
BULETINUL ACADEMIEI DE ŞTIINŢE
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Invariant conditions of stability of unperturbed motion

governed by critical differential systems s(1, 2, 3)
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Abstract. The center-affine invariant conditions of stability of unperturbed motion
governed by critical differential systems s(1, 2, 3) were obtained.

Mathematics subject classification: 34C14, 34C20, 34D20.
Keywords and phrases: Differential systems, stability of unperturbed motion,
center-affine comitant and invariant, transvectant.

1 The Lyapunov series of a critical system s(1, 2, 3)

We examine the cubic nonlinear differential system s(1, 2, 3) of the form

ẋ = cx+ dy + gx2 + 2hxy + ky2 + px3 + 3qx2y + 3rxy2 + sy3,

ẏ = ex+ fy + lx2 + 2mxy + ny2 + tx3 + 3ux2y + 3vxy2 + wy3,
(1)

where the coefficients and the phase variables take values from the field of real
numbres R and the center-affine transformations group GL(2,R).

Taking into account the center-affine invariants [1–5], in [6–11] the problems of
stability of unperturbed motion governed by various two-dimensional, ternary and
four-dimensional polynomial differential systems were studied.

In [7] the problem of stability of unperturbed motion governed by critical systems
s(1, 2) and s(1, 3) which has a zero root of the characteristic equation of system (1)
was solved. After the work [7] appeared, the interest arose to obtain the invariant
conditions of stability of unperturbed motion governed by system s(1, 2, 3), as such
systems have both theoretical and practical interest. It was shown in [12] and [9]
that any nonlinear two-dimensional polynomial differential system, in particular the
system (1) in the critical case, by center-affine transformations can be brought to
the form

ẋ = gx2 + 2hxy + ky2 + px3 + 3qx2y + 3rxy2 + sy3,

ẏ = fy + lx2 + 2mxy + ny2 + tx3 + 3ux2y + 3vxy2 +wy3,
(2)

where f 6= 0.
According to [12], we analyze the noncritical equation

fy + lx2 + 2mxy + ny2 + tx3 + 3ux2y + 3vxy2 + wy3 = 0.
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Then from the last relation we express y and obtain

y = −
l

f
x2 − 2

m

f
xy −

n

f
y2 −

t

f
x3 − 3

u

f
x2y − 3

v

f
xy2 −

w

f
y3. (3)

We seek y as a holomorphic function of x. Then we can write

y = B2x
2 +B3x

3 +B4x
4 +B5x

5 +B6x
6 +B7x

7 +B8x
8 +B9x

9+

+B10x
10 +B11x

11 +B12x
12 +B13x

13 +B14x
14 +B15x

15 + · · ·
(4)

Substituting (4) into (3) we have

B2x
2 +B3x

3 +B4x
4 +B5x

5 +B6x
6 +B7x

7 +B8x
8 +B9x

9+

+B10x
10 +B11x

11 +B12x
12 +B13x

13 +B14x
14 +B15x

15 + · · · =

−
l

f
x2 − 2

m

f
x
(

B2x
2 +B3x

3 +B4x
4 +B5x

5 +B6x
6 +B7x

7 +B8x
8+

+B9x
9 +B10x

10 +B11x
11 +B12x

12 +B13x
13 +B14x

14 +B15x
15 + · · ·

)

−

−
n

f

(

B2x
2 +B3x

3 +B4x
4 +B5x

5 +B6x
6 +B7x

7 +B8x
8 +B9x

9+

+B10x
10 +B11x

11 +B12x
12 +B13x

13 +B14x
14 +B15x

15 + · · ·
)2

−
t

f
x3−

−3
u

f
x2

(

B2x
2 +B3x

3 +B4x
4 +B5x

5 +B6x
6 +B7x

7 +B8x
8 +B9x

9+

+B10x
10 +B11x

11 +B12x
12 +B13x

13 +B14x
14 +B15x

15 + · · ·
)

−

−3
v

f
x
(

B2x
2 +B3x

3 +B4x
4 +B5x

5 +B6x
6 +B7x

7 +B8x
8 +B9x

9+

+B10x
10 +B11x

11 +B12x
12 +B13x

13 +B14x
14 +B15x

15 + · · ·
)2

−

−
w

f

(

B2x
2 +B3x

3 +B4x
4 +B5x

5 +B6x
6 +B7x

7 +B8x
8 +B9x

9+

+B10x
10 +B11x

11 +B12x
12 +B13x

13 +B14x
14 +B15x

15 + · · ·
)3
.

This implies that

B2x
2 +B3x

3 +B4x
4 +B5x

5 +B6x
6 +B7x

7 +B8x
8 +B9x

9 +B10x
10 +B11x

11+

+B12x
12 +B13x

13 +B14x
14 +B15x

15 + · · · = −
l

f
x2 −

[

2
m

f
B2 +

t

f

]

x3−

−
[n

f
B2

2
+ 2

m

f
B3 + 3

u

f
B2

]

x4 −
[

2
n

f
B2B3 + 2

m

f
B4 + 3

v

f
B2

2
+ 3

u

f
B3

]

x5−

−
[n

f

(

2B2B4 +B2

3

)

+
w

f
B3

2 + 6
v

f
B2B3 + 2

m

f
B5 + 3

u

f
B4

]

x6−

−
[

2
n

f

(

B2B5 +B3B4

)

+ 3
w

f
B2

2B3 + 3
v

f
(2B2B4 +B2

3) + 2
m

f
B6 + 3

u

f
B5

]

x7−
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−
[n

f

(

2B2B6 + 2B3B5 +B2

4

)

+ 3
w

f

(

B2

2
B4 +B2B

2

3

)

+ 6
v

f

(

B2B5 +B3B4

)

+ 2
m

f
B7+

+3
u

f
B6

]

x8 −
[

2
n

f

(

B2B7 +B3B6 +B4B5

)

+
w

f

(

3B2

2B5 + 6B2B3B4 + B3

3

)

+

+3
v

f

(

2B2B6 + 2B3B5 +B2

4

)

+ 2
m

f
B8 + 3

u

f
B7

]

x9 −
[n

f

(

2B2B8 + 2B3B7+

+2B4B6 +B2

5

)

+ 3
w

f

(

B2

2
B6 + 2B2B3B5 +B2B

2

4
+B2

3
B4

)

+ 6
v

f

(

B2B7 +B3B6+

+B4B5

)

+ 2
m

f
B9 + 3

u

f
B8

]

x10 −
[

2
n

f

(

B2B9 +B3B8 +B4B7 +B5B6

)

+

+3
w

f

(

B2

2B7 + 2B2B3B6 + 2B2B4B5 +B2

3B5 +B3B
2

4

)

+ 3
v

f

(

2B2B8 + 2B3B7+

+2B4B6 +B2

5

)

+ 2
m

f
B10 + 3

u

f
B9

]

x11 −
[n

f

(

2B2B10 + 2B3B9 + 2B4B8 + 2B5B7 +B2

6

)

+

+
w

f

(

3B2

2B8 + 6B2B3B7 + 6B2B4B6 + 3B2B
2

5 + 3B2

3B6 + 6B3B4B5 +B3

4

)

+

+6
v

f

(

B2B9 +B3B8 +B4B7 + B5B6

)

+ 2
m

f
B11 + 3

u

f
B10

]

x12−

−
[

2
n

f

(

B2B11 +B3B10 +B4B9 +B5B8 +B6B7

)

+ 3
w

f

(

B2

2
B9 + 2B2B3B8+

+2B2B4B7 + 2B2B5B6 +B2

3B7 + 2B3B4B6 +B3B
2

5 +B2

4B5

)

+

+3
v

f

(

2B2B10 + 2B3B9 + 2B4B8 + 2B5B7 +B2

6

)

+ 2
m

f
B12 + 3

u

f
B11

]

x13−

−
[n

f

(

2B2B12 + 2B3B11 + 2B4B10 + 2B5B9 + 2B6B8 +B2

7

)

+ 3
w

f

(

B2

2
B10 + 2B2B3B9+

+2B2B4B8 + 2B2B5B7 +B2B
2

6 +B2

3B8 + 2B3B4B7 + 2B3B5B6 +B2

4B6 +B4B
2

5

)

+

+6
v

f

(

B2B11 +B3B10 +B4B9 +B5B8 +B6B7

)

+ 2
m

f
B13 + 3

u

f
B12

]

x14−

−
[

2
n

f

(

B2B13 +B3B12 +B4B11 +B5B10 +B6B9 +B7B8

)

+
w

f

(

3B2

2B11 + 6B2B3B10+

+6B2B4B9 + 6B2B5B8 + 6B2B6B7 + 3B2

3B9 + 6B3B4B8 + 6B3B5B7 + 3B3B
2

6+

+3B2

4B7 + 6B4B5B6 +B3

5

)

+ 3
v

f

(

2B2B12 + 2B3B11 + 2B4B10 + 2B5B9+

+2B6B8 +B2

7

)

+ 2
m

f
B14 + 3

u

f
B13

]

x15 + · · ·

From this identity we have

B2 = −
l

f
, B3 = −

(

2
m

f
B2 +

t

f

)

, B4 = −
(n

f
B2

2
+ 2

m

f
B3 + 3

u

f
B2

)

,

B5 = −
(

2
n

f
B2B3 + 2

m

f
B4 + 3

v

f
B2

2
+ 3

u

f
B3

)

,

B6 = −
[n

f

(

2B2B4 +B2

3

)

+
w

f
B3

2 + 6
v

f
B2B3 + 2

m

f
B5 + 3

u

f
B4

]

,
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B7 = −
[

2
n

f

(

B2B5 +B3B4

)

+ 3
w

f
B2

2
B3 + 3

v

f

(

2B2B4 +B2

3

)

+ 2
m

f
B6 + 3

u

f
B5

]

,

B8 = −
[n

f

(

2B2B6 + 2B3B5 +B2

4

)

+ 3
w

f

(

B2

2
B4 +B2B

2

3

)

+ 6
v

f

(

B2B5 +B3B4

)

+

+2
m

f
B7 + 3

u

f
B6

]

,

B9 = −
[

2
n

f

(

B2B7 +B3B6 +B4B5

)

+
w

f

(

3B2

2B5 + 6B2B3B4 +B3

3

)

+

+3
v

f

(

2B2B6 + 2B3B5 +B2

4

)

+ 2
m

f
B8 + 3

u

f
B7

]

,

B10 = −
[n

f

(

2B2B8 + 2B3B7 + 2B4B6 +B2

5

)

+ 3
w

f

(

B2

2
B6 + 2B2B3B5 +B2B

2

4
+B2

3
B4

)

+

+6
v

f

(

B2B7 +B3B6 +B4B5

)

+ 2
m

f
B9 + 3

u

f
B8

]

,

B11 = −
[

2
n

f

(

B2B9 +B3B8 +B4B7 +B5B6

)

+ 3
w

f

(

B2

2B7 + 2B2B3B6 + 2B2B4B5+

+B2

3B5 +B3B
2

4

)

+ 3
v

f

(

2B2B8 + 2B3B7 + 2B4B6 +B2

5

)

+ 2
m

f
B10 + 3

u

f
B9

]

,

B12 = −
[n

f

(

2B2B10 + 2B3B9 + 2B4B8 + 2B5B7 +B2

6

)

+
w

f

(

3B2

2
B8 + 6B2B3B7+

+6B2B4B6 + 3B2B
2

5
+ 3B2

3
B6 + 6B3B4B5 +B3

4

)

+ 6
v

f

(

B2B9 +B3B8 +B4B7 +B5B6

)

+

+2
m

f
B11 + 3

u

f
B10

]

,

B13 = −
[

2
n

f

(

B2B11 +B3B10 +B4B9 +B5B8 +B6B7

)

+ 3
w

f

(

B2

2B9 + 2B2B3B8+

+2B2B4B7 + 2B2B5B6 +B2

3B7 + 2B3B4B6 +B3B
2

5 + B2

4B5

)

+ 3
v

f

(

2B2B10+

+2B3B9 + 2B4B8 + 2B5B7 +B2

6

)

+ 2
m

f
B12 + 3

u

f
B11

]

,

B14 = −
[n

f

(

2B2B12 + 2B3B11 + 2B4B10 + 2B5B9 + 2B6B8 +B2

7

)

+ 3
w

f

(

B2

2
B10+

+2B2B3B9 + 2B2B4B8 + 2B2B5B7 +B2B
2

6
+B2

3
B8 + 2B3B4B7 + 2B3B5B6+

+B2

4B6 +B4B
2

5

)

+ 6
v

f

(

B2B11 +B3B10 +B4B9 +B5B8 +B6B7

)

+ 2
m

f
B13 + 3

u

f
B12

]

,

B15 = −
[

2
n

f

(

B2B13 +B3B12 +B4B11 +B5B10 +B6B9 +B7B8

)

+
w

f

(

3B2

2
B11+

+6B2B3B10 + 6B2B4B9 + 6B2B5B8 + 6B2B6B7 + 3B2

3
B9 + 6B3B4B8 + 6B3B5B7+

+3B3B
2

6
+ 3B2

4
B7 + 6B4B5B6 +B3

5

)

+ 3
v

f

(

2B2B12 + 2B3B11+

+2B4B10 + 2B5B9 + 2B6B8 +B2

7

)

+ 2
m

f
B14 + 3

u

f
B13

]

, . . .

(5)

Substituting (4) into the right-hand sides of the critical differential equations
(2), we get the following identity

gx2 + 2hx(B2x
2 +B3x

3 +B4x
4 +B5x

5 +B6x
6 +B7x

7 +B8x
8 +B9x

9+

+B10x
10 +B11x

11 +B12x
12 +B13x

13 +B14x
14 +B15x

15 + · · · ) + k(B2x
2+
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+B3x
3 +B4x

4 +B5x
5 +B6x

6 +B7x
7 +B8x

8 +B9x
9 +B10x

10 +B11x
11+

+B12x
12 +B13x

13 +B14x
14 +B15x

15 + · · · )2 + px3 + 3qx2(B2x
2 +B3x

3+

+B4x
4 +B5x

5 +B6x
6 +B7x

7 +B8x
8 +B9x

9 +B10x
10 +B11x

11 +B12x
12+

+B13x
13 +B14x

14 +B15x
15 + · · · ) + 3rx(B2x

2 +B3x
3 +B4x

4 +B5x
5+

+B6x
6 +B7x

7 +B8x
8 +B9x

9 +B10x
10 +B11x

11 +B12x
12 +B13x

13+

+B14x
14 +B15x

15 + · · · )2 + s(B2x
2 +B3x

3 +B4x
4 +B5x

5 +B6x
6 +B7x

7+

+B8x
8 +B9x

9 +B10x
10 +B11x

11 +B12x
12 +B13x

13 +B14x
14+

+B15x
15 + · · · )3 = A2x

2 +A3x
3 +A4x

4 +A5x
5 +A6x

6 +A7x
7 +A8x

8+

+A9x
9 +A10x

10 +A11x
11 +A12x

12 +A13x
13 +A14x

14 +A15x
15 + · · ·

From here, it follows that the coefficients of the Lyapunov series Ai (i = 2, 3, ...)
can be written in the form

A2 = g, A3 = 2hB2 + p, A4 = kB2
2 + 2hB3 + 3qB2,

A5 = 2kB2B3 + 2hB4 + 3rB2
2 + 3qB3,

A6 = sB3
2 + k(2B2B4 +B2

3) + 2hB5 + 6rB2B3 + 3qB4;

A7 = 3sB2
2B3 + 2k(B2B5 +B3B4) + 2hB6 + 3r(2B2B4 +B2

3) + +3qB5,

A8 = 3s(B2
2B4 +B2B

2
3) + k(2B2B6 + 2B3B5 +B2

4) + 2hB7+

+6r(B2B5 +B3B4) + 3qB6,

A9 = s(3B2
2B5 + 6B2B3B4 +B3

3) + 2k(B2B7 +B3B6 +B4B5) + 2hB8+

+3r(2B2B6 + 2B3B5 +B2
4) + 3qB7,

A10 = 3s(B2
2B6 + 2B2B3B5 +B2B

2
4 +B2

3B4) + k(2B2B8+

+2B3B7 + 2B4B6 +B2
5) + 2hB9 + 6r(B2B7 +B3B6 +B4B5) + 3qB8,

A11 = 3s(B2
2B7 + 2B2B3B6 + 2B2B4B5 +B2

3B5 +B3B
2
4) + 2k(B2B9 +B3B8+

+B4B7 +B5B6) + 2hB10 + 3r(2B2B8 + 2B3B7 + 2B4B6 +B2
5) + 3qB9,

A12 = s(3B2
2B8 + 6B2B3B7 + 6B2B4B6 + 3B2B

2
5 + 3B2

3B6 + 6B3B4B5 +B3
4)+

+k(2B2B10 + 2B3B9 + 2B4B8 + 2B5B7 +B2
6) + 2hB11+

+6r(B2B9 +B3B8 +B4B7 +B5B6) + 3qB10,

A13 = 3s(B2
2B9 + 2B2B3B8 + 2B2B4B7 + 2B2B5B6 +B2

3B7 + 2B3B4B6+

+B3B
2
5 +B2

4B5) + 2k(B2B11 +B3B10 +B4B9 +B5B8 +B6B7)+

+2hB12 + 3r(2B2B10 + 2B3B9 + 2B4B8 + 2B5B7 +B2
6) + 3qB11,

A14 = 3s(B2
2B10 + 2B2B3B9 + 2B2B4B8 + 2B2B5B7 +B2B

2
6 +B2

3B8 + 2B3B4B7+

+2B3B5B6 +B2
4B6 +B4B

2
5) + k(2B2B12 + 2B3B11 + 2B4B10 + 2B5B9+

+2B6B8 +B2
7) + 2hB13 + 6r(B2B11 +B3B10 +B4B9 +B5B8 +B6B7) + 3qB12,

A15 = s(3B2
2B11 + 6B2B3B10 + 6B2B4B9 + 6B2B5B8 + 6B2B6B7 + 3B2

3B9+

+6B3B4B8 + 6B3B5B7 + 3B3B
2
6 + 3B2

4B7 + 6B4B5B6 +B3
5)+
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+2k(B2B13 +B3B12 +B4B11 +B5B10 +B6B9 +B7B8) + 2hB14+

+3r(2B2B12 + 2B3B11 + 2B4B10 + 2B5B9 + 2B6B8 +B2
7) + 3qB13, ...

(6)

2 Conditions of stability of unperturbed motion governed by the

critical system (2)

2.1. Assume that fl 6= 0. In this case, by a center-affine transformation x̄ = lx,

ȳ = ly, we obtain the system (2) with l = 1. Taking into account this equality and
the relations (5)–(6), we consider the following expressions:

A = 2h− fp; B = −k − 4hm+ 3fq + 2fht;

C = −(8hm2 − 2hn − 6fmq + 3fr − 12fhmt+ 3f2qt+ 4f2ht2 + 6fhu);

D = 4hmn − 3fnq + fs+ 16fhm2t− 4fhnt− 6f2mqt− 20f2hmt2+

+3f3qt2 + 6f3ht3 − 24fhmu+ 9f2qu+ 18f2htu+ 6fhv;

E = −32hm3t+ 12hmnt+ 12fm2qt− 3fnqt+ 80fhm2t2 − 8fhnt2 − 18f2mqt2−

−60f2hmt3 + 6f3qt3 + 14f3ht4 + 48hm2u− 6hnu− 18fmqu− 108fhmtu+

+18f2qtu+ 48f2ht2u+ 18fhu2 − 24hmv + 9fqv + 18fhtv + 2hw;

F = 64hm4t− 8hm2nt− 2hn2t− 24fm3qt− 144fhm3t2 + 36f2m2qt2+

+112f2hm2t3 + 2f2hnt3 − 18f3mqt3 − 36f3hmt4 + 3f4qt4 + 4f4ht5 − 96hm3u−

−12hmnu+ 36fm2qu+ 9fnqu+ 120fhm2tu+ 24fhntu− 18f2mqtu−

−12f2hmt2u− 12f3ht3u+ 72fhmu2 − 27f2qu2 − 72f2htu2 + 48hm2v + 6hnv−

−18fmqv − 36fhmtv + 9f2qtv + 6f2ht2v − 36fhuv − 3fqw;

G = 4m2t− nt− 6fmt2 + 2f2t3 − 6mu+ 6ftu+ 3v.
(7)

Lemma 1. The stability of unperturbed motion governed by system of perturbed

motion (2) with f < 0 and l = 1 is characterized by one of the following sixteen

possible cases:

I. g 6= 0, then the unperturbed motion is unstable;

II. g = 0, A > 0, then the unperturbed motion is unstable;

III. g = 0, A < 0, then the unperturbed motion is stable;

IV. g = A = 0, B 6= 0, then the unperturbed motion is unstable;

V. g = A = B = 0, C > 0, then the unperturbed motion is unstable;

VI. g = A = B = 0, C < 0, then the unperturbed motion is stable;

VII. g = A = B = C = 0, D 6= 0, then the unperturbed motion is unstable;

VIII. g = A = B = C = D = 0, E > 0, then the unperturbed motion is

unstable;

IX. g = A = B = C = D = 0, E < 0, then the unperturbed motion is stable;

X. g = A = B = C = D = E = 0, F 6= 0, then the unperturbed motion is

unstable;
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XI. g = A = B = C = D = E = F = 0, h < 0, G 6= 0, then the unperturbed

motion is unstable;

XII. g = A = B = C = D = E = F = 0, h > 0, G 6= 0, then the unperturbed

motion is stable;

XIII. g = A = B = C = D = E = F = h = 0, qG 6= 0, then the unperturbed

motion is unstable;

XIV. g = A = B = C = D = E = F = h = q = 0, then the unperturbed motion

is stable;

XV. g = A = B = C = D = E = F = G = h = 0, q 6= 0, then the unperturbed

motion is stable;

XVI. g = A = B = C = D = E = F = G = 0, h 6= 0, then the unperturbed

motion is stable.

In the last three cases, the unperturbed motion belongs to some continuous series

of stabilized motions. Moreover, for sufficiently small perturbations, any perturbed

motion will asymptotically approach to one of the stabilized motions of the mentioned

series.

Proof. According to Theorem from [12, p.118], we analyze the coefficients of the
Lyapunov series Ai of (6) and the expressions (7). If A2 6= 0, then we obtain the
Case I of Lemma 1.

If A2 = 0, then g = 0 and A3 = −f−1A. Depending on the sign of the expression
A we get the Cases II and III.

Let g = A = 0. Then A4 = −f−2B. When B 6= 0 we obtain the Case IV.

If g = A = B = 0, then A5 = −f−3C. Taking into account the sign of the
expression C we get the Cases V and VI.

Suppose that g = A = B = C = 0. Then A6 = −f−4D. When D 6= 0 we obtain
the Case VII.

If g = A = B = C = D = 0, then A7 = f−4E. Depending on the sign of the
expression E we get the Cases VIII and IX.

Assume that g = A = B = C = D = E = 0. Then A8 = f−5F . When F 6= 0 we
obtain the Case X.

If g = A = B = C = D = E = F = 0, then A9 = 2f−5hG2. Taking into account
the sign of the expression h and G 6= 0 we get the Cases XI and XII.

Let g = A = B = C = D = E = F = h = 0. Then A10 = 3f−5qG2. When
qG 6= 0 we obtain the Case XIII.

If g = A = B = C = D = E = F = h = q = 0, then Ai = 0 for all i, we get the
Case XIV.

If g = A = B = C = D = E = F = G = h = 0, q 6= 0, then Ai = 0 for all i, we
obtain the Case XV.

If g = A = B = C = D = E = F = G = 0, h 6= 0, then Ai = 0 for all i, we have
the Case XVI. Lemma 1 is proved.

2.2. Let us examine the case f 6= 0, l = 0. In this case, the coefficients (5) can
be written in the form
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B2 = 0, B3 = −
t

f
, B4 = −2

m

f
B3, B5 = −

(

2
m

f
B4 + 3

u

f
B3

)

,

B6 = −
(n

f
B2

3 + 2
m

f
B5 + 3

u

f
B4

)

, B7 = −
(

2
n

f
B3B4 + 3

v

f
B2

3 + 2
m

f
B6 + 3

u

f
B5

)

,

B8 = −
[n

f

(

2B3B5 +B2
4

)

+ 6
v

f
B3B4 + 2

m

f
B7 + 3

u

f
B6

]

,

B9 = −
[

2
n

f

(

B3B6 +B4B5

)

+
w

f
B3

3 + 3
v

f

(

2B3B5 +B2
4

)

+ 2
m

f
B8 + 3

u

f
B7

]

,

B10 = −
[n

f

(

2B3B7 + 2B4B6 +B2
5

)

+ 3
w

f
B2

3B4 + 6
v

f

(

B3B6 +B4B5

)

+

+2
m

f
B9 + 3

u

f
B8

]

,

B11 = −
[

2
n

f

(

B3B8 +B4B7 +B5B6

)

+ 3
w

f

(

B2
3B5 +B3B

2
4

)

+

+3
v

f

(

2B2B8 + 2B3B7 + 2B4B6 +B2
5

)

+ 2
m

f
B10 + 3

u

f
B9

]

,

B12 = −
[n

f

(

2B3B9 + 2B4B8 + 2B5B7 +B2
6

)

+
w

f

(

3B2
3B6 + 6B3B4B5 +B3

4

)

+

+6
v

f

(

B3B8 +B4B7 +B5B6

)

+ 2
m

f
B11 + 3

u

f
B10

]

,

B13 = −
[

2
n

f

(

B3B10 +B4B9 +B5B8 +B6B7

)

+ 3
w

f

(

B2
3B7 + 2B3B4B6+

+B3B
2
5 +B2

4B5

)

+ 3
v

f

(

2B3B9 + 2B4B8 + 2B5B7 +B2
6

)

+ 2
m

f
B12 + 3

u

f
B11

]

,

B14 = −
[n

f

(

2B3B11 + 2B4B10 + 2B5B9 + 2B6B8 +B2
7

)

+

+3
w

f

(

B2
3B8 + 2B3B4B7 + 2B3B5B6 +B2

4B6 +B4B
2
5

)

+

+6
v

f

(

B3B10 +B4B9 +B5B8 +B6B7

)

+ 2
m

f
B13 + 3

u

f
B12

]

,

B15 = −
[

2
n

f

(

B3B12 +B4B11 +B5B10 +B6B9 +B7B8

)

+
w

f

(

3B2
3B9+

+6B3B4B8 + 6B3B5B7 + 3B3B
2
6 + 3B2

4B7 + 6B4B5B6 +B3
5

)

+

+3
v

f

(

2B3B11 + 2B4B10 + 2B5B9 + 2B6B8 +B2
7

)

+ 2
m

f
B14 + 3

u

f
B13

]

, . . . ,

(8)
and the coefficients of the Lyapunov series Ai (i = 2, 3, ...) from (6) are given by the
expressions

A2 = g, A3 = p, A4 = 2hB3, A5 = 2hB4 + 3qB3,

A6 = kB2
3 + 2hB5 + 3qB4; A7 = 2kB3B4 + 2hB6 + 3rB2

3 + 3qB5,

A8 = k(2B3B5 +B2
4) + 2hB7 + 6rB3B4 + 3qB6,
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A9 = sB3
3 + 2k(B3B6 +B4B5) + 2hB8 + 3r(2B3B5 +B2

4) + 3qB7,

A10 = 3s(B2
3B4) + k(2B3B7 + 2B4B6 +B2

5) + 2hB9 + 6r(B3B6 +B4B5) + 3qB8,

A11 = 3s(B2
3B5 +B3B

2
4) + 2k(B3B8 +B4B7 +B5B6) + 2hB10 + 3r(2B3B7+

+2B4B6 +B2
5) + 3qB9,

A12 = s(3B2
3B6 + 6B3B4B5 +B3

4) + k(2B3B9 + 2B4B8 + 2B5B7 +B2
6) + 2hB11+

+6r(B3B8 +B4B7 +B5B6) + 3qB10,

A13 = 3s(B2
3B7 + 2B3B4B6 +B3B

2
5 +B2

4B5) + 2k(B3B10 +B4B9 +B5B8 +B6B7)+

+2hB12 + 3r(2B3B9 + 2B4B8 + 2B5B7 +B2
6) + 3qB11,

A14 = 3s(B2
3B8 + 2B3B4B7 + 2B3B5B6 +B2

4B6 +B4B
2
5) + k(2B3B11 + 2B4B10+

+2B5B9 + 2B6B8 +B2
7) + 2hB13 + 6r(B3B10 +B4B9 +B5B8 +B6B7) + 3qB12,

A15 = s(3B2
3B9 + 6B3B4B8 + 6B3B5B7 + 3B3B

2
6 + 3B2

4B7 + 6B4B5B6 +B3
5)+

+2k(B3B12 +B4B11 +B5B10 +B6B9 +B7B8) + 2hB14+

+3r(2B3B11 + 2B4B10 + 2B5B9 + 2B6B8 +B2
7) + 3qB13, . . .

(9)

Lemma 2. The stability of unperturbed motion governed by system of perturbed

motion (2) with f < 0 and l = 0 is characterized by one of the following thirteen

possible cases:

I. g 6= 0, then the unperturbed motion is unstable;

II. g = 0, p > 0, then the unperturbed motion is unstable;

III. g = 0, p < 0, then the unperturbed motion is stable;

IV. g = p = 0, ht 6= 0, then the unperturbed motion is unstable;

V. g = p = h = 0, qt > 0, then the unperturbed motion is unstable;

VI. g = p = h = 0, qt < 0, then the unperturbed motion is stable;

VII. g = p = h = q = 0, kt 6= 0, then the unperturbed motion is unstable;

VIII. g = p = h = q = k = 0, t 6= 0, r > 0, then the unperturbed motion is

unstable;

IX. g = p = h = q = k = 0, t 6= 0, r < 0, then the unperturbed motion is

stable;

X. g = p = h = q = k = r = 0, st > 0, then the unperturbed motion is

unstable;

XI. g = p = h = q = k = r = 0, st < 0, then the unperturbed motion is stable;

XII. g = p = h = q = k = r = s = 0, t 6= 0, then the unperturbed motion is

stable;

XIII. g = p = t = 0, then the unperturbed motion is stable.

In the last two cases, the unperturbed motion belongs to some continuous series

of stabilized motions. Moreover, for sufficiently small perturbations, any perturbed

motion will asymptotically approach to one of the stabilized motions of the mentioned

series.
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Proof. According to Theorem from [12, p.118] we analyze the coefficients of the
Lyapunov series Ai of (9). If A2 6= 0, then we obtain the Case I of Lemma 2.

Let g = 0. Then A3 = p. Depending on the sign of the expression p we get the
Cases II and III.

Assume that g = p = 0. Then A4 = −2f−1ht. When ht 6= 0, we get the Case
IV of Lemma 2.

If g = p = t = 0, then Ai = 0 for all i, we get the Case XIII.

If g = p = h = 0, t 6= 0, then A5 = −3f−1qt. Taking into account the sign of
the expression qt we get the Cases V and VI.

Suppose that g = p = h = q = 0, t 6= 0. Then A6 = f−2kt2. Under condition
kt 6= 0 we get the Case VII.

If g = p = h = q = k = 0, t 6= 0, then A7 = 3f−2rt2. Depending on the sign of
the expression r we get the Cases VIII and IX.

If g = p = h = q = k = r = 0, t 6= 0, then A8 = 0 and A9 = −f−3st3. Taking
into account the sign of the expression st we obtain the Cases X and XI.

If g = p = h = q = k = r = s = 0, t 6= 0, then Ai = 0 for all i, we get the Case
XII. Lemma 2 is proved.

3 Comitants and transvectants of system (1) with applications to

the conditions of Lemmas 1 and 2

We consider the system (1), written in the form

ẋ =
3

∑

i=1

Pi(x, y), ẏ =
3

∑

i=1

Qi(x, y), (10)

where Pi and Qi are homogeneous polynomials of degree i = 1, 2, 3 in the phase
variables x and y. Denote by q the transformations of the center-affin groupGL(2,R)

x̄ = αx+ βy, ȳ = γx+ δy,

(∆ =

∣

∣

∣

∣

α β

γ δ

∣

∣

∣

∣

6= 0).
(11)

Observe that system (1) (or (10)) by transformation (11) preserves the form. Its
new coefficients are linear functions with respect to the coefficients of system (1)
and rational functions with respect to the parameters of transformations (11).

Denote by a the set of coefficients of (1) and by ā the set of coefficients of system
obtained after transformation (11).

Definition 1. The polynomial K(a, x, y) in the coefficients of system (1) and the

phase variables x, y is called the center-affine comitant, or comitant with respect to

the center-affine group GL(2,R) of system (1), if the following identity holds

K(ā, x̄, ȳ) = ∆−κ

q K(a, x, y) (12)
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for any coefficients of system (1), any phase variables x, y and any transformations

q from (11) of the group GL(2,R).
If K does not depend on x and y, then it is called the center-affine invariant of

the system (1).

In some cases, for simplicity, the center-affine comitant (invariant) of system
GL(2,R) will be called comitant (invariant).

Remark 1. The number κ is called the weight of the comitant K. If K(α, x, y) is
a polynomial with well-defined sign and κ is even or zero, then this polynomial by
any center-affine transformation (11) keeps the sign. This is not true when κ is odd.

We consider two center-affine comitants ϕ and ψ of system (1) of degree r and
ρ, respectively, in the phase variables x and y. Then according to [2] and [13] the
polynomial

(ϕ,ψ)(k) =
(r − k)(ρ− k)

r!ρ!

k
∑

h=0

(−1)h
(

k

h

)

∂kϕ

∂xk−h∂yh

∂kψ

∂xh∂yh−k
(13)

is a center-affine comitant of system (1) and it is called a transvectant of order k
with respect to polynomials ϕ and ψ.

Remark 2. [14] If the weight of comitant K1 is κ1, and the weight of comitant K2

is κ2, then the weight of comitant (K1,K2)
(k) is equal to κ1 + κ2 + k.

Using (10) we will examine the comitants of system (1) written in the form [14,15]

Ri = Pi(x, y)y −Qi(x, y)x (i = 1, 2, 3),

Si =
1

i
(
∂Pi(x, y)

∂x
+
∂Qi(x, y)

∂y
) (i = 1, 2, 3),

(14)

where Ri and Si are polynomials of the first degree with respect to the coefficients
of the system (1).

Taking into account the comitants (14) and the transvectant (13), the following
invariants and comitants of system (1) were constructed in [14,15]:

K1[0] = S1, K2[−1] = R1, K3[0] = (R1, R1)
(2), K4[−1] = R2,

K5[0] = S2, K6[−1] = (R2, R1)
(1), K7[0] = (R2, R1)

(2),

K8[−1] = R3, K9[−1] = (R3, R1)
(1), K10[0] = (R3, R1)

(2),

K11[0] = (K10, R1)
(1), K12[1] = (K10, R1)

(2),

K13[0] = (K7, R1)
(1), K14[0] = (S2, R1)

(1), K15[0] = S3,

K16[0] = (S3, R1)
(1), K17[1] = (S3, R1)

(2),

(15)

where in square brackets the weight of the comitant (invariant) is indicated.

Remark 3. The invariants and the comitants (15) form an algebraic basis of the
comitants of system (1), i.e. any center-affine comitant of this system is a solution
of a polynomial equation, whose coefficients are polynomials from (15).
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Later on, the following comitants and invariants of system (1) will be used:

M1[0] = 3K1K7 − 4K1K14 + 2K2
1K5 − 6K13,

M2[0] = −8K1K11 + 6K1K2K17 + 4K2
1K10 − 6K2

1K16 + 3K3
1K15 + 8K2K12,

M3[−1] = 6K1K2K7 + 4K1K2K14 − 2K2
1K2K5 + 6K2

1K6 + 3K3
1K4 + 12K2K13,

M4[0] = −K1K5 + 2K14, M5[0] = 3K1K5 + 6K7 − 2K14,

M6[−1] = 4K1K2K11 − 4K2
1K2K10 + 2K3

1K9 −K4
1K8 − 2K2

2K12,

M7[−1] = K1K17 + 2K12, M8[−1] = −3K1K2K7 + 2K2
1K6 −K3

1K4 + 2K2K13,

M9[0] = −3K1K7 + 4K1K14,

M10[0] = 2K1K2K17 + 8K1K11 + 4K2
1K10 + 2K2

1K16 +K3
1K15 + 8K2K12,

M11[0] = 2K1K2K17 + 8K1K11 − 4K2
1K10 − 2K2

1K16 +K3
1K15 − 8K2K12,

M12[−1] = 4K1K2K11 + 4K2
1K2K10 + 2K3

1K9 +K4
1K8 + 2K2

2K12,

M13[1] = K1K17 − 2K12,

M14[0] = −8K1K11 + 6K1K2K17 − 4K2
1K10 + 6K2

1K16 + 3K3
1K15 − 8K2K12,

M15[0]=−8K1K11+6K1K2K17+4K2
1K10+3K3

1K15−6K2
1K16+8K2K12, (16)

where Ki (i = 1, 17) are from (15), and in square brackets the weight of the comitant
(invariant) is indicated.

Note that for the system (2) we have

S1[0] = f, M8[−1] = 2f3lx3, (17)

where S1 is from (14) and M8 is from (16).
It was shown that if l 6= 0 in system (2), then by a center-affine transformation,

we can obtain l = 1. Taking this into account for system (2), we have

M1[0] = 6f2gx, (18)

where M1[0] is from (16).
Let us consider l = 1, g = 0 in system (2), then by (15)–(16) we obtain

K2[−1] = −fxy, M5[0] = 6fhy, M7[1] = 2f2q, M8[−1] = 2f3x3,

N1[−1] ≡ 3K1K2M2 + 4M5M8 = 24f4(2h− fp)x3y,

N2[−3] ≡ 4K3
1K

2
2M5M6 + 4K2

1K
2
2M4M5M8 − 18K2

1K
3
2M7M8 −M3M

2
8 =

= 24f9(−k − 4hm+ 3fq + 2fht)x6y3,

N3[−4] ≡ −3K2
1M7K

2
2M4M

3
8 +

1

4
K2

1K2M11M5M
3
8 +

2

3
K2

1K2M
2
4M5M

3
8−

−
3

8
K1M10M

4
8 +

1

9
M9M5M

4
8 − 3K3

1M7K
2
2M

2
8M6+

+2K3
1K2M4M5M

2
8M6 +

4

3
K4

1K2M5M8M
2
6 =

= −16f15(8hm2 − 2hn− 6fmq + 3fr − 12fhmt+ 3f2qt+ 4f2ht2 + 6fhu)x12y2,
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N4[−6] ≡ −
9

8
K3

1M7K
4
2M11M

3
8 +

1

2
K3

1K
3
2M11M4M5M

3
8 −

1

2
K1M7K

3
2M9M

4
8 +

+
1

2
K2

1M13K
3
2M5M

4
8 +

1

9
K1K

2
2M4M9M5M

4
8 − 3K4

1M7K
4
2M4M

2
8M6+

+
3

4
K4

1K
3
2M11M5M

2
8M6 +

4

3
K4

1K
3
2M

2
4M5M

2
8M6 +

2

9
K2

1K
2
2M9M5M

3
8M6−

−3K5
1M7K

4
2M8M

2
6 +

10

3
K5

1K
3
2M4M5M8M

2
6 + 2K6

1K
3
2M5M

3
6 −

1

4
K1M

5
8M12 =

= −16f19(4hmn − 3fnq + fs+ 16fhm2t− 4fhnt− 6f2mqt− 20f2hmt2+

+3f3qt2 + 6f3ht3 − 24fhmu+ 9f2qu+ 18f2htu+ 6fhv)x15y4,

N5[−6] ≡
9

8
K2

1M7K
3
2M11M4M

4
8 −

3

32
K2

1K
2
2M

2
11M5M

4
8 −

1

2
K2

1K
2
2M11M

2
4M5M

4
8 +

+
9

4
K1M13M7K

3
2M

5
8 −K1M13K

2
2M4M5M

5
8 −

1

24
K2M11M9M5M

5
8−

−
1

48
M14M5M

6
8 +

9

4
K3

1M7K
3
2M11M

3
8M6 + 3K3

1M7K
3
2M

2
4M

3
8M6−

−
9

4
K3

1K
2
2M11M4M5M

3
8M6 −

4

3
K3

1K
2
2M

3
4M5M

3
8M6 +

1

2
K1M7K

2
2M9M

4
8M6−

−
3

2
K2

1M13K
2
2M5M

4
8M6 −

1

3
K1K2M4M9M5M

4
8M6 + 9K4

1M7K
3
2M4M

2
8M

2
6−

−2K4
1K

2
2M11M5M

2
8M

2
6 −

20

3
K4

1K
2
2M

2
4M5M

2
8M

2
6 −

4

9
K2

1K2M9M5M
3
8M

2
6 +

+6K5
1M7K

3
2M8M

3
6 − 10K5

1K
2
2M4M5M8M

3
6 −

14

3
K6

1K
2
2M5M

4
6 =

= −32f22(−32hm3t+ 12hmnt+ 12fm2qt− 3fnqt+ 80fhm2t2 − 8fhnt2−

−18f2mqt2 − 60f2hmt3 + 6f3qt3 + 14f3ht4 + 48hm2u− 6hnu− 18fmqu−

−108fhmtu+ 18f2qtu+ 48f2ht2u+ 18fhu2 − 24hmv + 9fqv+

+18fhtv + 2hw)x18y3,

N6[−7] ≡
4

3
K8

1K
2
2M5M

5
6 + 6K7

1K
2
2M

2
5M

4
6M8 − 3K7

1K
3
2M

4
6M7M8−

−
1

2
K6

1K
2
2M11M5M

3
6M

2
8 +

28

3
K6

1K
2
2M

2
4M5M

3
6M

2
8 − 9K6

1K
3
2M4M

3
6M7M

2
8 +

+
1

4
K5

1K
2
2M11M4M5M

2
6M

3
8 + 6K5

1K
2
2M

3
4M5M

2
6M

3
8−

−9K5
1K

3
2M

2
4M

2
6M7M

3
8 −

3

8
K4

1K
2
2M

2
11M5M6M

4
8 +

5

4
K4

1K
2
2M11M

2
4M5M6M

4
8 +

+
4

3
K4

1K
2
2M

4
4M5M6M

4
8 +

1

2
K4

1K
2
2M13M5M

2
6M

4
8 −

9

8
K4

1K
3
2M11M4M6M7M

4
8−

−3K4
1K

3
2M

3
4M6M7M

4
8 −

3

16
K3

1K
2
2M

2
11M4M5M

5
8 +

1

2
K3

1K
2
2M11M

3
4M5M

5
8 +

+
3

2
K3

1K
2
2M13M4M5M6M

5
8 +

27

64
K3

1K
3
2M

2
11M7M

5
8 −

9

8
K3

1K
3
2M11M

2
4M7M

5
8−

−
9

4
K3

1K
3
2M13M6M7M

5
8 −

3

8
K2

1K
2
2M11M13M5M

6
8 +K2

1K
2
2M13M

2
4M5M

6
8−

−
9

4
K2

1K
3
2M13M4M7M

6
8 +

3

32
K1K2M14M7M

7
8 −

1

9
K4

1K2M5M
3
6M

3
8M9−
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−
1

6
K2

1K2M11M5M6M
5
8M9 +

1

9
K2

1K2M
2
4M5M6M

5
8M9 −

1

24
K1K2M11M4M5M

6
8M9+

+
3

16
K1K

2
2M11M7M

6
8M9 −

1

12
K2M13M5M

7
8M9 −

1

54
M5M6M

6
8M

2
9 =

= 64f27(64hm4t− 8hm2nt− 2hn2t− 24fm3qt− 144fhm3t2 + 36f2m2qt2+

+112f2hm2t3 + 2f2hnt3 − 18f3mqt3 − 36f3hmt4 + 3f4qt4 + 4f4ht5 − 96hm3u−

−12hmnu+ 36fm2qu+ 9fnqu+ 120fhm2tu+ 24fhntu− 18f2mqtu− 12f2hmt2u−

−12f3ht3u+ 72fhmu2 − 27f2qu2 − 72f2htu2 + 48hm2v + 6hnv − 18fmqv−

−36fhmtv + 9f2qtv + 6f2ht2v − 36fhuv − 3fqw)x22y3,

N7[−4] ≡ 48K4
1K2M

3
6 + 72K3

1K2M4M
2
6M8 + 18K2

1K2M11M6M
2
8 +

+24K2
1K2M

2
4M6M

2
8 + 9K1K2M11M4M

3
8 + 18K2M13M

4
8 + 4M6M

3
8M9 =

= −192f15(4m2t− nt− 6fmt2 + 2f2t3 − 6mu+ 6ftu+ 3v)x13y,

(19)

where Ki (i = 1, 17) and Mi (i = 0, 14) are from (15)–(16), written without the
weight and square brackets.

Theorem 1. The stability of unperturbed motion governed by system of perturbed

motion s(1, 2, 3) from (1) with S1 < 0, S2
1 + 2K3 = 0 and M8 6≡ 0 is characterized

by one of the following sixteen possible cases:

I. M1 6≡ 0, then the unperturbed motion is unstable;

II. M1 ≡ 0, K2N1 > 0, then the unperturbed motion is unstable;

III. M1 ≡ 0, K2N1 < 0, then the unperturbed motion is stable;

IV. M1 ≡ N1 ≡ 0, N2 6= 0, then the unperturbed motion is unstable;

V. M1 ≡ N1 ≡ N2 ≡ 0, N3 < 0, then the unperturbed motion is unstable;

VI. M1 ≡ N1 ≡ N2 ≡ 0, N3 > 0, then the unperturbed motion is stable;

VII. M1 ≡ N1 ≡ N2 ≡ N3 ≡ 0, N4 6≡ 0, then the unperturbed motion is stable;

VIII. M1 ≡ N1 ≡ N2 ≡ N3 ≡ N4 ≡ 0, K2M8N5 > 0, then the unperturbed

motion is unstable;

IX. M1 ≡ N1 ≡ N2 ≡ N3 ≡ N4 ≡ 0, K2M8N5 < 0, then the unperturbed

motion is stable;

X. M1 ≡ N1 ≡ N2 ≡ N3 ≡ N4 ≡ N5 ≡ 0, N6 6≡ 0, then the unperturbed motion

is unstable;

XI. M1 ≡ N1 ≡ N2 ≡ N3 ≡ N4 ≡ N5 ≡ N6 ≡ 0, K2M5M8 < 0, N7 6≡ 0, then

the unperturbed motion is unstable;

XII. M1 ≡ N1 ≡ N2 ≡ N3 ≡ N4 ≡ N5 ≡ N6 ≡ 0, K2M5M8 > 0, N7 6≡ 0, then
the unperturbed motion is stable;

XIII. M1 ≡ N1 ≡ N2 ≡ N3 ≡ N4 ≡ N5 ≡ N6 ≡ M5 ≡ 0, M7N7 6≡ 0, then the

unperturbed motion is unstable;

XIV. M1 ≡ N1 ≡ N2 ≡ N3 ≡ N4 ≡ N5 ≡ N6 ≡ M5 ≡ 0, M7 = 0, then the

unperturbed motion is stable;

XV. M1 ≡ N1 ≡ N2 ≡ N3 ≡ N4 ≡ N5 ≡ N6 ≡ M5 ≡ N7 ≡ 0, M7 6= 0, then

the unperturbed motion is stable;
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XVI. M1 ≡ N1 ≡ N2 ≡ N3 ≡ N4 ≡ N5 ≡ N6 ≡ N7 ≡ 0, M5 6≡ 0, then the

unperturbed motion is stable.

In the last three cases, the unperturbed motion belongs to some continuous series

of stabilized motions. Moreover, for sufficiently small perturbations, any perturbed

motion will asymptotically approach to one of the stabilized motions of the mentioned

series. The expressions K2,M1,M5,M7,M8 and Ni (i = 1, 7) are from (15), (16)
and (19), respectively.

The proof of Theorem 1 follows from Lemma 1, using the expressions S1 from
(14), K3 from (15), M8 from (18) and those from (19). An important role in proving
the theorem is played by the weights of these comitants and invariants, the properties
of which are mentioned in Remark 1.

If in system (2) we suppose l = 0, then for M1 from (16) we get (18). But if we
put l = g = 0 in system (2), then for the expressions from (16) we have

K2[−1] = −fxy, M3[−1] = 6f3ky3, M5[0] = 6fhy, M6[−1] = 2f4tx4,

M7[1] = 2f2q, M8[−1] = 2f3x3, M10[0] = 8f3ry2,

M12[−1] = 2f4sy4, M15[0] = 8f3p x2.

(20)

In this case we use the expressions S1 from (14), K3 from (15), M8 from (18)
and (19). Then by Lemma 2 and taking into account the weights of the comitants
characterized in Remark 1, we have the following theorem.

Theorem 2. The stability of the unperturbed motion governed by system of perturbed

motion s(1, 2, 3) from (1) with S1 < 0, S2
1 + 2K3 = 0 and M8 ≡ 0 is characterized

by one of the following thirteen possible cases:

I. M1 6≡ 0, then the unperturbed motion is unstable;

II. M1 ≡ 0, M15 < 0, then the unperturbed motion is unstable;

III. M1 ≡ 0, M15 > 0, then the unperturbed motion is stable;

IV. M1 ≡M15 ≡ 0, M5M6 6≡ 0, then the unperturbed motion is unstable;

V. M1 ≡M15 ≡M5 ≡ 0, M6M7 > 0, then the unperturbed motion is unstable;

VI. M1 ≡M15 ≡M5 ≡ 0, M6M7 < 0, then the unperturbed motion is stable;

VII. M1 ≡ M15 ≡ M5 ≡ M7 ≡ 0, M3M6 6≡ 0, then the unperturbed motion is

unstable;

VIII. M1 ≡ M15 ≡ M5 ≡ M7 ≡ M3 ≡ 0, M6 6≡ 0, M10 < 0, then the

unperturbed motion is unstable;

IX. M1 ≡ M15 ≡ M5 ≡ M7 ≡ M3 ≡ 0, M6 6≡ 0, M10 > 0, then the

unperturbed motion is stable;

X. M1 ≡ M15 ≡ M5 ≡ M7 ≡ M3 ≡ M10 ≡ 0, M6M12 > 0, then the

unperturbed motion is unstable;

XI. M1 ≡ M15 ≡ M5 ≡ M7 ≡ M3 ≡ M10 ≡ 0, M6M12 < 0, then the

unperturbed motion is stable;

XII. M1 ≡ M15 ≡ M5 ≡ M7 ≡ M3 ≡ M10 ≡ M12 ≡ 0, M6 6≡ 0, then the

unperturbed motion is stable;

XIII. M1 ≡M15 ≡M6 ≡ 0, then the unperturbed motion is stable.
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In the last two cases, the unperturbed motion belongs to some continuous series

of stabilized motions. Moreover, for sufficiently small perturbations, any perturbed

motion will asymptotically approach to one of the stabilized motions of the mentioned

series. The expressions S1,K3,M1,M3,M5,M6,M7,M10,M12,M15 are from (14),
(15) and (16).
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Chişinău, No. 2(6), 2018, 78–91.

[11] Popa M. N., Pricop V.V. The Center-Focus Problems Algebraic Solutions and Hypotheses.

Academy of Science of Moldova, 2018 (in Russian).

[12] Lyapunov A.M. The general problem on stability of motion. Collection of works, II – Moscow-
Leningrad: Izd. Acad. Nauk SSSR, 1956 (in Russian).

[13] Gurevich G. B. Fondations of the Theory of Algebraic Ivariants. Nordhoff, Croningen, 1964.

[14] Calin Iu. On rational bases of GL(2, R) - comitants of planar polynomial systems of differ-
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