acting on the
space B equipped with the operator norm ||A|| := sup

|x|≤1
|Ax|.

Example 6. Let Y be a complete metric space, (Y,R, σ) be a dynamical system
on Y and Λ be some complete metric space of linear closed operators acting into
Banach space B ( for example Λ = {A0 +B|B ∈ [B]}, where A0 is a closed operator
that acts on B). Consider the following linear differential equation

x′ = A(σ(t, y))x, (y ∈ Y ) (23)

where A ∈ C(Y,Λ). We assume that the following conditions are fulfilled for equa-
tion (23):

a. for any u ∈ B and y ∈ Y equation (23) has exactly one solution that is defined
on R+ and satisfies the condition ϕ(0, u, y) = u;

b. the mapping ϕ : (t, u, y) → ϕ(t, u, y) is continuous in the topology of R+ ×
B × Y .

Under the above assumptions the equation (23) generates a linear cocycle
〈B, ϕ, (Y, R, σ)〉 over dynamical system (Y,R, σ) with the fiber B.
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Example 7. Let Λ be some complete metric space of linear closed operators acting
into Banach space B. Consider the differential equation

x′ = A(t)x, (24)

where A ∈ C(R,Λ). Along with equation (24) consider its H-class, i.e., the following
family of equations

x′ = B(t)x, (25)

where B ∈ H(A). We assume that the following conditions are fulfilled for equation
(24) and its H-class (25):

a. for any u ∈ B and B ∈ H(A) equation (25) has exactly one mild solution
ϕ(t, u,B) (i.e., ϕ(·, u,B) is continuous, defined on R+ and satisfies the equation

ϕ(t, v,B) = U(t, B)v +

∫ t

0
U(t− τ,Bτ )ϕ(τ, v,B)dτ

and the condition ϕ(0, u,B) = v);

b. the mapping ϕ : (t, u,B) → ϕ(t, u,B) is continuous in the topology of R+ ×
E × C(R; Λ).

Denote by (H(A),R, σ) the shift dynamical system on H(A). Under the above
assumptions the equation (24) generates a linear cocycle 〈B, ϕ, (H(A),R, σ)〉 over
dynamical system (H(A),R, σ) with the fiber B.

Note that equation (24) and its H-class can be written in the form (23). We put
Y := H(A) and denote by A ∈ C(Y,Λ) defined by equality A(B) := B(0) for all
B ∈ H(A) = Y , then B(τ) = A(σ(B, τ)) (σ(τ,B) := Bτ , where Bτ (t) := B(t + τ)
for all t ∈ R). Thus the equation (24) with its H-class can be rewrite as follow

x′ = A(σ(t, B))x (B ∈ H(A)).

We will consider example of partial differential equations which satisfy the above
conditions a.-b.

Example 8. Consider the differential equation

u′ = (A1 +A2(t))u, (26)

where A1 is a sectorial operator that does not depend on t ∈ R, and A2 ∈ C(R, [B]).
The results of [15],[21] imply that equation (26) satisfies conditions a.-b. from Ex-
ample 6.
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5.2.2 Linear non-homogeneous (affine) differential equations

Let 〈B, ϕ, (Y,R, σ)〉 be a linear cocycle over dynamical system (Y,R, σ) with the
fiber E, f ∈ C(Y,B) and ψ be a mapping from T×B×Y into B defined by equality

ψ(t, u, y) := U(t, y)u+

∫ t

0
U(t− τ, σ(τ, y))f(σ(τ, y))dτ . (27)

From the definition of the mapping ψ it follows that ψ possesses the following
properties:

1. ψ(0, u, y) = u for any (u, y) ∈ B × Y ;

2. ψ(t+ τ, u, y) = ψ(t, ψ(τ, u, y), σ(τ, y)) for any t, τ ∈ R+ and (u, y) ∈ B × Y ;

3. the mapping ψ : R+ × B × Y 7→ B is continuous;

4. ψ(t, λu+ µv, y) = λψ(t, u, y) + µψ(t, v, y) for any t ∈ R+, u, v ∈ B, y ∈ Y and
λ, µ ∈ R (or C) with condition λ+ µ = 1, i.e., the mapping ψ(t, ·, y) : B 7→ B

is affine for every (t, y) ∈ R+ × Y .

Remark 10. If we have a linear cocycle 〈B, ϕ, (Y,R, σ)〉 over dynamical system
(Y,R, σ) with the fiber B and f ∈ C(Y,B), then by equality (27) is defined an affine
cocycle 〈B, ψ, (Y,R, σ)〉 over dynamical system (Y,R, σ) with the fiber B which is
called an affine (non-homogeneous) cocycle associated by linear cocycle ϕ and the
function f ∈ C(Y,B).

Example 9. Let Y be a complete metric space, (Y,R, σ) be a dynamical system
on Y and Λ be some complete metric space of linear closed operators acting into
Banach space B and f ∈ C(Y,B). Consider the following linear non-homogeneous
differential equation

x′ = A(σ(t, y))x + f(σ(t, y)), (y ∈ Y ) (28)

where A ∈ C(Y,Λ). We assume that conditions a. and b. from Example 6 are
fulfilled for equation (28).

Under the above assumptions equation (28) generates a linear cocycle 〈B, ϕ, (Y,
R, σ)〉 over dynamical system (Y,R, σ) with the fiber B. According to Remark 10 by
equality (27) a linear non-homogeneous cocycle 〈B, ψ, (Y,R, σ)〉 over dynamical sys-
tem (Y,R, σ) with the fiber B is defined. Thus every non-homogeneous linear differ-
ential equation (28), under conditions a. and b. generates a linear non-homogeneous
cocycle ψ.

Example 10. Let Λ be some complete metric space of linear closed operators act-
ing into Banach space B and f ∈ C(R,B). Consider a linear non-homogeneous
differential equation

x′ = A(t)x+ f(t), (29)
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where A ∈ C(R,Λ). Along with equation (29) consider its H-class, i.e., the following
family of equations

x′ = B(t)x+ g(t), (30)

where (B, g) ∈ H(A, f). We assume that the following conditions are fulfilled for
equation (24) and its H-class (25):

a. for any u ∈ B and B ∈ H(A) equation (25) has exactly one mild solution
ϕ(t, u,B) with the condition ϕ(0, u,B) = v;

b. the mapping ϕ : (t, u,B) → ϕ(t, u,B) is continuous in the topology of R+ ×
B × C(R; Λ).

Denote by (H(A),R, σ) the shift dynamical system on H(A). Under the above
assumptions the equation (24) generates a linear cocycle 〈B, ϕ, (H(A),R, σ)〉 over
dynamical system (H(A),R, σ) with the fiber B. Denote by ψ the mapping from
R+ × B ×H(A) into B defined by equality

ψ(t, u, (B, g)) := U(t, B)u+

∫ t

0
U(t− τ,Bτ )g(τ)dτ,

then ψ possesses the following properties:

(i) ψ(0, u, (B, g)) = u for any (u, (B, g)) ∈ B ×H(A, f);

(ii) ψ(t + τ, u, (B, g)) = ψ(t, ψ(τ, u, (B, g)), (Bτ , gτ )) for any t, τ ∈ R+ and
(u, (B, g)) ∈ B ×H(A, f);

(iii) the mapping ψ : R+ × B ×H(A, f) 7→ B is continuous;

(iv) ψ(t, λu+ µv, (B, g)) = λψ(t, u, (B, g)) + µψ(t, v, (B, g)) for any t ∈ R+, u, v ∈
B, (B, g) ∈ H(A, f) and λ, µ ∈ R (or C) with condition λ + µ = 1, i.e., the
mapping ψ(t, ·, (B, g)) : B 7→ B is affine for every (t, (B, g)) ∈ R+ ×H(A, f).

Thus, every linear non-homogeneous differential equation of the form (29) (and
its H-class (30)) generates a linear non-homogeneous cocycle 〈B, ψ, (H(A, f),R, σ)〉
over dynamical system (H(A, f),R, σ) with the fiber B.

Definition 22. A closed linear operator A : D(A) → B with dense domain D(A)
is said [15] to be sectorial if one can find a φ ∈ (0, π2 ), an M ≥ 1, and a real number
a such that the sector

Sa,φ := {λ | |arg (λ− a)| ≤ π, λ 6= a}

lies in the resolvent set ρ(A) of A and ‖(λI −A)−1‖ ≤M |λ− a|−1 for any λ ∈ Sa,φ.
An important class of sectorial operators is formed by elliptic operators [15],[17].
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Remark 11. Consider the differential equation

u′ = (A1 +A2(t))u, (31)

where A1 is a sectorial operator that does not depend on t ∈ R, and A2 ∈ C(R, [B]).
The results of [15,21], imply that equation (31) satisfies conditions (i)-(iii).

Note that equation (29) (and its H-class (30)) can be written in the form
(23). We put Y := H(A, g) and denote by A ∈ C(H(A, f),Λ) (respectively, F ∈
C(H(A, f), E)) defined by equality A(B, g) := B(0) (respectively, F(B, g) = g(0))
for any (B, g) ∈ H(A, f), then B(τ) = A(Bτ , gτ ) (respectively, g(τ) = F(Bτ , gτ )),
where Bτ (t) := B(t + τ) and gτ (t) := g(t + τ) for any t ∈ R). Thus equation (29)
with its H-class can be rewrite as follow

x′ = A(σ(t, (B, g)))x + F(σ(t, (B, g)))
(

(B, g) ∈ H(A, f)
)

.

5.2.3 Levitan almost periodic solutions of linear partial differential equa-
tions

Theorem 9. Assume that the following conditions are fulfilled:

1. B is a uniformly convex Banach space;

2. B
s
A := {u ∈ B| sup

t≥0
|ϕ(t, u,A)| < ∞} is a subspace of the Banach space B,

where ϕ is a linear cocycle generated by equation (24);

3. the function f ∈ C(R,B) and operator-function A ∈ C(R,Λ) are jointly Pois-
son stable;

4. there exits a relatively compact on R+ solution ψ(t, u0, A, f) of equation (29).

Then there exists at least one compatible solution ψ(t, ū, A, f) of equation (29),
i.e., N

+∞
(A,f) ⊆ N

+∞
ψ̄

, where ψ̄ := ψ(·, ū, A, f).

Proof. Let 〈B, ψ, (H(A, f),R, σ)〉 be a cocycle generated by equation (29). By Ex-
ample 10 the cocycle ψ is affine. Now applying Theorem 7 to constructed cocycle ψ
we complete the proof of Theorem.

Remark 12. 1. Note that the definition of almost automorphy is equivalent to the
following: the function ϕ ∈ C(R,X) is almost automorphic if and only if from every
sequence {t′n} ⊂ R we can extract a subsequence {tn} such that

ϕ(t+ tn) → ψ(t) and ψ(t− tn) → ϕ(t) (32)

uniformly in t on every compact subset from R.
2. The original definition of Bochner [2] is the following: the function ϕ ∈

C(R,X) is almost automorphic if and only if from every sequence {t′n} ⊂ R we can
extract a subsequence {tn} such that the relations in (32) take place pointwise for
t ∈ R.
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Lemma 7. [13] Suppose that the function ϕ ∈ C(R,X) is uniformly continuous on
R and almost automorphic in the sense of Bochner. Then it is almost automorphic
in the sense of Bohr.

Remark 13. The function ϕ(t) = sin( 1
2+cos t+cos

√
2t

) is

1. almost automorphic in the sense of Bochner [1, Example 3.1];

2. Levitan almost periodic, but it is not almost automorphic (in the sense of
Bohr), because ϕ is not uniformly continuous on R [20, Ch.V, pp.212–213].

Corollary 4. Under the conditions of Theorem 8 if the function (A, f) ∈ C(R, [B])×
C(R,B) is τ -periodic (respectively, Bohr almost periodic, almost automorphic, Lev-
itan almost periodic, almost recurrent in the sense of Bebutov, Poisson stable), then
equation (29) has at least one τ -periodic (respectively, almost automorphic in the
sense of Bochner, Levitan almost periodic, almost recurrent in the sense of Bebutov,
Poisson stable) solution.

Proof. If the function (A, f) ∈ C(R, [B])×C(R,B) is τ -periodic (respectively, Levi-
tan almost periodic, almost recurrent in the sense of Bebutov, Poisson stable), then
this statement follows from Theorem 8.

Suppose that (A, f) ∈ C(R, [B])×C(R,B) is Bohr almost periodic (respectively,
almost automorphic), then it is Levitan almost periodic. By above arguments equa-
tion (29) has at least one Levitan almost periodic solution ψ̄. On the other hand the
solution ψ̄ is relatively compact on R and by Remark 12 it is almost automorphic
in the sense of Bochner.
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[5] Inese Bula, Juris Viksina, Example of Strictly Convex Metric Spaces with Not Con-
vex Balls. International Journal of Pure and Applied Mathematics, Vol. 25, No. 1, 2005,
pp. 85-91.

[6] Inese Bula, Strictly Convex Metric Spaces and Fixed Points. Matematica Moravica, Vol.
3, 1999, pp.5-16.

[7] T. Caraballo, D. Cheban, Almost periodic and almost automorphic solutions of linear
differential/difference equations without Favard’s separation condition. I, J. Differential
Equations, 246 (2009), 108–128.



LEVITAN ALMOST PERIODIC SOLUTIONS OF INFINITE-DIMENSIONAL . . . 77

[8] D. N. Cheban, On the Comparability of Points of Dynamical Systems with Regard to the
Character of Recurrence Property in the Limit. Mathematical Sciences, Issue No.1, 1977.
Kishinev, ”Shtiintsa”, pp. 66-71.

[9] D. N. Cheban, Levitan almost periodic and almost automorphic solutions of V -monotone
differential equations, J. Dynam. Differential Equations 20 (2008), 669–697.

[10] D. N. Cheban, Asymptotically Almost Periodic Solutions of Differential Equations. Hindawi
Publishing Corporation, New York, 2009, ix+186 pp.

[11] David Cheban, Levitan Almost Periodic Solutions of Linear Differential Equations. 2019
(Submitted). arXiv:1907.02512v1

[12] David N. Cheban, Nonautonomous Dynamics: Nonlinear oscillations and Global attractors.
Springer, 2019, 496 p. (Accepted).

[13] David Cheban, Zhenxin Liu, Periodic, Quasi-Periodic, Almost Periodic, Almost Automor-
phic, Birkhoff Recurrent and Poisson Stable Solutions for Stochastic Differential Equations.
2019 (Submitted).

[14] I. Galina, On strict convexity. LU Zinatniskie Raksti, Matematika, 576 (1992), pp. 193-198.

[15] D. Henry, Geometric Theory of Semilinear Parabolic Equations. Lecture Notes in Mathe-
matics, No.840, Springer-Verlag, New York, 1981.

[16] I. Hitoshi, On the Existence of Almost Periodic Complete Trajectories for Contractive
Almost Periodic Processes. Journal of Differential Equations, 43(1), 1982, pp.66–72.
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