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On limit cycles of polynomial systems of the first-order

ODE’s

Valery Dryuma

Abstract. Examples of four-dimensional Riemann metrics related with the ODE’s
of second order are constructed. Their properties and applications to the polynomial
systems of ODE’s of first order are considered.

1 Introduction

The second order ODE’s

d2y

dx2
+ a1(x, y)

(

dy

dx

)3

+ 3a2(x, y)

(

dy

dx

)2

+ 3a3(x, y)
dy

dx
+ a4(x, y) = 0 (1)

are invariant with respect to non degenerate changes of the variables x = f(u, v), y =
g(u, v) and they have numerous applications to the theory of dynamical systems and
differential geometry.

We will use this theory to study properties of polynomial systems of the first
order ODE’s

dy

ds
= Qn(x, y, ai),

dx

ds
= Pn(x, y, ai)

containing a limit cycles at some value of parameters ai.

2 Metrics of Riemann extensions in the theory of the second order

ODE’s

The equation (1) can be presented in the form of the system of equations

d2

ds2
y(s)+a4 (x, y)

(

d

ds
x(s)

)2

+2 a3 (x, y)

(

d

ds
x(s)

)

d

ds
y(s)+a2 (x, y)

(

d

ds
y(s)

)2

= 0,

d2

ds2
x(s)−a3 (x, y)

(

d

ds
x(s)

)2

−2 a2 (x, y)

(

d

ds
x(s)

)

d

ds
y(s)−a1 (x, y)

(

d

ds
y(s)

)2

= 0,

(2)
which allows us to consider them as equations of geodesics of two-dimensional space
in the coordinates M(x, y) with components of affine connection Πi

jk = Πi
jk(x, y)

d2xi

ds2
+ Πi

jk

dxj

ds

dxk

ds
= 0.
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To study solutions of system (2) we use the four-dimensional space equipped with
of the Riemann metric

ds2 = (2 za3 (x, y) − 2 ta4 (x, y)) dx2 + 2 (2 za2 (x, y) − 2 ta3 (x, y)) dxdy + 2 dxdz+

+ (2 za1 (x, y) − 2 ta2 (x, y)) dy2 + 2 dydt, (3)

The full system of geodesics of the metric (3) decomposes into two parts.
The first part has the form of the linear system of equations for the coordinates

(Ψ = (Ψ1 = z(s),Ψ2 = t(s)))

d2~Ψ

ds2
+ A(x, y)

d~Ψ

ds
+ B(x, y))~Ψ = 0,

where (~Ψ = (Ψ1 = z(s), Ψ2 = t(s)) and A(x, y), B(x, y) are the 2 × 2 matrix-
functions. While the second part of geodesics for the local coordinates xi = (x, y) is
defined by the system of equations (2).

The corresponding Ricci tensor of the metric is of the form

R11 = 2
∂

∂y
a4 (x, y) − 2

∂

∂x
a3 (x, y) − 4 a3 (x, y)2 + 4 a4 (x, y)a2 (x, y),

R12 = −2
∂

∂x
a2 (x, y) + 2

∂

∂y
a3 (x, y) − 2 a2 (x, y)a3 (x, y) + 2 a4 (x, y)a1 (x, y),

R22 = −2
∂

∂x
a1 (x, y) + 2

∂

∂y
a2 (x, y) + 4 a1 (x, y)a3 (x, y) − 4 a2 (x, y)2.

The Weyl tensor of the metric (3) is C1212 = tL1 − zL2, where

L1 =
∂2

∂y2
a4 (x, y)+3

(

∂

∂y
a4 (x, y)

)

a2 (x, y)+3 a4 (x, y)
∂

∂y
a2 (x, y)−2

∂2

∂x∂y
a3 (x, y)+

+
∂2

∂x2
a2 (x, y) −

(

∂

∂x
a4 (x, y)

)

a1 (x, y) − 2

(

∂

∂x
a1 (x, y)

)

a4 (x, y)−

−3 a3 (x, y)

(

2
∂

∂y
a3 (x, y) − ∂

∂x
a2 (x, y)

)

and

L2 =
∂2

∂x2
a1 (x, y)− 3

(

∂

∂x
a1 (x, y)

)

a3 (x, y)− 3 a1 (x, y)
∂

∂x
a3 (x, y) +

∂2

∂y2
a3 (x, y)−

−2
∂2

∂x∂y
a2 (x, y) + 2

(

∂

∂y
a4 (x, y)

)

a1 (x, y) + a4 (x, y)
∂

∂y
a1 (x, y)−

−3 a2 (x, y)

(

∂

∂y
a3 (x, y) − 2

∂

∂x
a2 (x, y)

)

are the Liouville expressions which generate the invariants of the equation (1).
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In accordance with the Liouville theory the invariant

ν5 = L2(L1L2x − L2L1x) + L1(L2L1y − L1L2y) − a1L
3
1 + 3a2L

2
1L2 − 3a3L1 + a4L

3
2

is important to the theory of equation (1).
In case ν5 6= 0 properties of the equation (1) are characterized by the absolute

invariants

[5tm − (m − 2)t7tm−2]ν
2/5
5 ] = 5(L1

∂tm−2

∂y
− L2

∂tm−2

∂x
)

and by relations between them, where

tm = νmν
−m/5
5 , νm+2 = L1νmy − L2νmx + mνm(L2x − L1y).

3 Quadratic first order equation

Theorem 1. In case ν5 = 0 the equation (1) admits invariant particular integral

dy(x)

dx
= −L1(x, y)

L2(x, y)

if the following relation between coefficients ai(x, y) holds

A1 a1 (x, y) + A2 a2 (x, y) + A3 a3 (x, y) + A4 a4 (x, y) + A5 = 0. (4)

with some coefficients Ai = Ai(x, y) that depend on the choice of the form of the
equation y′ = h(x, y).

As example in the case of the equation

d

dx
y(x) =

c0 + c1 x + c2 y(x) + c11 x2 + c12 xy(x) + c22 (y(x))2

e0 + e1 x + e2 y(x) + e11 x2 + e12 xy(x) + e22 (y(x))2
(5)

which determines properties of phase space of the quadratic system of equations

ẏ = c0 + c1x + c2y + c11x
2 + c12xy + c22y

2,

ẋ = e0 + e1x + e2y + e11x
2 + e12xy + e22y

2

with parameters ci, cjk, ei, ejk, the coefficients Ai look cumbersome and we present
their expressions for equations (5) with limit cycles.

1. Perko(1) system

ẋ = y + y2, ẏ = −x + µy − xy + (1 + µ)y2. (6)

The corresponding first order ODE looks as

d

dx
y(x) =

−x + µ y(x) − xy(x) + (1 + µ) (y(x))2

y(x) + (y(x))2
(7)
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and at the value of parameter 0 < µ < 1/5 system (6) has one limit cycle.
The second order ODE which has the particular integral defined by (7) has the

form

d2

dx2
y(x) + a1 (x, y)

(

d

dx
y(x)

)3

+ 3 a2 (x, y)

(

d

dx
y(x)

)2

+ 3 a3 (x, y)
d

dx
y(x)+

+
(y(x))5 + (−µ − x − xµ + 2) (y(x))4 +

(

−µ + 3 − x − 3xµ + x2
)

(y(x))3

(y(x))3 (1 + y(x))3
+

+

(

3x2 − 3xµ + 1
)

(y(x))2 +
(

3x2 − xµ
)

y(x) + x2

(y(x))3 (1 + y(x))3
= 0. (8)

2. Perko(2)’s system

ẋ = y + y2, ẏ = −x/2 + µy − xy + (4/5 + mu)y2

The first order ODE in this case is

d

dx
y(x) =

−1/2x + µ y(x) − xy(x) + (4/5 + µ) (y(x))2

y(x) + (y(x))2

and at the value of parameter 0 < µ < 1/8 the system has two limit cycles.
The corresponding second order ODE depends on three arbitrary coefficients

ai(x, y) and has the form

d2

dx2
y(x) +

1

100

100 (y(x))5 − (80µ + 80x − 186 + 100xµ) (y(x))4

y3 (1 + y)3
+

+
1

100

−
(

200xµ − 100x2 − 200 + 80µ
)

(y(x))3 −
(

−50 − 150x2 + 150xµ
)

(y(x))2

y3 (1 + y)3
−

− 1

100

(

−100x2 + 50xµ
)

y(x)

y3 (1 + y)3
= 0

3. Cherkas system

ẋ = 1 + xy, ẏ = c0 + c1x + c2y + c11x
2 + c12xy + c22y

2.

The first order ODE

d

dx
y(x) =

c0 + c1 x + c2 y(x) + c11 x2 + c12 xy(x) + c22 (y(x))2

1 + xy(x)
,

and for this system the existence of limit cycles of normal size in an amount of one
to four is proved.

The corresponding second order ODE is of the form

d2

dx2
y(x) +

(

xc22 − xc22
2
)

y4 +
(

−x2c12 c22 − 2 c22
2 + c22 + xc2 − xc2 c22

)

y3

(1 + yx)3
+
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+

(

−3 c12 xc22 + c2 − 3 c2 c22 − c12 x + xc0 − x3c11

)

y2

(1 + yx)3
+

+
x4yc11 c12 +(c1 c12 +c11 c2 ) yx3+

(

−c12
2+c1 c2 +c0 c12 −2 c11 c22 −3 c11

)

yx2

(1 + yx)3
+

+
(−c1 − 2 c1 c22 − 2 c2 c12 + c0 c2 ) yx +

(

−2 c0 c22 − c2
2 + c0 − c12

)

y

(1 + yx)3
= 0

4 The homogeneous quadratic first order systems of equations

Here we use the theory of second order ODE to study of 2D-planar systems of
the first order ODE’s.

Proposition 1. The system of equations

dx

ds
= a0 + a1x + a2y + a11x

2 + a12xy + a22y
2,

dy

ds
= b0 + b1x + b2y + b11x

2 + b12xy + b22y
2 (9)

with parameters ai, aij and bi, bij after the extension on the projective plane accord-
ing to standard rule takes form of the Pfaff equation

(

xQ̃ − P̃ y
)

dz − zQ̃dx + zP̃dy = 0, (10)

where the functions P̃ , Q̃ are a homogeneous polynomials in the variables (x, y, z).

In explicit form we get the expression

(

xb0 z2 + b1 x2z + xb2 yz + b11 x3 + b12 x2y + xb22 y2 − ya0 z2
)

dz−

−
(

ya1 xz − a2 y2z − ya11 x2 − a12 xy2 − a22 y3
)

dz+

+
(

z2a2 y + za11 x2 + z3a0 + z2a1 x + za12 xy + za22 y2
)

dy+

+
(

−z3b0 − z2b1 x − zb12 xy − zb22 y2 − z2b2 y − zb11 x2
)

dx = 0. (11)

Theorem 2. The spatial homogeneous first order system of equations

dx

ds
= P (x, y, z),

dy

ds
= Q(x, y, z),

dz

ds
= R(x, y, z), (12)

connected with the Pfaff equation (11) has the following form

dx

ds
= Qz − Ry,

dy

ds
= Rx − Pz,

dz

ds
= Py − Qx,
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In the considered case it looks as follows

d

ds
x(s) = 4 a0 z2 + (4 a2 y + (3 a1 − b2 ) x) z + 4 a22 y2+

+ (3 a12 − 2 b22) xy + (2 a11 − b12) x2,

d

ds
y(s) = 4 b0 z2 + ((3 b2 − a1 ) y + 4 b1 x) z + (2 b22 − a12) y2+

+ (−2 a11 + 3 b12)xy + 4 b11 x2,

d

ds
z(s) = (−b2 − a1 ) z2 + ((−2 b22 − a12) y − b12 x − 2 a11 x) z, (13)

and for it the condition on their right sides

∂P

∂x
+

∂Q

∂y
+

∂R

∂z
= 0

is fulfilled.

Theorem 3. The solution of the homogeneous system (13) can be expressed through
the solution of the algebraic ODE of the form

(

b22 t2 + b2 t + a0 A + b0 + a22 t2 + a2 At
)

(

d

dt
A(t)

)2

+

+
(

−a2 A2 + a12 At − 2 b22 tA − 2 a22 A(t)2t − b2 A + b12 t + a1 A + b1

) d

dt
A(t)+

+b11 + a22 A3 − b12 A + a11 A + b22 A2 − a12 A2 = 0. (14)

The equation (14) in the variables d
dtA(t) = u,A(t) determines elliptic surface

H(u, v, t) = 0 with genus (g = 1) or rational surface (g = 0) in a particular case.

To investigate the properties of systems which have limit cycles we will use the
representation of the system (13) in the form

d

dx
z(x) =

R(x, y, z)

P (x, y, z)
,

d

dx
y(x) =

Q(x, y, z)

P (x, y, z)
, (15)

where

R(x, y, z) = −z(x) (a1 z(x) + a12 y(x) + 2 a11 x + b12 x + 2 b22 y(x) + z(x)b2 ) ,

Q(x, y, z) = 4 b0 (z(x))2 + 4 b1 xz(x) + 4 b11 x2 + 3 b12 xy(x) + 2 b22 (y(x))2 +

+3 b2 y(x)z(x) − a1 z(x)y(x) − a12 (y(x))2 − 2 a11 xy(x),

P (x, y, z) = 4 a0 (z(x))2 + 3 a1 xz(x) + 4 a2 y(x)z(x) + 3 a12 xy(x)−

−2xb22 y(x) − xb2 z(x) + 4 a22 (y(x))2 − x2b12 + 2 a11 x2. (16)
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The system (15) after eliminating one of the variables y(x) or z(x) is reduced to
one second-order differential equation of the type

F (x, y, y′, y′′) = 0, or H(x, z, z′, z′′) = 0.

Both equations can be used to study properties of integral curves of the system
(15).

With this aim we apply the following theorem

Theorem 4. As a result of the elimination of the function y′′ from the system

F (x, y, y′, y′′) = 0,
∂F

∂y′′
= 0

the first order differential equation is obtained

C(x, y, y′) = 0.

This equation has the property that through each point M of its integral curve C =
Q(x, y) passes integral curve of the equation F (x, y, y′, y′′) = 0, for which the point
M is a return point of the second type.

Further consideration of examples shows us that this property of the equation
F (x, y, y′, y′′) = 0 contains information about the existence of limit cycles or about
their absence in the corresponding planar system (9).

5 An examples

1. The system of equations

ẋ = 2 + 4x − 4µx2 + 12xy, ẏ = 8 − 3µ − 14µx − 2µxy − 8y2, (17)

has the algebraic curve

1/4 + x − x2 + µ x3 + xy + x2y2 = 0 (18)

as limit cycle by the condition on the parameter 0<µ<1/4. The value µ = 1/4 is
critical for the system (17) and it arises after additional computation.

We show here that the given value of the parameter µ is derived from the study of
the system (17) in the projective coordinates. Really, the system (17) after projective
extension takes the form

d

dt
x(t) = −8 z2 − 12xz − 52xy + 6µ x2,

d

dt
y(t) = −4 (8 − 3µ) z2 + 56µ xz − 2µ xy + 28 y2 + 4 zy,

d

dt
z(t) = 4 z2 − 4 zy − 10µ xz. (19)
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A homogeneous form of algebraic curve (18) looks as follows

z4 + 4xz3 − 4x2z2 + 4µ x3z + 4xyz2 + 4x2y2 = 0. (20)

With the help of the system (26) after differentiation of the condition (20) with
respect to the parameter t we obtain the relation

8
(

z4 + 4xz3 − 4x2z2 + 4µ x3z + 4xyz2 + 4x2y2
)

(xµ − 2 z − 6 y) = 0. (21)

Proposition 2. Substitution of the expression

z = 1/2xµ − 3 y

from the condition (21) into the (20) gives us the equation of straight line y = Kx
with the coefficient K which is determined from the algebraic equation

(1296K4 + 8µ3 + µ4 + 16µ2 +
(

−24µ3 − 128µ2
)

K +
(

216µ2 + 672µ − 512
)

K2+

+ (−864µ − 1152) K3 = 0. (22)

Proposition 3. The equation (22) has double roots when the parameter µ satisfies
the conditions

µ2 (4µ − 1)
(

9µ2 − 384µ − 2048
)

= 0. (23)

The value of parameter µ = 1
4 is critical for the system (17).

The study of behavior of the system at another value of parameters

µ = 0, µ =
64

3
+

32

3

√
6, µ =

64

3
− 32

3

√
6

requires additional consideration.

2. The system of equations

ẋ = 5x + 6x2 + 4(1 + µ)xy + µy2, ẏ = x + 3y + 4xy + (2 + 3µ)y2 (24)

has the algebraic curve

x2 + x3 + x2y + 2µxy2 + 2µxy3 + µ2y4 = 0 (25)

as limit cycle by the condition on the parameter −71
32 + 17

32

√
17<µ<0.

The value of parameter µ = −71
32 + 17

32

√
17 is critical for the system (26) and it

arises after additional computation.
We show here that the given value of the parameter µ is derived from the study

of the system (26) in the projective coordinates.
Really, the system (26) after projective extension takes the form

d

dt
x(t) = −13xz − 3 (4 + 4µ) xy + 2x (2 + 3µ) y − 4µ y2 − 8x2,
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d

dt
y(t) = −4xz − 2 (2 + 3µ) y2 − zy + (4 + 4µ) y2,

d

dt
z(t) = 7 z2 + (4 + 4µ) yz + 16xz + 2 z (2 + 3µ) y. (26)

A homogeneous form of algebraic curve (25) looks as follows

x2z2 + x3z + x2yz + 2µ xy2z + 2µ xy3 + µ2y4 = 0. (27)

With the help of the system (26) after differentiation of the condition (27) with
respect to the parameter t we obtain the relation

−4 (2 yµ + 3 z + 2x + 2 y)
(

x2z2 + x3z + x2yz + 2µ xy2z + 2µ xy3 + µ2y4
)

= 0.
(28)

Proposition 4. Substitution of the expression

z = −2/3 yµ − 2/3x − 2/3 y

from the condition (28) into the (27) give us the equation of straight line y = Kx
with the coefficient K which is determined from the algebraic equation

34992µ5
(

16µ2 + 71µ + 2
) (

µ4 − 2µ3 − 24µ2 + 16µ − 8
)

= 0. (29)

Proposition 5. The equation (29) has double roots when the parameter µ satisfies
the conditions

34992µ5
(

16µ2 + 71µ + 2
) (

µ4 − 2µ3 − 24µ2 + 16µ − 8
)

= 0. (30)

The value of parameter

µ = −71

32
+

17

32

√
17

is a critical for the system (26).
Behavior of the system at the another values of parameters requires additional

consideration.

6 Supplement1

In this section, we will consider an example of equation (1) for which associated
metric has only one component of the Ricci tensor.

Theorem 5. Tensor Ricci of the metric (3) associated with the equation

d2

dx2
y(x) +

(

∂

∂y
h(x, y)

) (

d

dx
y(x)

)3

+ 3

(

∂

∂x
h(x, y)

) (

d

dx
y(x)

)2

−

−
− ∂2

∂x2 h(x, y) − 3
(

∂
∂xh(x, y)

)2 d
dxy(x)

∂
∂yh(x, y)

−
−

(

∂
∂xh(x, y)

)3
+ 2

(

∂2

∂x∂y h(x, y)
)

∂
∂xh(x, y)

(

∂
∂yh(x, y)

)2 +
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+

(

∂
∂xh(x, y)

)2 ∂2

∂y2 h(x, y)
(

∂
∂yh(x, y)

)3 = 0 (31)

has only one component

Rxx = 2

∂3

∂x2∂y
h(x, y)

∂
∂y h(x, y)

+

+
−2

(

∂2

∂x2 h(x, y)
)

∂2

∂y2 h(x, y) − 4
(

∂2

∂x∂yh(x, y)
)2

− 4
(

∂
∂xh(x, y)

)

∂3

∂y∂x∂yh(x, y)
(

∂
∂yh(x, y)

)2 +

+
12

(

∂
∂xh(x, y)

)

(

∂2

∂x∂yh(x, y)
)

∂2

∂y2 h(x, y) + 2
(

∂
∂xh(x, y)

)2 ∂3

∂y3 h(x, y)
(

∂
∂yh(x, y)

)3 −

−6

(

∂
∂xh(x, y)

)2
(

∂2

∂y2 h(x, y)
)2

(

∂
∂y h(x, y)

)4 (32)

and from the condition Rxx = 0 it follows that the metric is a flat Rijkl = 0 on the
solutions of the corresponding pde.

The function

h(x, y) = e
−

(

LambertW (− C3 C1 e−
x− C1 y+ C2 x C1

x )x+x− C1 y+ C2 x C1

)

x−1

x (33)

is an example of such solution. From here it follows that all equations with such
condition are point-equivalent to the equation y′′ = 0.

Theorem 6. To the equation (31) with the function h(x, y) = f(x) + µ
√

(y)
invariant ν5 = 0 the equation takes the form

d2

dx2
y(x)+1/2

µ
(

d
dxy(x)

)3

√

y(x)
+3

(

d

dx
f(x)

)(

d

dx
y(x)

)2

+6

(

d
dxf(x)

)2 √

y(x) d
dxy(x)

µ
+

+1/2
−4

(

d
dxf(x)

)2
y(x) + 8

(

d
dxf(x)

)3
(y(x))2 + 4µ

(

d2

dx2 f(x)
)

(y(x))3/2

y(x)µ2
= 0,

(34)
and the Ricci tensor of corresponding Riemann space Rxx 6= 0.

In this situation both functions of the equation (34) L1 6= 0 and L2 6= 0 and for
the further study of the equation it is necessary to use the invariant

W1 :=
[L2

3 (α1 L2 − αL1 ) − 2R2 L2 L2y + L2
2R2y − L2 R2 (a1 L1 − a2 L2 )]

L2
4 =
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=
[L1

3 (α1 L1 − α2 L2 ) + R1 L1 L1x − L1
2R1x + L1 R1 (a3 L1 − a4 L2 )]

L1
4 , (35)

where
α = a2y − a1x + 2(a1a3 − a2

2), α1 = a3y − a2x + a1a4 − a2a3,

α2 = a4y − a3x + 2(a2a4 − a2
3),

and
R1 = L1L2x − L2L1x + a2

2L
2
1 − 2a3L1L2 + a4L

2
2,

R2 = L1L2y − L2L1y + a2
1L

2
1 − 2a2L1L2 + a3L

2
2.

Starting from the invariant (35) the sequence of invariants

Wm+2 = L1
∂Wm

∂y
− L2

∂Wm

∂x
+ mWm

(

∂L2

∂x
− ∂L1

∂y

)

can be constructed.

7 Supplement2

It is known that with partial first order equation

F (x, y, z, p, q) = F (x, y, z, zx, zy) = 0 (36)

can be associated the Monge equation

Φ

(

x, y, z,
dy

dx
,
dz

dx

)

= 0, (37)

homogeneous with respect to the differentials.
Such type of equation determines a set of the Monge curve lines which of is the

rib return of corresponding surface composed from characteristics of the equation
(36).

We shall apply theory of Monge equation (37) for study of planar systems of
ODE’s with the limit cycles.

Proposition 6. For the system of equation which has limit cycle at the condition
0 < µ < 1/4

dx

dt
= y + y2,

dy

dt
= −x + µy − xy + (1 + µ)y2 (38)

corresponding the p.d.e. (36) looks as follows
(

∂

∂x
f(x, y)

)

(

y + y2
)

+

(

∂

∂y
f(x, y)

)

(

−x + µ y − xy + (1 + µ) y2
)

= 0. (39)

After change of the variables

f(x, y) = u(x, t),
∂

∂x
f(x, y) =

∂

∂x
u(x, t) −

(

∂
∂xv(x, t)

)

∂
∂tu(x, t)

∂
∂tv(x, t)

,
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∂

∂y
f(x, y) =

∂
∂tu(x, t)
∂
∂tv(x, t)

,

where

u(x, t) = t
∂

∂t
z(x, t) − z(x, t), v(x, t) =

∂

∂t
z(x, t)

the equation (39) takes the form

(

− ∂

∂x
z(x, t) + t + µ t

)(

∂

∂t
z(x, t)

)2

+

(

− ∂

∂x
z(x, t) + µ t − tx

)

∂

∂t
z(x, t) − tx = 0.

(40)

Theorem 7. Homogeneous equation associated with the equation (40) is

512 dx 4t4x+320 dx 4t4x2−1000 dz dx 3µ t3x2+800 dx 2t2dz 2x−800 dx 3t3dz x2+

+500 dx 4µ2t4x2 + 500 dz 2dx 2t2x2 − 1600 dx 3t3µ xdz + 800 dx 4µ2t4x−

−1280 dx 3t3xdz + 800 dx 4t4µ x2 + 1280 dx 4t4µ x + 500 dx 2x2t2dt dz−

−500 dx 3x2t3µ dt + 4400 dx 3x2dt t3 + 2000 dx 3dt t3x3 − 5000 dt dx 2µ t2dz x+

+3000 dt dx 2µ2t2dz − 3000 dt dx µ tdz 2 − 1600 dt dx 2µ t2dz − 2500 dt 2dx 2µ t2x+

+2500 dt dx 3µ2t3x + 800 dt dx 3µ2t3 − 1000 dt dx 3µ3t3 + 1625 dt 2dx 2t2x2+

+1920 dt dx 3t3x + 2400 dt 2dx 2t2x − 800 dz 3dx t + 500 dx 4µ4t4 + 800 dx 4t4µ3+

+500 dz 4 + 2500 dt dx txdz 2 + 2500 dt 2dx txdz + 400 dt dx 2t2xdz + 1000 dz 3dt−

−400 dt dx 3µ t3x + 3000 dz 2dx 2µ2t2 − 2000 dz 3dx µ t + 2400 dz 2dx 2µ t2−

−2400 dz dx 3µ2t3 − 2000 dz dx 3µ3t3 + 800 dz 2dx tdt + 320 dx 2t2dz 2+

+320 dx 4t4µ2 − 1000 dt 2dx µ tdz + 500 dt2dz 2 + 1000 dt 3dx tx+

+500 dt2dx 2µ2t2 − 640 dx 3t3dz µ=0,

and from here we obtain the Monge equation

(

d

dt
z(t)

)4

− 2 t (1 + x + 2µ)

(

d

dt
x(t)

) (

d

dt
z(t)

)3

+

+t2
(

(x)2 + 6µ2 + 6µ x + 6µ + 8x + 1
)

(

d

dt
x(t)

)2 (

d

dt
z(t)

)2

−

−2 t3 (1 + µ)
(

2µ2 + µ + 3µ x + 5x + (x)2
)

(

d

dt
x(t)

)3 d

dt
z(t)+

+t4 (1 + µ)2
(

µ2 + 2µ x + 4x + (x)2
)

(

d

dt
x(t)

)4

+ 4

(

d

dt
x(t)

)

tx−
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−t2
(

8µ x − µ2 + 8 (x)2 − 12x
)

(

d

dt
x(t)

)2

− 2 t (µ − 4x)

(

d

dt
x(t)

)

d

dt
z(t)+

+

(

d

dt
z(t)

)2

+ 2

(

d

dt
z(t)

)3

− 2 t (−x − 1 + 3µ)

(

d

dt
x(t)

)(

d

dt
z(t)

)2

+

+2 t2
(

−x − 2µ x − 2µ + 3µ2 − 4 (x)2
)

(

d

dt
x(t)

)2 d

dt
z(t)+

+2 t3
(

2 (x)3+µ2+6x−µ3+10 (x)2+µ2x+4µ (x)2+µ x
)

(

d

dt
x(t)

)3

=0. (41)

The solutions of equation (41) depend on the value of parameter µ and contains
information about properties of integral surface formed from characteristics of the
equation (40). In particular a following proposition is valid

Proposition 7. Under substitution

z(t) = t2
∂

∂t
ω(x, t) − 2 t

∂

∂t
ω(x, t) + 2ω(x, t), x(t) =

∂

∂t
ω(x, t)

undetermined equation (41) is reduced to algebraic-differential equation with respect
to the function ω(x, t)

A4

(

∂2

∂t2
ω(x, t)

)4

+ A3

(

∂2

∂t2
ω(x, t)

)3

+ A2

(

∂2

∂t2
ω(x, t)

)2

+ A1
∂2

∂t2
ω(x, t) + A0 = 0,

(42)
where Ai = Ai(µ, t, dω

dt ) are some polynomial functions with respect to the variables
t and ωt.

Study of return points of integral curves of the equation(42) in accordance with
the Theorem4 alow us to formulate a following result

Theorem 8. From the set of real values of the parameter µ, which satisfy to the
equation

−22265110462464 µ11 − 485606182354944µ10 − 3541595672543232µ9−

−7724112134799360µ8 + 24161394358222848 µ7 + 131429131899371520µ6+

+52585845479178240µ5 − 573323004352659456µ4 − 661065167731163136 µ3+

+894761666057601024µ2 +1196951371505467392 µ−

−365080998536282112 = 0,

or
µ = 1.974873734, µ = −2.974873734, µ = 0.2650452857

only the value
µ = 0.2650452857
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satisfies the condition of existence of limit cycle in the system (38).
Analogous consideration for the system

dx

dt
x = y + y2,

dy

dt
= −1/2x + µy − xy + (4/5 + µ)y2,

which has two limit cycles at the condition 0 < µ < 4
5 , give us two values

µ = 0.3194424124, and µ = 0.3194444444.
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