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The topological classification of a family of quadratic

differential systems in terms of affine invariant
polynomials
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Abstract. In this paper we provide affine invariant necessary and sufficient con-
ditions for a non-degenerate quadratic differential system to have an invariant conic
f(x, y) = 0 and a Darboux invariant of the form f(x, y)λest with λ, s ∈ R and s 6= 0.
The family of all such systems has a total of seven topologically distinct phase por-
traits. For each one of these seven phase portraits we provide necessary and sufficient
conditions in terms of affine invariant polynomials for a non-degenerate quadratic
system in this family to possess this phase portrait.
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1 Introduction and statement of the main results

We consider the family of real quadratic differential systems

ẋ = p0 + p1(x, y) + p2(x, y) ≡ P (ã, x, y),

ẏ = q0 + q1(x, y) + q2(x, y) ≡ Q(ã, x, y)
(1)

where
p0 = a, p1(x, y) = cx + dy, p2(x, y) = gx2 + 2hxy + ky2,

q0 = b, q1(x, y) = ex + fy, q2(x, y) = lx2 + 2mxy + ny2.

and with max(deg(p),deg(q)) = 2.
Here we denote by ã = (a, c, d, g, h, k, b, e, f, l,m, n) the 12-tuple of the coeffi-

cients of systems (1). We denote the class of all quadratic differential systems with
QS.

Definition 1. Let Ω be an open and dense subset of R2. An invariant of a sys-
tem (1) in Ω is a nonconstant C1 function I in the variables x, y and t such that
I(x(t), y(t), t) is constant on all solution curves (x(t), y(t)) of system (1) contained
in Ω, i.e.

∂I

∂x
P +

∂I

∂y
Q +

∂I

∂t
= 0,

for all (x, y) ∈ Ω.
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For f ∈ C[x, y] we say that the curve f(x, y) = 0 is an invariant algebraic curve
of system (1) if there exists K ∈ C[x, y] such that P ∂f

∂x
+ Q∂f

∂y
= Kf.

We shall consider here the following particular case of an invariant: we say that
I(x, y, t) = f(x, y)λest with λ, s ∈ R and s 6= 0 is a Darboux invariant of a system
(1) if f(x, y) = 0 is an invariant algebraic curve and I(x, y, t) is an invariant of the
system (see the above definition).

In [9] the authors classify topologically the family of systems of the form (1) which
possess an invariant conic f(x, y) = 0 and a Darboux invariant f(x, y)λest. The work
in [9] is part of the program to classify topologically the set of all quadratic differ-
ential systems. There are numerous works in which specific families of quadratic
differential systems were classified topologically. These classifications are of two
kinds: a) those done with respect to special normal forms and the results are pre-
sented in terms of the coefficients of these normal forms and b) those done in terms
of affine invariant polynomials and thus they are independent of the normal forms
in which the systems may be presented. In case a study is of type a), using one of
several normal forms, then the results are not easily transferable to another normal
form. In the case several such normal forms are used which may have non-empty
intersections then we are faced with the problem of gluing the results so as to obtain
a list of phase portraits without repetitions of the whole class. In the literature we
encounter cases where phase portraits appear repeated and it is difficult to get an
integrated global picture. The work in [9] belongs to the class a) and hence the re-
sults are not readily applicable to normal forms not encountered in [9]. In this work
we make these results independent of normal forms, by using invariant polynomials.

For a survey of what has been done so far on topologically classifying families
of polynomial differential systems we refer the reader to [13] and [4]. Many of the
papers mentioned in [13] or in [4] are about systems which possess specific types
of invariant algebraic curves. Systematic studies of quadratic differential systems
possessing invariant straight lines were done in the following articles:[14, 16–22].
In [10,11] the authors classify topologically the family of systems possessing at least
one invariant hyperbola in terms of the configurations of hyperbolas and invariant
lines the system may possess. This classification is of the type b) and it gives an
algorithm to decide for any given quadratic differential system, whether it possesses
an invariant hyperbola or not and if it does, then it exhibits the configuration of
invariant hyperbolas and invariant straight lines the systems possesses.

The problem of topologically classifying the family of quadratic systems possess-
ing an invariant parabola is still open. The particular class we are concerned with
here is formed by systems which have an invariant conic and a Darboux invariant.
As the authors proved in [9], in this case necessarily the conic must be a parabola
and hence their work classified topologically a part of the family of systems in QS
which possess an invariant parabola.

Our goal in this article is: (i) to provide affine invariant necessary and sufficient
conditions for a non-degenerate quadratic differential system to have an invariant
conic f(x, y) = 0 and a Darboux invariant of the form f(x, y)λest;
(ii) for each one of the seven phase portraits of this family, to provide necessary and
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sufficient conditions in terms of affine invariant polynomials for a non-degenerate
quadratic system to possess this phase portrait.

We denote by QS
par
DI the class of quadratic systems possessing an invariant

parabola and a Darboux invariant of the form indicated above.

We define in Section 2 the following 12 polynomials in x, y and the coefficients
of systems (1), with coefficients in R:

η, µ2, µ3, M̃ , K̃, R̃, K1, K3, D, V1, V2, V3,

which are invariant with respect to the affine group action.

The phase portraits of the family of quadratic differential systems possessing an
invariant conic and a Darboux invariant were given in [9].

Our main results are stated in the following theorem.

Main Theorem. (A) A non-degenerate quadratic differential system in the class
QS (i.e.

∑4
i=0 µ2

i 6= 0) possesses an invariant parabola f(x, y) = 0 and a Darboux

invariant of the form f(x, y)λest with λ, s ∈ R and s 6= 0 if and only if η = K̃ =
R̃ = 0 and one of the following three sets of conditions holds:

(i) M̃µ2 6= 0, V1 = 0;

(ii) M̃ = µ2 = 0, K3V2 6= 0;

(iii) M̃ = µ2 = 0, K3 6= 0, V2 = V3 = 0.

(2)

Moreover this system has an one-parameter family of invariant parabolas if an only
if M̃ = µ2 = V2 = V3 = 0, whereas in all other cases the invariant parabola is
unique.

(B) Assume that a non-degenerate system in QS possesses an invariant parabola
f(x, y) = 0 and a Darboux invariant of the form f(x, y)λest, i.e. the conditions pro-
vided by the statement (A) are satisfied. Then the phase portrait of this system
corresponds to one of those given in Figure 1 if and only if the corresponding addi-
tional conditions are satisfied as follows:

Port.1 ⇔ M̃ 6= 0, D < 0;

Port.2 ⇔ M̃ 6= 0, D > 0;

Port.3 ⇔ M̃ 6= 0, D = 0;

Port.4 ⇔ M̃ = 0, µ3K1 < 0;

Port.5 ⇔ M̃ = 0, µ3K1 > 0, K3 < 0;

Port.6 ⇔ M̃ = 0, µ3K1 > 0, K3 = 0;

Port.7 ⇔ M̃ = 0, µ3K1 = 0.

All the invariant polynomials which classify this subfamily of quadratic systems
are defined in Subsection 2.1.
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Figure 1. The phase portraits

2 Preliminaries

In the paper [9] the authors have investigated the class of quadratic systems
possessing an invariant conic and in addition a Darboux invariant. They proved the
following proposition:

Proposition 1. Assume that a quadratic system possesses an invariant conic and
a Darboux invariant. Then this conic must be an invariant parabola. Moreover via
an affine transformation this system could be brought to the normal form:

ẋ = px + qy + r, ẏ = c(y − x2) + 2x(px + qy + r), (3)

possessing the invariant parabola y − x2 = 0 and the Darboux invariant of the form
I(x, y, t) = (y − x2)e−ct.

According to [7] we have the following lemma:

Lemma 1. If a quadratic system (1) possesses an invariant parabola then it could
be brought via an affine transformation to the following canonical form:

ẋ = c(y − x2) + (a + bx + gy) + exy,

ẏ = d(y − x2) + 2x(a + bx + gy) + 2ey2
(4)

having the invariant parabola y − x2 = 0.

2.1 The main invariant polynomials associated to the class QS
par

DI

Consider real quadratic systems of the form (1). It is known that on the set QS
acts the group Aff (2, R) of affine transformations on the plane (cf.[15]). For every
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subgroup G ⊆ Aff (2, R) we have an induced action of G on QS. We can identify the
set QS of systems (1) with a subset of R

12 via the map QS−→ R
12 which associates

to each system (1) the 12–tuple ã = (a, c, d, g, h, k, b, e, f, l,m, n) of its coefficients.
We associate to this group action polynomials in x, y and parameters which behave
well with respect to this action, the GL–comitants, the T–comitants and the CT–
comitants. For their definitions as well as their detailed constructions we refer the
reader to the paper [15] (see also [4]).

Here we construct the the invariant polynomials we mentioned before in the
following way.

First we need the GL-comitants of degree one with respect to the coefficients of
systems (1):

Ci(x, y) = ypi(x, y) − xqi(x, y), i = 0, 1, 2; Di(x, y) =
∂

∂x
pi(x, y) +

∂

∂y
qi(x, y),

i = 1, 2
(5)

and the so-called transvectant of order k (see [8],[12]) of two polynomials f, g ∈
R[ã, x, y]

(f, g)(k) =

k∑

h=0

(−1)h
(

k

h

)
∂kf

∂xk−h∂yh

∂kg

∂xh∂yk−h
.

Using this differential operator we construct now the following GL-comitants which
are of degree two with respect to the coefficients of systems (1):

T1 = (C0, C1)
(1) , T2 = (C0, C2)

(1) , T3 = (C0,D2)
(1) , T4 = (C1, C1)

(2) ,

T5 = (C1, C2)
(1) , T6 = (C1, C2)

(2) , T7 = (C1,D2)
(1) , T8 = (C2, C2)

(2) ,

T9 = (C2,D2)
(1) .

Consider the differential operator L = x · L2 − y · L1 constructed in [5], acting
on R[ã, x, y], where

L1 = 2a
∂

∂c
+ c

∂

∂g
+

1

2
d

∂

∂h
+ 2b

∂

∂e
+ b10

∂

∂b20
+

1

2
f

∂

∂m
,

L2 = 2a
∂

∂d
+ d

∂

∂k
+

1

2
c

∂

∂h
+ 2b

∂

∂f
+ f

∂

∂n
+

1

2
e

∂

∂m
.

Using this operator and the affine invariant µ0 = Resultant[p2(ã, x, 1), q2(ã, x, 1), x]
we construct the following polynomials

µi(ã, x, y) =
1

i!
L(i)(µ0), i = 1, .., 4,

where L(i)(µ0) = L(L(i−1)(µ0)) and L(0)(µ0) = µ0.
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And finally we construct the remaining invariant polynomials which will be
needed:

D(ã) =
[
3
(
(µ3, µ3)

(2), µ2

)(2) −
(
6µ0µ4 − 3µ1µ3 + µ2

2, µ4

)(4)
]
/48;

M̃(ã, x, y) =(C2, C2)
(2) ≡ 2Hess

(
C2(ã, x, y)

)
;

η(ã) =(M̃ , M̃)(2)/384 ≡ Discrim
(
C2(ã, x, y)

)
;

K̃(ã, x, y) =(T8 + 4T9 + 4D2
2)/18 ≡ Jacob

(
p2(ã, x, y), q2(ã, x, y)

)
;

K1(ã, x, y) =p1(ã, x, y)q2(ã, x, y) − p2(ã, x, y)q1(ã, x, y);

K3(ã, x, y) =C2
2 (4T3 + 3T4) + C2(3C0K̃ − 2C1T7) + 2K1(3K1 − C1D2);

L̃(ã, x, y) =4K̃ − M̃ + 4(T8 − 8T9 − 2D2
2)/9;

R̃(ã, x, y) = L̃ + 8K̃.

κ(ã) =(M̃ , K̃)(2)/4.

These invariant polynomials were constructed earlier and could be found, for ex-
ample, in [2] and [3] (we keep the notations from these papers). However for our
goal we also use three new invariant polynomials V1, V2 and V3, constructed here as
follows:

V1 =
((

(D̂, D̂)(2),D2

)(1)
,D2

)(1) − 4
(
(D̂, F̂ )(2),D2

)(1)
,

V2 =T5, V3 = 4T2 + 3C1D1,

where

D̂(ã, x, y) =
[
2C0(T8 − 8T9 − 2D2

2) + C1(6T7 − T6) − (C1, T5)
(1) − 9D2

1C2

+ 6D1(C1D2 − T5)
]
/36,

F̂ (ã, x, y) =
[
6D2

1(D
2
2 − 4T9) + 4D1D2(T6 + 6T7) + 48C0(D2, T9)

(1) − 9D2
2T4

+ 288D1Ê − 24(C2, D̂)(2) + 120(D2, D̂)(1) − 36C1(D2, T7)
(1)

+ 8D1(D2, T5)
(1)

]
/144,

where D̂(ã, x, y) and F̂ (ã, x, y) are the elements of the polynomial basis of T -
comitants up to degree 12, constructed in [6].

2.2 Preliminary results involving the use of polynomial invariants

According to [5] (see also [4]) the invariant polynomials µi(ã, x, y) (i = 0, 1, . . . , 4)
defined in the previous subsection are responsible for the total multiplicity of the fi-
nite singularities of quadratic systems (1). Moreover they detect whether a quadratic
system is degenerate or not. More exactly we have the following lemma (see [5],[4]).

Lemma 2. Consider a quadratic system (S) with coefficients a ∈ R
12. Then:

(i) The total multiplicity of the finite singularities of this system is 4 − k if and
only if for every i such that 0 ≤ i ≤ k − 1 we have µi(a, x, y) = 0 in R[x, y] and
µk(a, x, y) 6= 0.
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(ii) The system (S) is degenerate (i.e. gcd(p, q) 6= constant) if and only if
µi(a, x, y) = 0 in R[x, y] for every i = 0, 1, 2, 3, 4.

On the other hand the invariant polynomials η, M̃ and C2 govern the number
of real and complex infinite singularities. More precisely, according to [23] (see
also [15]) we have the next result.

Lemma 3. The number of infinite singularities (real and complex) of a quadratic
system in QS is determined by the following conditions:

(i) 3 real if η > 0;

(ii) 1 real and 2 imaginary if η < 0;

(iii) 2 real if η = 0 and M̃ 6= 0;

(iv) 1 real if η = M̃ = 0 and C2 6= 0;

(v) ∞ if η = M̃ = C2 = 0.

Moreover, the quadratic systems (1), for each one of these cases, can be brought via
a linear transformation to the corresponding case of the following canonical systems
(SI) − (SV ):

{
ẋ = a + cx + dy + gx2 + (h − 1)xy,

ẏ = b + ex + fy + (g − 1)xy + hy2;
(SI)

{
ẋ = a + cx + dy + gx2 + (h + 1)xy,

ẏ = b + ex + fy − x2 + gxy + hy2;
(SII)

{
ẋ = a + cx + dy + gx2 + hxy,

ẏ = b + ex + fy + (g − 1)xy + hy2;
(SIII)

{
ẋ = a + cx + dy + gx2 + hxy,

ẏ = b + ex + fy − x2 + gxy + hy2;
(SIV )

{
ẋ = a + cx + dy + x2,

ẏ = b + ex + fy + xy.
(SV )

Using Lemma 1 and Proposition 1we prove the next result.

Lemma 4. Assume that a quadratic system possesses an invariant parabola f(x, y) =
0. Then this system has a Darboux invariant of the form I(x, y, t) = f(x, y)e−ct if
and only if K̃ = 0 = R̃.

Proof: Consider a quadratic system possessing an invariant parabola. By Lemma 1
this systems could be brought via an affine transformation to form (4). It remains to
prove that these systems have the form (3) if and only if the conditions K̃ = 0 = R̃
are satisfied. Indeed, first of all we observe that for systems (3) these conditions
hold, i.e. the necessity is evident.

We consider now systems (4) and calculate

K̃ = −2(2be − de + 2cg)x2 − 8cexy + 4e2y2.
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Therefore the condition K̃ = 0 yields e = cg = 0. On the other hand for e = 0
we have R̃ = 8c(c − 2g)x2 and hence the conditions K̃ = 0 = R̃ are equivalent to
c = e = 0. Evidently we arrived at the 4-parameter family of systems of the form
(3) and this completes the proof of the lemma. �

Remark 1. For systems (4) we calculate η and C2 and we obtain

η = 0, C2 = x2
[
(c − 2p)x − 2qy

]
.

So we observe that the condition C2 = 0 gives c = 2p and q = 0 and this leads to
linear systems. Therefore we conclude that the conditions η = 0 and C2 6= 0 are
necessary for a quadratic system (1) to possess an invariant parabola and a Darboux
invariant of the mentioned type. Moreover we deduce that the invariant parabola
y − x2 = 0 of systems (3) has the double point N1[0 : 1 : 0] as an intersection point
with the line Z = 0 at infinity.

Assume that the conic

Φ(x, y) ≡ p + qx + ry + sx2 + 2vxy + uy2 = 0 (6)

is an invariant curve for systems (1), i.e. the following identity holds:

∂Φ

∂x
P (x, y) +

∂Φ

∂y
Q(x, y) = Φ(x, y)(Ux + V y + W ),

where the cofactor K = Ux+V y +W ∈ C[x, y]. This identity yields a system of ten
algebraic equations for determining the 9 unknown parameters p, q, r, s, u, v, U, V,W :

Eq1 ≡ s(2g − U) + 2lv = 0,

Eq2 ≡ 2v(g + 2m − U) + s(4h − V ) + 2lu = 0,

Eq3 ≡ 2v(2h + n − V ) + u(4m − U) + 2ks = 0,

Eq4 ≡ u(2n − V ) + 2kv = 0,

Eq5 ≡ q(g − U) + s(2c − W ) + 2ev + lr = 0,

Eq6 ≡ r(2m − U) + q(2h − V ) + 2v(c + f − W ) + 2(ds + eu) = 0,

Eq7 ≡ r(n − V ) + u(2f − W ) + 2dv + kq = 0,

Eq8 ≡ q(c − W ) + 2(as + bv) + er − pU = 0,

Eq9 ≡ r(f − W ) + 2(bu + av) + dq − pV = 0,

Eq10 ≡ aq + br − pW = 0.

(7)

3 The proof of the Main Theorem

By Remark 1 the conditions η = 0 and C2 6= 0 are necessary for a quadratic
system (1) to have an invariant parabola and a Darboux invariant. On the other
hand according to Lemma 3 in the case η = 0 and C2 6= 0 any quadratic system (1)

could be brought via a linear transformation either to systems (SIII) (if M̃ 6= 0) or

to systems (SIV ) (if M̃ = 0). We consider each one of these two cases.
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3.1 Proof of the statement (A)

3.1.1 The case M̃ 6= 0

According to Lemma 3 the conditions K̃ = 0 = R̃ are necessary for a quadratic
system (1) to have an invariant parabola and a Darboux invariant. For systems
(SIII) we calculate

K̃ = 2g(g − 1)x2 + 4ghxy + 2h2y2, R̃ = 8g(2g − 1)x2 + 16h(2g − 1)xy + 216h2y2

and evidently the conditions K̃ = 0 = R̃ yield h = g = 0. So due to an additional
translation we may assume e = f = 0 and we get the family of systems

ẋ = a + cx + dy, ẏ = b − xy (8)

for which we have C2 = x2y.

Next we determine the conditions in terms of the parameters (a, b, c, d) for the
existence of an invariant parabola of the above systems. Considering Remark 1 we
deduce that the homogeneous quadratic part of the conic (6) must be of the form
sx2 with s 6= 0. So without loss of generality we may assume u = v = 0, s = 1 and
we arrive at the conic

Φ(x, y) ≡ p + qx + ry + x2 = 0 (9)

with r 6= 0 (in order to have a parabola). Then considering the equations (7) we
obtain

U = 0 = V, W = 2c, r = 2d, Eq8 = 2a − cq,

Eq9 = −d(4c − q), Eq10 = 2bd − 2cp + aq,

Eq1 = Eq2 = Eq3 = Eq4 = Eq5 = Eq6 = Eq7 = 0.

Since r 6= 0 we must have d 6= 0 and therefore the equation Eq9 = 0 gives q = 4c.
Then we obtain:

Eq8 = 2(a − 2c2), Eq10 = 2(2ac + bd − cp).

So the condition Eq8 = 0 yields a = 2c2. We observe that c 6= 0, otherwise due to
d 6= 0 the equations Eq8 = Eq10 = 0 imply a = b = 0 and this leads to degenerate
systems. So c 6= 0 and we may assume c = 1 = d due to the rescaling (x, y, t) 7→
(cx, c2y/d, t/c) (in this case we get a = 2c2 = 2). Then the equation Eq10 =
2(4 + b − p) = 0 gives p = 4 − b and we arrive at the systems

ẋ = 2 + x + y, ẏ = b − xy (10)

which possess the invariant parabola Φ(x, y) = b+2y+(x+2)2 = 0 and the Darboux
invariant I(x, y, t) = Φ(x, y)e−2t.

Thus we have proved that non-degenerate systems (10) possess an invariant
parabola if and only if the conditions cd 6= 0 and a = 2c2 are satisfied. In order
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to determine the corresponding affine invariant conditions, for these systems we
calculate

µ0 = µ1 = 0, µ2 = −cdxy, V1 = (a − 2c2)d2/8.

So it is clear that the conditions cd 6= 0 and a = 2c2 are equivalent to µ2 6= 0 and
V1 = 0. This completes the proof of the statement (A) of Main Theorem in the case

M̃ 6= 0.

3.1.2 The case M̃ = 0

According to Lemma 3 in this case we consider systems (SIV ) for which we
calculate

K̃ = 2(g2 + h)x2 + 4ghxy + 2h2y2.

Evidently the condition K̃ = 0 gives h = g = 0 and this implies R̃ = 0. So applying
a translation (in order to annihilate the parameter e) we arrive at the family of
systems

ẋ = a + cx + dy, ẏ = b + fy − x2, (11)

for which we have C2 = x3. So at infinity we have a unique singular point namely
N1[0 : 1 : 0] and therefore the above systems could only have an invariant parabola
in the form (9). Thus considering the equations (7) for systems (11) we obtain

U = 0 = V, W = 2c − r, Eq6 = 2d, Eq8 = 2a − cq + qr,

Eq9 = dq − 2cr + fr + r2, Eq10 = −2cp + aq + br + pr,

Eq1 = Eq2 = Eq3 = Eq4 = Eq5 = Eq7 = 0.

We observe that the equation Eq6 = 0 gives d = 0 and then we have Eq9 = r(f −
2c + r) = 0. Since we must have r 6= 0 this implies r = 2c − f 6= 0 and we obtain

Eq8 = 2a + (c − f)q, Eq10 = 2bc − bf − fp + aq.

First of all we remark that for a non-degenerate system (11) the condition f 6= 0
must holds. Indeed, supposing f = 0 we have c 6= 0 (due to 2c − f 6= 0) and then
we calculate

Res q(Eq8, Eq10) = 2(bc2 − a2) = 0 ⇒ b = a2/c2

and this leads to the degenerate systems

ẋ = a + cx, ẏ = (a − cx)(a + cx)/c2.

So f 6= 0 and then for systems (11) with d = 0 we may consider b = 0 due to the
change y → y − b/f . Then the equation Eq10 = aq − fp = 0 yields p = aq/f . It
remains to examine the equation Eq8 = 0 with respect to the parameter q and we
have to consider two possibilities: c − f 6= 0 and c − f = 0.

1) Assume first c − f 6= 0. Then Eq8 = 0 implies q = 2a/(c − f) and we obtain
that the systems

ẋ = a + cx, ẏ = fy − x2
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with f(2c − f)(c − f) 6= 0 possess the invariant parabola

Φ(x, y) = − 2a2

f(c − f)
− 2a

c − f
x + (2c − f)y + x2 = 0.

We observe that for the above systems we may assume f = 1 and a ∈ {0, 1} due
to the rescaling (x, y, t) 7→ (ax/f, a2y/f3, t/f) in the case a 6= 0 and (x, y, t) 7→
(x, y/f, t/f) in the case a = 0. So we arrive at the family of systems

ẋ = a + cx, ẏ = y − x2, c ∈ R/{1/2, 1}, a ∈ {0, 1} (12)

possessing the invariant parabola

Φ(x, y) = − 2a2

c − 1
− 2a

c − 1
x + (2c − 1)y + x2 = 0. (13)

and the Darboux invariant I(x, y, t) = Φ(x, y)e−t.

2) Suppose now c − f = 0, i.e. c = f 6= 0. Then Eq8 = 2a = 0 gives a = 0 and
assuming f = 1 (due to a rescaling) we arrive at the system

ẋ = x, ẏ = y − x2 (14)

possessing the one-parameter family of invariant parabolas Φ(x, y) = y+qx+x2 = 0
and the Darboux invariant I(x, y, t) = Φ(x, y)e−t.

So in the case M̃ = 0 we proved that systems (11) possess at least one invariant
parabola if and only if d = 0 and f(2c − f) 6= 0. Moreover these systems possess
exactly one invariant parabola if c−f 6= 0 and they possess an one-parameter family
of invariant parabolas if c − f = a = 0. In order to determine the corresponding
affine invariant conditions for systems (11) we calculate:

µ0 = µ1 = 0, µ2 = d2x2, K3|d=0 = 6(2c − f)fx6,

V2|d=0 = −3(c − f)x3, V3|{d=0,c=f} = −12ax2.

So we deduce that the conditions d = 0 and f(2c−f) 6= 0 are equivalent to µ2 = 0 and
K3 6= 0. Moreover if µ2 = 0 then the condition c−f 6= 0 (respectively c−f = a = 0)
is equivalent to V2 6= 0 (respectively V2 = 0 = V3). This completes the proof of the
statement (A) of the Main Theorem.

3.2 Proof of the statement (B)

For determining the phase portrait of a non-degenerate quadratic system which
possesses an invariant parabola and a Darboux invariant we again examine two cases:
M̃ 6= 0 and M̃ = 0.
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3.2.1 The case M̃ 6= 0

We consider the normal form (8) for this case, possessing the invariant parabola
Φ(x, y) = b + 2y + (x + 2)2 = 0. These systems have two finite singular points
M1,2

(
− 1 ±

√
1 − b, −1 ∓

√
1 − b

)
which are distinct real (respectively complex) if

1 − b > 0 (respectively 1 − b < 0) and they coincide if 1 − b = 0.

On the other hand for these systems we have D = 192(b−1) and hence the above
mentioned cases concerning the finite singularities of systems (8) are described by
the invariant polynomial D. It is easy to detect that one of the real singular points
is a node and another is a saddle and in the case when they coalesced we have a
saddle-node. For systems (8) we have C2 = x2y and hence at infinity we have the
singular points N1[0 : 1 : 0] in the y-axis direction and and N2[1 : 0 : 0] in the
xy-axis direction. Regarding the behavior of the trajectories in the neighborhood of
infinity, for systems (8), following [15] we calculate

η = 0, M̃ = −8x2, µ0 = µ1 = 0, µ2 = −xy, κ = L̃ = 0.

So, according to [15] we deduce that at infinity the behavior of the trajectories
corresponds to Config. 11 (see Figure 2). We point out that the singular point
N1[0 : 1 : 0] is an elliptic saddle.

Figure 2. Configurations of infinite singularities

We observe that both finite singularities M1,2 of systems (8) are located on the
invariant parabola Φ(x, y) = b + 2y + (x + 2)2 = 0. Moreover the singular point
N1[0 : 1 : 0] (which is an elliptic saddle) is a common point of the invariant parabola
and of the line Z = 0 at infinity. Therefore considering the position of the invariant
parabola we get the phase portrait Port.1 if D < 0; Port.2 if D > 0 and Port.3 if
D = 0.

3.2.2 The case M̃ = 0

Considering the results obtained above in Subsection 3.1.2 we will examine two
canonical forms: systems (12) (in the case µ2 = 0,K3 6= 0 and V2 6= 0) and system
(14) (in the case µ2 = 0,K3 6= 0 and V2 = 0 = V3).
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3.2.2.1 Systems (12). For these systems following [15] we calculate

µ0 = µ1 = µ2 = 0, µ3 = −c2x3, µ4 = ax3(ax + cy),

K̃ = 0, K1 = −cx3, K3 = 6(2c − 1)x6.
(15)

and we consider two possibilities: µ3 6= 0 and µ3 = 0.

3.2.2.1.1 The possibility µ3 6= 0. In this case c 6= 0 and systems (12) have
one finite singular point M1(−a/c, a2/c2), which is located on the invariant parabola
(13). Moreover we detect that M1 is a saddle if c < 0 and it is a node if c > 0.
At the same time we have µ3K1 = c3x6, i.e. sign (c) = sign (µ3K1) and hence the
invariant polynomial µ3K1 governs the type of the finite singularity M1.

On the other hand according to [15] we conclude that at infinity the behavior of
the trajectories corresponds to Config. 33 if µ3K1 < 0 (see Figure 2). In the case
µ3K1 > 0 we have Config. 38 if K3 < 0 (i.e. 2c − 1 < 0) and Config. 31 if K3 > 0
(i.e. 2c − 1 > 0). We remark that for systems (12) the condition c 6= 1/2 has to be
satisfied.

So considering the position of the invariant parabola and the type of the finite
singular point we arrive at the phase portrait given by Port.4 if µ3K1 < 0; by Port.5
if µ3K1 > 0 and K3 < 0; by Port.6 if µ3K1 > 0 and K3 > 0.

3.2.2.1.2 The possibility µ3 = 0. Then c = 0 and a 6= 0 (otherwise we get
a degenerate system) and considering systems (12) with a = 1 we obtain the system

ẋ = 1, ẏ = y − x2

possessing the invariant parabola Φ(x, y) = 2 + 2x + x2 − y = 0. At infinity we have
a singular point of multiplicity 7 and following [15] we calculate

µ0 = µ1 = µ2 = µ3 = 0, µ4 = x4, K̃ = 0, K3 = −6x6.

Thus we have µ4 > 0, K3 < 0 and by [15] at the infinity the behavior of the
trajectories corresponds to Config. 32. So considering the position of the invariant
parabola we get the phase portrait given by Port.7.

3.2.2.2 System (14). We observe that this system belongs to the family (12)
for a = 0 if we allow the parameter c to take the value 1. So considering (15) and
following [15] we calculate

µ0 = µ1 = µ2 = 0, K̃ = 0, µ3K1 = x6 > 0, K3 = 6x6 > 0

and according to [15] we have at infinity Config. 31. Taking into account that the
system (14) has the family of invariant parabolas Φ(x, y) = y+qx+x2 = 0 we arrive
again at the phase portrait given by Port.6.

This completes the proof of the Main Theorem. �
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