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Sufficient GL(2, R)-invariant center conditions

for some classes of two-dimensional cubic

differential systems

Iurie Calin, Valeriu Baltag

Abstract. The autonomous two-dimensional polynomial cubic systems of differen-
tial equations with pure imaginary eigenvalues of the Jacobian matrix at the singular
point (0, 0) are considered in this paper. The center problem was studied for three
classes of such systems: the class of cubic systems with zero divergence of the cubic ho-
mogeneities (S3 ≡ 0), the class of cubic systems with zero divergence of the quadratic
homogeneities (S2 ≡ 0) and the class of cubic systems with nonzero divergence of the
quadratic homogeneities (S2 6≡ 0). For these systems, sufficient GL(2, R)-invariant
center conditions for the origin of coordinates of the phase plane were established.
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1 Preliminaries

Let us consider the cubic system of differential equations

dx

dt
= P1(x, y) + P2(x, y) + P3(x, y) = P (x, y),

dy

dt
= Q1(x, y) +Q2(x, y) +Q3(x, y) = Q(x, y), (1)

where Pi(x, y), Qi(x, y) are homogeneous polynomials of degree i in x and y with
real coefficients. The system (1) can be written in the following coefficient form:

dx

dt
= cx+ dy + gx2 + 2hxy + ky2 + px3 + 3qx2y + 3rxy2 + sy3,

dy

dt
= ex+ fy + lx2 + 2mxy + ny2 + tx3 + 3ux2y + 3vxy2 + wy3. (2)

Definition 1. [1] Let ϕ(x, y) and ψ(x, y) be homogeneous polynomials in x and y

with real coefficients of the degrees ρ1 ∈ N
∗ and ρ2 ∈ N

∗, respectively, and j ∈ N
∗.

The polynomial

(ϕ,ψ)(j) =
(ρ1 − j)!(ρ2 − j)!

ρ1!ρ2!

j
∑

i=0

(−1)i
(

j

i

)

∂jϕ

∂xj−i∂yi
∂jψ

∂xi∂yj−i
(3)

is called the transvectant of index j of polynomials ϕ and ψ.
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Using this formula we have the following remark.

Remark 1. [2] If polynomials ϕ and ψ are GL(2,R)-comitants [3–5] of the degrees

ρ1 ∈ N
∗ and ρ2 ∈ N

∗, respectively, for the system (1), then the transvectant of index

j ≤ min{ρϕ, ρψ} is a GL(2,R)-comitant of the degree ρϕ + ρψ − 2j for the system

(1). If j > min{ρϕ, ρψ}, then (ϕ,ψ)(j) = 0.

The GL(2,R)-comitants of the first degree with respect to the coefficients of the
system (1) have the form

Ri = Pi(x, y)y −Qi(x, y)x, Si =
1

i

(

∂Pi(x, y)

∂x
+
∂Qi(x, y)

∂y

)

, i = 1, 2, 3. (4)

By using the comitants Ri and Si, i = 1, 2, 3, the system (1) can be written [6]
in the form

dx

dt
=

1

2

∂R1

∂y
+

1

2
S1x+

1

3

∂R2

∂y
+

2

3
S2x+

1

4

∂R3

∂y
+

3

4
S3x,

dy

dt
= −1

2

∂R1

∂x
+

1

2
S1y −

1

3

∂R2

∂x
+

2

3
S2y −

1

4

∂R3

∂x
+

3

4
S3y. (5)

For every homogeneous GL(2,R)-comitant K(x, y) with degree ρ ∈ N
∗ of the

system (1) from (5) we obtain the total derivative of K(x, y) with respect to t [7]:

dK
dt

=
∂K
∂x

· dx
dt

+
∂K
∂y

· dy
dt

=

∂K
∂x

(

1

2

∂R1

∂y
+

1

2
S1x+

1

3

∂R2

∂y
+

2

3
S2x+

1

4

∂R3

∂y
+

3

4
S3x

)

+

+
∂K
∂y

(

−1

2

∂R1

∂x
+

1

2
S1y −

1

3

∂R2

∂x
+

2

3
S2y −

1

4

∂R3

∂x
+

3

4
S3y

)

= (6)

= ρ(K, R1)
(1) +

ρ

2
KS1 + ρ(K, R2)

(1) +
2ρ

3
KS2 + ρ(K, R3)

(1) +
3ρ

4
KS3,

where (K, Ri)(1) is a Jacobian (the transvectant of the first index) of GL(2,R)-
comitants K and Ri. The representation (6) shows that the derivative with respect
to t of every homogeneous GL(2,R)-comitant with the degree ρ ≥ 1 of the system
is a GL(2,R)-comitant too.

By using the comitants Ri and Si (i = 1, 2, 3), and the transvectant (3) the
following GL(2,R)-invariants [3–5] of the system (1) were constructed:

I1 = S1, I2 = (R1, R1)
(2), I4 = (R1, S3)

(2),

I18 = ((R3, R1)
(2), S3)

(2), I20 = ((R2, R2)
(2), S3)

(2), I22 = ((S3, S2)
(1), S2)

(1),

I38 = (((R2, R1)
(2), R1)

(1), S2)
(1), I61 = (((R3, S3)

(2), R1)
(1), S3)

(2),

I111 = ((((R3, R1)
(2), R1)

(1), S2)
(1), S2)

(1),
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I112 = (((R2, R1)
(2), R1)

(1), (R2, S3)
(2))(1),

I125 = ((((R2, R1)
(1), S2)

(1), S2)
(1), S2)

(1),

I174 = (((R2, S3)
(2), S3)

(1), (R2, S3)
(2))(1),

I278 = (((((R3, R1)
(1), S2)

(1), S2)
(1), S2)

(1), S2)
(1).

We will consider the system (1) with the conditions I1 = 0, I2 > 0. These
conditions mean that the eigenvalues of the Jacobian matrix at the singular point
(0, 0) are pure imaginary, i.e., the system has the center or a weak focus at (0, 0).
In these conditions the system (1) can be reduced, via a linear transformation and
time rescaling, to the system (by preserving the same notations for the coefficients):

dx

dt
= y + gx2 + 2hxy + ky2 + px3 + 3qx2y + 3rxy2 + sy3,

dy

dt
= − x+ lx2 + 2mxy + ny2 + tx3 + 3ux2y + 3vxy2 + wy3. (7)

The center-focus problem for the system (1) was investigated in many papers.
The necessary and sufficient GL(2,R)-invariant conditions for distinguishing the
center and focus for the system (1) (or (2)) were established in the case, when

P3(x, y) ≡ Q3(x, y) ≡ 0 (R3 ≡ S3 ≡ 0) ,

i.e. for the quadratic system of differential equations [3,4,8], also in the case, when

P2(x, y) ≡ Q2(x, y) ≡ 0 (R2 ≡ S2 ≡ 0) ,

i.e. for the system with nonlinearities of the third degree [4, 9].

In the paper [10] the center-focus problem for the system (1) with I1 = 0, I2 > 0
and R3 ≡ 0 was solved in terms of the coefficients of the normal forms (canonical
forms) of this system. The necessary and sufficient GL(2,R)-invariant conditions
for the center-focus problem for the system (1) with I1 = 0, I2 > 0 and R3 ≡ 0 were
obtained in [11]. Also, the necessary and sufficient GL(2,R)-invariant conditions for
the center-focus problem for the system (1) with I1 = 0, I2 > 0, R2 ≡ 0 and S3 ≡ 0
were established in [12].

In the paper [13] the necessary and sufficient GL(2,R)-invariant conditions for
the center-focus problem for a class of autonomous two-dimensional polynomial sys-
tems of differential equations with nonlinearities of the fourth degree were obtained.

In this paper we study the center-focus problem for the system (1) with I1 = 0,
I2 > 0, S3 ≡ 0, for the system (1) with I1 = 0, I2 > 0, S2 ≡ 0, also for the system
(1) with I1 = 0, I2 > 0, S2 6≡ 0. For all these systems sufficient GL(2,R)-invariant
center conditions for the origin of coordinates of the phase plane were established.
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2 Sufficient GL(2, R)-invariant center conditions for system (1) with

I1 = 0, I2 > 0 and S3 ≡ 0

Theorem 1. If the system (1) with I1 = 0, I2 > 0, S3 ≡ 0 fulfills the conditions

I38 = I111 = I125 = I278 = 0, (8)

then the origin of coordinates of the phase plane of the system (1) is a singular point

of the center type.

Proof. In this case S3 = (p+u)x2 +2(q+ v)xy+(r+w)y2 ≡ 0 and via rotation
we can obtain g +m = 0 in the system (7). So, the system (1) with I1 = 0, I2 > 0,
S3 ≡ 0, i.e. the system (7) with S3 ≡ 0 can be reduced to the form (by preserving
the same notations of the coefficients):

dx

dt
= y + gx2 + 2hxy + ky2 + px3 + 3qx2y + 3rxy2 + sy3,

dy

dt
= − x+ lx2 − 2gxy + ny2 + tx3 − 3px2y − 3qxy2 − ry3. (9)

For the system (9) the comitant S2 and the invariants I38, I111, I125, I278 have
the following values:

S2 = (h+ n)y,

I38 = −(g + k)(h+ n), I111 = −(p+ r)(h+ n)2, (10)

I125 = −g(h + n)3, I278 = −p(h+ n)4.

So, the conditions (8) imply the system of equalities:

I38 = −(g + k)(h + n) = 0,

I111 = −(p+ r)(h+ n)2 = 0,

I125 = −g(h+ n)3 = 0,

I278 = −p(h+ n)4 = 0,

which should can be verified in the following two cases:
Case I. h+ n = 0;
Case II. h+ n 6= 0, g = k = p = r = 0.
In the case I the equality h + n = 0 implies S2 ≡ 0. So, the divergence of the

system (9) is S ≡ S1 + 2S2 + 3S3 ≡ 0 and the origin of coordinates of the phase
plane of the system (9) is a singular point of the center type. The system (1) with
S ≡ S1 + 2S2 + 3S3 ≡ 0 has the first integral

1

2
R1 +

1

3
R2 +

1

4
R3 = c,

where c is a real constant. The relation (6) directly implies this result:
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d

(

1

2
R1 +

1

3
R2 +

1

4
R3

)

dt
= (R1, R1)

(1) + (R1, R2)
(1) + (R1, R3)

(1) + (R2, R1)
(1)+

+(R2, R2)
(1) + (R2, R3)

(1) + (R3, R1)
(1) + (R3, R2)

(1) + (R3, R3)
(1) = 0,

because (Ri, Ri)
(1) = 0, and (Ri, Rj)

(1) = −(Rj , Ri)
(1), i 6= j, i, j = 1, 2, 3.

In the case II the system (9) is reduced to the system:

dx

dt
= y + 2hxy + 3qx2y + sy3,

dy

dt
= − x+ lx2 + ny2 + tx3 − 3qxy2. (11)

For the system (11), the condition

Q(x;−y)P (x; y) = −P (x;−y)Q(x; y) (12)

is fulfilled, i.e. the straight line defined by the equation y = 0 is a symmetry axis for
the system (11). So, the point (0; 0) is a singular point of center type for the system
(11), i.e. for the system (9) with g = k = p = r = 0.

Thus, if for the system (9) the conditions (8) are fulfilled, then the origin of
coordinates of the phase plane of the system (9) is a singular point of center type.

We remark that zero - equalities of the GL(2,R)-invariants and zero - identities
of the GL(2,R)-comitants are preserved by non-degenerate linear transformations
of the system, also by time rescaling.

Because the system (9) was obtained from the system (1) (or (2)) with I1 = 0,
I2 > 0 and S3 ≡ 0 by some non-degenerate linear transformations and time rescaling,
and the polynomials I38, I111, I125, I278 are GL(2,R)-invariants, we are done.

Theorem 1 is proved.

3 Sufficient GL(2, R)-invariant center conditions for system (1) with

I1 = 0, I2 > 0 and S2 ≡ 0

Theorem 2. If the system (1) with I1 = 0, I2 > 0, S2 ≡ 0 fulfills the conditions

I4 = I18 = I20 = I61 = I112 = I174 = 0, (13)

then the origin of coordinates of the phase plane of the system (1) is a singular point

of the center type.

Proof. In this case the comitant S2 = (g+m)x+(h+n)y ≡ 0, for the system (7)
the invariant I4 = p+r+u+w = 0 and after a rotation we can obtain q+v = 0 in the
system (7). So, we can consider in the system (7) m = −g, n = −h, w = −p− r−u,
v = −q. Thus, the system (1) with I1 = 0, I2 > 0, S2 ≡ 0 and I4 = 0, i.e. the
system (7) with S2 ≡ 0 and I4 = 0 can be reduced to the form (by preserving the
same notations of the coefficients):



132 IURIE CALIN, VALERIU BALTAG

dx

dt
= y + gx2 + 2hxy + ky2 + px3 + 3qx2y + 3rxy2 + sy3,

dy

dt
= − x+ lx2 − 2gxy − hy2 + tx3 + 3ux2y − 3qxy2 − (p+ r + u)y3. (14)

For the system (14) the comitant S3 and the invariants I18, I20, I61, I112, I174
have the following values:

S3 = (p+ u)(x2 − y2), I18 = (s + t)(p + u),

I61 = 2(r + u)(p + u)2, I20 = 2(g2 − h2 + gk + hl)(p + u), (15)

I112 = (g2 − h2 − k2 + l2)(p + u),

I174 = −(g + h− k + l)(g − h− k − l)(p+ u)3.

Thus, the conditions (13) imply the system of equalities:

I18 = (s+ t)(p + u) = 0,

I61 = 2(r + u)(p+ u)2 = 0,

I20 = 2(g2 − h2 + gk + hl)(p + u) = 0, (16)

I112 = ((g + h)(g − h) − (k + l)(k − l))(p + u) = 0,

I174 = −((g + h) − (k − l))((g − h) − (k + l))(p + u)3 = 0.

The invariant I174 = 0 in one of the following three cases:
1) p+ u = 0; 2) g + h = k − l; 3) g − h = k + l.

If 1) p+ u = 0, then the system of equalities (16) is fulfilled.
If 2) g + h = k − l, g − h 6= k + l and p+ u 6= 0, then from the equality I112 = 0

we obtain (g + h)(g − h − k − l)(p + u) = 0, i.e. g + h = 0, and then k − l = 0.
The equalities g + h = 0 and k − l = 0 imply I20 = 0. So, in this case the system of
equalities (16) is reduced to the conditions:

g + h = k − l = s+ t = r + u = 0. (17)

If 3) g − h = k + l, g + h 6= k − l and p+ u 6= 0, then from the equality I112 = 0
we obtain (g − h)(g + h − k + l)(p + u) = 0, i.e. g − h = 0, and then k + l = 0.
The equalities g − h = 0 and k + l = 0 imply I20 = 0. So, in this case the system of
equalities (16) is reduced to the conditions:

g − h = k + l = s+ t = r + u = 0. (18)

If 2) g + h = k − l, 3) g − h = k + l and p + u 6= 0, then g = k and h = −l.
From the equality I20 = 0 we obtain (g + h)(g − h) = 0, i.e. g + h = k − l = 0 or
g−h = k+ l = 0. In the case g+h = k− l = 0, as well as in the case g−h = k+ l = 0
the invariant I112 = 0. Thus, in this case the system of equalities (16) is reduced to
one of the series of conditions (17) or (18).

So, the system of equalities (16) should be verified in the following cases:
Case I. p+ u = 0;



SUFFICIENT GL(2, R)-INVARIANT CENTER CONDITIONS 133

Case II. p + u 6= 0, g + h = k − l = s + t = r + u = 0 (h = −g, l = k,

t = −s, u = −r);
Case III. p + u 6= 0, g − h = k + l = s + t = r + u = 0 (h = g, l = −k,

t = −s, u = −r).
In the case I the equality p + u = 0 implies S3 ≡ 0. So, the divergence of the

system (14) S ≡ S1 +2S2 +3S3 ≡ 0 and the origin of coordinates of the phase plane
of the system (14) is a singular point of the center type.

In the case II the system (14) is reduced to the system:

dx

dt
= y + gx2 − 2gxy + ky2 + px3 + 3qx2y + 3rxy2 + sy3,

dy

dt
= − x+ kx2 − 2gxy + gy2 − sx3 − 3rx2y − 3qxy2 − py3. (19)

The trajectories of the system (19) are symmetric with respect to the straight
line defined by the equation x+ y = 0. By the rotation of axes

x1 = x cosα+ y sinα, y1 = −x sinα+ y cosα (20)

with the angle α =
π

4
, the system (19) can be reduced to the form:

dx1

dt
=y1 −

1√
2
(g − k)x1

2 +
1√
2
(3g + k)y1

2+

+
3

2
(−p− q + r + s)x1

2y1 +
1

2
(−p+ 3q − 3r + s)y1

3,

dy1

dt
= − x1 +

2√
2
(g − k)x1y1+ (21)

+
1

2
(−p− 3q − 3r − s)x1

3 +
3

2
(−p+ q + r − s)x1y1

2.

For the system (21) the condition

Q(−x1; y1)P (x1; y1) = −P (−x1; y1)Q(x1; y1) (22)

is fulfilled, i.e. the straight line defined by the equation x1 = 0 is a symmetry axis
for the system (21), i.e. the straight line defined by the equation x + y = 0 is the
symmetry axis for the system (19). It results that the origin of coordinates of the
phase plane of the system (19) is a singular point of the center type, i.e. for the
system (14) with g + h = k − l = s+ t = r + u = 0.

In the case III the system (14) is reduced to the system:

dx

dt
= y + gx2 + 2gxy + ky2 + px3 + 3qx2y + 3rxy2 + sy3,

dy

dt
= − x− kx2 − 2gxy − gy2 − sx3 − 3rx2y − 3qxy2 − py3. (23)

The trajectories of the system (23) are symmetric with respect to the straight
line defined by the equation x − y = 0. By the rotation of axes with the angle
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α = −π
4
, the system (23) can be reduced to the form:

dx1

dt
=y1 −

1√
2
(g − k)x1

2 +
1√
2
(3g + k)y1

2+

+
3

2
(p − q − r + s)x1

2y1 +
1

2
(p + 3q + 3r + s)y1

3,

dy1

dt
= − x1 +

2√
2
(g − k)x1y1+ (24)

+
1

2
(p − 3q + 3r − s)x1

3 +
3

2
(p + q − r − s)x1y1

2.

For the system (24) the condition (22) is fulfilled, i.e. the straight line defined by the
equation x1 = 0 is a symmetry axis for the system (24), i.e. the straight line defined
by the equation x− y = 0 is the symmetry axis for the system (23). It results that
the origin of coordinates of the phase plane of the system (23) is a singular point of
the center type, i.e. for the system (23) with g − h = k + l = s+ t = r + u = 0.

Thus, if for the system (14) the conditions

I18 = I20 = I61 = I112 = I174 = 0,

are fulfilled, then the origin of coordinates of the phase plane of the system (14) is
a singular point of the center type.

Because the system (14) was obtained from the system (1) (or (2)) with I1 = 0,
I2 > 0, S3 ≡ 0 and I4 = 0 by some non-degenerate linear transformations, and the
polynomials I4, I18, I20, I61, I112, I174 are GL(2,R)-invariants, we are done.

Theorem 2 is proved.

4 Sufficient GL(2, R)-invariant center conditions for system (1) with

I1 = 0, I2 > 0 and S2 6≡ 0

Theorem 3. If the system (1) with I1 = 0, I2 > 0 and S2 6≡ 0 fulfills the conditions

I4 = I22 = I38 = I111 = I125 = I278 = 0, (25)

then the origin of coordinates of the phase plane of the system (1) is a singular point

of the center type.

Proof. In this case after a rotation we can obtain g +m = 0 in the system (7).
So, the system (1) with I1 = 0, I2 > 0, i.e. the system (7), can be reduced to the
form (by preserving the same notations of the coefficients):

dx

dt
= y + gx2 + 2hxy + ky2 + px3 + 3qx2y + 3rxy2 + sy3,

dy

dt
= − x+ lx2 − 2gxy + ny2 + tx3 + 3ux2y + 3vxy2 + wy3. (26)
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For the system (26) the comitant S2 and the invariants I4, I22,I38, I111, I125, I278
have the following values:

S2 = (h+ n)y,

I4 = p+ r + u+ w, I22 = (p+ u)(h + n)2,

I38 = −(g + k)(h + n), I111 = −1

4
(p + 3r − 3u− w)(h + n)2, (27)

I125 = −g(h+ n)3, I278 = −1

4
(p − 3u)(h+ n)4.

Thus, the conditions (25) imply the system of equalities:

I4 = p+ r + u+ w = 0,

I22 = (p+ u)(h+ n)2 = 0,

I38 = −(g + k)(h + n),

I111 = −1

4
(p+ 3r − 3u− w)(h + n)2 = 0, (28)

I125 = −g(h+ n)3 = 0,

I278 = −1

4
(p− 3u)(h + n)4 = 0.

If S2 6≡ 0, then the system (28) is fulfilled if the following conditions are fulfilled:

g = k = p = r = u = w = 0.

In this case the system (26) is reduced to the system:

dx

dt
= y + 2hxy + 3qx2y + sy3,

dy

dt
= − x+ lx2 + ny2 + tx3 + 3vxy2. (29)

For the system (29), the condition (12) is fulfilled, i.e. the straight line defined by
the equation y = 0 is a symmetry axis for the system (29). So, the point (0; 0) is
a singular point of center type for the system (29), i.e. for the system (26) with
g = k = p = r = u = w = 0.

So, if for the system (26) the conditions (25) are fulfilled, then the origin of
coordinates of the phase plane of the system (26) is a singular point of the center
type.

Because the system (26) was obtained from the system (1) (or (2)) with I1 =
0, I2 > 0 and S2 6≡ 0 by some non-degenerate linear transformations, and the
polynomials I4, I22, I38, I111, I125, I278 are GL(2,R)-invariants, we are done.

Theorem 3 is proved.
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