
BULETINUL ACADEMIEI DE ŞTIINŢE
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On the number of topologies on countable fields

V. I. Arnautov, G.N. Ermakova

Abstract. For any countable field R and any non-discrete metrizable field topology
τ0 of the field, the lattice of all field topologies of the field admits:
– Continuum of non-discrete metrizable field topologies of the field stronger than
the topology τ0 and such that sup{τ1, τ2} is the discrete topology for any different
topologies;
– Continuum of non-discrete metrizable field topologies of the field stronger than τ0

and such that any two of these topologies are comparable;
– Two to the power of continuum of field topologies of the field stronger than τ0, each
of them is a coatom in the lattice of all topologies of the field.
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1 Introduction

The study of possibility to set a non-discrete Hausdorff topology on infinite
algebraic systems in which existing operations are continuous was begun in [1]. In
this article, for any countable group, a method of constructing such group topologies
is given.

For countable rings, the problem the possibility to set non-discrete Hausdorff
ring topologies was studied in [2, 3].

For infinite fields the problem of the possibility to set of non-discrete field topolo-
gies was studied in [2].

The present article is a continuation of research in this direction. The main result
of this paper is Theorem 3.1, in which for any countable field R and any non-discrete
metrizable field topology τ0, the number of topologies which have some properties
in the lattice of all field topologies is specified.

For countable groups and rings, similar results were obtained in [4, 5, 6].

2 Notations and preliminaries

To present the main results we remind the following well-known result:

Theorem 2.1. A set Ω of subsets of a field R is a basis of filter of neighborhoods

of zero for some Hausdorff field topology on the field R if and only if the following

conditions are satisfied:
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1)
⋂

V ∈Ω
V = {0};

2) For any subset V1 and V2 ∈ Ω there exists a subset V3 ∈ Ω such that V3 ⊆
V1 ∩ V2;

3) For any subset V1 ∈ Ω there exists a subset V2 ∈ Ω such that V2 + V2 ⊆ V1;

4) For any subset V1 ∈ Ω there exists a subset V2 ∈ Ω such that −V2 ⊆ V1;
5) For any subset V1 ∈ Ω and any element r ∈ R there exists a subset V2 ∈ Ω

such that r · V2 ⊆ V1 and V2 · r ⊆ V1;

6) For any subset V1 ∈ Ω there exists a subset V2 ∈ Ω such that V2 · V2 ⊆ V1.

7) For any subset V1 ∈ Ω there exists a subset V2 ∈ Ω such that V2
(e+V2)\{0}

⊆ V1.

Proof. According to ([2], Proposition 1.2.2, Theorems 1.2.5 and 1.2.12) for the proof
of the Theorem it suffices to verify that for any subset V1 ∈ Ω there exists a subset
V3 ∈ Ω such that e

(e+V3)\{0} ⊆ e + V1.

Let V1 ∈ Ω and let V2 ∈ Ω be a set such that V2
(e+V2)\{0} ⊆ V1. If V3 ∈ Ω is a set

such that −V3 + V3 ⊆ V2 and a ∈ V3 and −e 6= b ∈ V3, then e+a
(e+b) ∈ e+V3

(e+V3)\{0} =

e + b − b + a

(e + b)
= e +

−b + a

(e + b)
∈ e +

−V3 + V3

(e + V2) \ {0}
⊆ e +

e + V2

(e + V2) \ {0}
⊆ e + V1.

From the arbitrariness of elements a and b it follows that e
(e+V3)\{0} ⊆ e+V3

(e+V3)\{0} ⊆
e + V1, and hence the theorem is completely proved.

Definition 2.2. A subset V of an Abelian group R(+) is called symmetric if
−V = V .

Notation 2.3. Let V1, V2, . . . and S1, S2, . . . be non-empty symmetric subsets of a
field R, and e is the unit of the field R. If e ∈ Sk, e /∈ Vk and 0 ∈ Vk for any natural
number k then we define by induction the subsets Fk

(
S1, . . . , Sk;V1, . . . , Vk

)
of the

field R:
We take F1(S1;V1) = V1 + V1 + V1 · V1 + V1 · V1 + S1 · V1, and

Ft+1(S1, S2, . . . , St+1;V1, V2, . . . , Vt+1) = F1

(
S1;V1 ∪ Ft(S2, . . . , St+1;V2, . . . , Vt+1)

)

and we take

F̃k(S1, . . . , Sk;V1, . . . , Vk) =
Fk(S1, . . . , Sk;V1, . . . , Vk)

e + Fk(S1, . . . , Sk;V1, . . . , Vk) \ {0}

for any natural number k.

Proposition 2.4. Let V1, V2, . . . and S1, S2, . . . be some sequences of non-empty

finite symmetric subsets of a field R. If e ∈ S1 ⊆ S2 ⊆ . . . and e /∈ Vi and 0 ∈ Vi for

any natural number i, then the following statements are true:

Statement 1. Fk−1(S2, . . . , Sk;V2, . . . , Vk) + Fk−1(S2, . . . , Sk;V2, . . . , Vk)+

Fk−1(S2, . . . , Sk;V2, . . . , Vk) · Fk−1(S2, . . . , Sk;V2, . . . , Vk)+
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Fk−1(S2, . . . , Sk;V2, . . . , Vk) · Fk−1(S2, . . . , Sk;V2, . . . , Vk)+

S1 · Fk−1(S2, . . . , Sk;V2, . . . , Vk) ⊆ Fk(S1, . . . , Sk;V1, . . . , Vk)

for any natural number k > 1, and hence,
1.1. F̃k−1(S2, . . . , Sk;V2, . . . , Vk) + F̃k−1(S2, . . . , Sk;V2, . . . , Vk) ⊆

F̃k(S1, . . . , Sk;V1, . . . , Vk) for any natural number k > 1,

1.2. F̃k−1(S2, . . . , Sk;V2, . . . , Vk) · F̃k−1(S2, . . . , Sk;V2, . . . , Vk) ⊆
F̃k(S1, . . . , Sk;V1, . . . , Vk) for any natural number k > 1,

1.3.
F̃k−1(S2,...,Sk;V2,...,Vk)

e+F̃k−1(S2,...,Sk;V2,...,Vk)\{0}
⊆ F̃k(S1, . . . , Sk;V1, . . . , Vk) for any natural num-

ber k > 1,

1.4. S1 ·F̃k−1(S2, . . . , Sk;V2, . . . , Vk) ⊆ F̃k(S1, . . . , Sk;V1, . . . , Vk) for any natural

number k > 1;
Statement 2. Fk(S1, . . . , Sk;V1, . . . , Vk) and F̃k(S1, . . . , Sk;V1, . . . , Vk) are finite

symmetric sets for any natural number k;

Statement 3. F̃k(S1, . . . , Sk; {0}, . . . , {0}) = F̃k(S1, . . . , Sk; {0}, . . . , {0}) = {0}
for any natural number k;

Statement 4. If k is a natural number and Ui ⊆ Vi ⊆ R and Ti ⊆ Si ⊆ R for

any natural number 1 ≤ i ≤ k, then

Fk(T1, . . . , Tk;U1, . . . , Uk) ⊆ Fk(S1, . . . , Sk;V1, . . . , Vk)

and

F̃k(T1, . . . , Tk;U1, . . . , Uk) ⊆ F̃k(S1, . . . , Sk;V1, . . . , Vk);

Statement 5. If k and p are natural numbers and Vk+j = {0} for any natural

number 1 ≤ j ≤ p, then

Fk(S1, . . . , Sk;V1, . . . , Vk) = Fk+p(S1, . . . , Sk+p;V1, . . . , Vk+p)

and

F̃k(S1, . . . , Sk;V1, . . . , Vk) = F̃k+p(S1, . . . , Sk+p;V1, . . . , Vk+p);

Statement 6. For any natural number k ≥ 2 the following equalities are true:

Fk(S1, . . . , Sk;V1, . . . , Vk) =

Fk(S1, . . . , Sk;V1 ∪ Fk−1 (S2, . . . , Sk;V2, . . . , Vk), . . . , Vk−1 ∪ F1(Sk;Vk), Vk)

and

F̃k(S1, . . . , Sk;V1, . . . , Vk) =

F̃k

(
S1, . . . , Sk;V1 ∪ Fk−1 (S2, . . . , Sk;V2, . . . , Vk), . . . , Vk−1 ∪ F1(Sk;Vk), Vk

)
;

Statement 7. Vt ⊆ Fk(S1, . . . , Sk;V1, . . . , Vk) ⊆ F̃k(S1, . . . , Sk;V1, . . . , Vk) for

any natural numbers k and 1 ≤ t ≤ k;
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Statement 8. f For any natural numbers k, s, t and t ≤ s the following inclu-

sions are true:

Fk+1(Ss, . . . , Sk+s;Vs, . . . , Vk+s) ⊆ Fk+s−t+1(St, . . . , Sk+s;Vt, . . . , Vk+s)

and

F̃k+1(Ss, . . . , Sk+s;Vs, . . . , Vk+s) ⊆ F̃k+s−t+1(St, . . . , Sk+s;Vt, . . . , Vk+s)

Proof. Statement 1 for sets Fk(S1, . . . , Sk;V1, . . . , Vk) follows from the definition of
the set Fk(S1, . . . , Sk;V1, . . . , Vk) for k > 1.

Statements 2 – 7 for sets Fk(S1, . . . , Sk;V1, . . . , Vk) are proved easy by induction
on the number k and from the definition of sets Fk(S1, . . . , Sk;V1, . . . , Vk) (see [2],
Proposition 5.3.2, or [6], Proposition 2.4).

Statement 8 for sets Fk(S1, . . . , Sk;V1, . . . , Vk) is proved easy by induction on the
number s − t (see [6], Proposition 2.4).

We proceed to the proof of these statements for sets F̃k(S1, . . . , Sk;V1, . . . , Vk).
If ã, b̃ ∈ F̃k−1(S2, . . . , Sk;V2, . . . , Vk), and c ∈ S2 then there exist a1, a2, b1, b2 ∈

Fk−1(S2, . . . , Sk;V2, . . . , Vk) such that ã = a1
e+a2

and b̃ = b1
e+b2

. As 0 ∈ Vi for any i
then from Statement 1 for the set Fk(S1, . . . , Sk;V1, . . . , Vk) it follows that:

ã + b̃ =
a1

e + a2
+

b1

e + b2
=

a1 + a1 · b2 + b1 + a2 · b1

e + b2 + b1 + b1 · b2
∈

Fk(S1, . . . , Sk;V1, . . . , Vk)

e + Fk(S1, . . . , Sk;V1, . . . , Vk) \ {0}
= F̃k(S1, . . . , Sk;V1, . . . , Vk)

and

ã · b̃ =
a1

e + a2
·

b1

e + b2
=

a1 · b1

e + b2 + b1 + b1 · b2
∈

Fk(S1, . . . , Sk;V1, . . . , Vk)

e + Fk(S1, . . . , Sk;V1, . . . , Vk) \ {0}
= F̃k(S1, . . . , Sk;V1, . . . , Vk)

and

ã

e + b̃
=

( a1

e + a2

)
·
(
e +

b1

e + b2

)−1
=

( a1

e + a2

)
·
(e · (e + b2) + b1

e + b2

)−1
=

a1 · (e + b2)

e + b2 + (e + a2) · b1
=

a1 + a1 · b2

e + b2 + b1 + a2 · b1
∈

Fk(S1, . . . , Sk;V1, . . . , Vk)

e + Fk(S1, . . . , Sk;V1, . . . , Vk) \ {0}
=

F̃k(S1, . . . , Sk;V1, . . . , Vk) and

c · ã = c ·
a1

e + a2
=

c · a1

e + a2
∈

c · Fk−1(S1, . . . , Sk;V1, . . . , Vk)

e + Fk−1(S1, . . . , Sk;V1, . . . , Vk) \ {0}
⊆

F̃k(S1, . . . , Sk;V1, . . . , Vk).
From the arbitrariness of elements ã, b̃ and c it follows that

F̃k−1(S2, . . . , Sk;V2, . . . , Vk)+F̃k−1(S2, . . . , Sk;V2, . . . , Vk) ⊆ F̃k(S1, . . . , Sk;V1, . . . , Vk),
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and hence the inclusion 1.1 is proved and

F̃k−1(S2, . . . , Sk;V2, . . . , Vk)·F̃k−1(S2, . . . , Sk;V2, . . . , Vk) ⊆ F̃k(S1, . . . , Sk;V1, . . . , Vk),

and hence the inclusion 1.2 is proved and

F̃k−1(S2, . . . , Sk;V2, . . . , Vk)

e + F̃k−1(S2, . . . , Sk;V2, . . . , Vk) \ {0}
⊆ F̃k(S1, . . . , Sk;V1, . . . , Vk),

and hence the inclusion 1.3 is proved and

S2 · F̃k−1(S2, . . . , Sk;V2, . . . , Vk) ⊆ F̃k(S1, . . . , Sk;V1, . . . , Vk),

and hence the inclusion 1.4 is proved.
Hence we have proved Statement 1 also for the set F̃k(S1, . . . , Sk;V1, . . . , Vk).
For any set F̃k(S1, . . . , Sk;V1, . . . , Vk) each of Statements 2 – 8 follows from the

definition the set
widetildeFk(S1, . . . , Sk;V1, . . . , Vk) and of the corresponding statement for the set
Fk(S1, . . . , Sk;V1, . . . , Vk).

Hence, Proposition 2.4 is proved.

Definition 2.5. If R is a field and x is some variable, then we denote by:
– R[x] the polynomial ring on the field R;
– R̃[x] the field of fractions of the ring R[x].
We call elements of the field R̃[x] a rational function of x over the field R.

Definition 2.6. As usual, an element a ∈ R is called a root of a rational function
f(x) ∈ R̃[x] if f(a) = 0.

Notation 2.7. If R = {0,±1,±r1,±r2, . . .} is a countable field, then for any natural
number k we put Sk = {±1,±r1,±r2, . . . ,±rk}.

Theorem 2.8. Let (R, τ) be a topological field. If τ is a non-discrete Hausdorff

topology then for any rational function f̃(x) = f1(x)
e+f2(x) of x over the field R such that

f̃(0) 6= 0 and e + f2(0) 6= 0 there exists a neighborhood W of zero such that each

element r ∈ W is not a root of the rational function f̃(x).

Proof. As f̃(0) = f1(0)
e+f2(0)

6= 0 then f1(0) 6= 0 and since (R, τ0) is a Hausdorff space,

then there exists a neighborhood W0 of the element f̃(0) such that 0 /∈ W0.
As (R, τ0) is a topological field then there exist neighborhoods W1 and W2 of

elements f1(0) and f2(0) such that W1 · (e + W2)
−1 ⊆ W0.

Since any polynomial over a topological field is a continuous function, then there
exists a neighborhood W of zero in (R, τ0) such that f1(r) ∈ W1 and f2(r) ∈ W2

for any element r ∈ W . Then f̃(r) = f1(r)
e+f2(r)

∈ W1 · (e + W2)
−1 ⊆ W0, and hence

f̃(r) 6= 0 for any element r ∈ W .
The theorem is proved.
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3 Basic results

Theorem 3.1. If R =
{
0,±r1,,±r2, . . .

}
is a countable field and τ0 is a non-discrete,

Hausdorff, field topology such that the topological field (R, τ0) has a countable basis

of the filter of neighborhoods of zero, then the following statements are true:

1. For any infinite set A of natural numbers there exists a field topology τ(A)
such that τ0 ≤ τ(A) and the topological field (R, τ(A)) has a countable basis of the

filter of neighborhoods of zero;
2. sup{τ(A), τ(B)} is the discrete topology for any infinite sets A and B of

natural numbers such that A ∩ B is a finite set;

3. There are continuum of field topologies stronger than τ0 and such that any

two of them are comparable to each other;

4. There exist two to the power of continuum of field topologies such that

sup{τ1, τ2} is the discrete topology for any two different topologies τ1 and τ2;

5. There exist two to the power of continuum of coatoms in the lattice of all field

topologies of the field R.

Proof. Since (R, τ0) is a topological field and it is a Hausdorff space, then there
exists a countable basis {V1, V2, . . .} of the filter of neighborhoods of zero such that
−Vk = Vk, Vk ∩ Sk = ∅ and

F̃1(Sk+1;Vk+1) =
Vk+1 + Vk+1 + Vk+1 · Vk+1 + Vk+1 · Vk+1 + Sk+1 · Vk+1

e + Vk+1 + Vk+1 + Vk+1 · Vk+1 + Vk+1 · Vk+1 + Sk+1 · Vk+1
⊆ Vk

for any natural number k.
Then for any natural numbers i and n by induction on the number n it is easy

to prove that F̃n(Si+1, . . . , Si+n;Vi+1 . . . , Vi+n) ⊆ Vi.
Further the proof of Statement 1 will be realized in several steps.

Step I. By induction we construct a sequence k1, k2, . . . of natural numbers such
that ki ≥ i, for any natural number i and we construct a sequence h1, h2, . . . of
nonzero elements of the field R such that {−hi, hi} ⊆ Vki

and

F̃n(S1, . . . , Sk;UA,1, . . . , UA,n)
⋂

F̃n(S1, . . . , Sk;UB,1, . . . , UB,n) = {0}

for all subsets A and B of the set of natural numbers such that A ∩ B = ∅, where
UC,i = {hi, 0,−hi} if i ∈ C and UC,i = {0} if i /∈ C, for any set C of natural
numbers.

We take k1 = 2, and as h1 we take an arbitrary element of the set V2\{0}.
If A and B are some sets of natural numbers such that A

⋂
B = ∅, then k1 /∈ A

or k1 /∈ B, and hence, UA,1 = {0} or UB,1 = {0}. Then F̃1(S1;UA,1)∩ F̃1(S1;UB,1) =
{0} for any sets A and B of natural number such that A ∩ B = ∅.

Suppose that we defined natural numbers k1 < k2 < . . . < kn such that ki ≥ i and
we defined nonzero elements h1, h2, . . . , hn of the field R such that {hi,−hi} ⊆ Vki

and

F̃n(S1, . . . , Sk;UA,1, . . . , UA,n) ∩ F̃n(S1, . . . , Sk;UB,1, . . . , UB,n) = {0}
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for any sets A and B of natural numbers such that A ∩ B = ∅.
For any sets A′ ⊆ {1, . . . , n} and B′ ⊆ {1, . . . , n} of natural numbers such that

A′ ∩ B′ = ∅ we consider a finite set

Ω(A′,B′) = F̃n+1(S1, . . . , Sn+1;UA′,1 . . . , UA′,n, {x, 0,−x})−

(
F̃n(S1, . . . , Sn+1;UB′,1 . . . , UB′,n)\{0}

)

of rational functions over the field R in variable x.
Since, according to Statement 5 of Proposition 2.4,

F̃n+1(S1, . . . , Sn+1;UA′,1 . . . , UA′,n, {0}) = F̃n(S1, . . . , Sn+1;UA′,1, . . . , UA′,n),

then according to inductive assumption,

F̃n(S1, . . . , Sn;UA′,1, . . . , UA′,n) ∩
(
Fn(S1, . . . , Sn;UB′,1, . . . , UB′,n)\{0}

)
= ∅.

If f̃(x) ∈ Ω(A′,B′) for A′, B′ ⊆ {1, . . . , n}, and A′ ∩ B′ = ∅ then f̃(x) =

f̃1(x) + r for any f̃1(x) ∈ F̃n+1(S1, . . . , Sn+1;UA′,1 . . . , UA′,n, {x, 0,−x} and r ∈

F̃n(S1, . . . , Sn;UB′,1, . . . , UB′,n. As

f̃1(0) ∈ F̃n+1(S1, . . . , Sn+1;UA′,1 . . . , UA′,n, {0}) = F̃n(S1, . . . , Sn+1;UA′,1, . . . , UA′,n)

then f̃1(0) 6= −r, and hence, f̃(0) 6= 0.
Since the set {1, . . . , n} has a finite number of subsets, then the set

Φn =
⋃

A′,B′⊆{1,...,n},A′
⋂

B′=∅

Ω(A′,B′)

is a finite set of rational functions f̃(x) over the field R in variable x such that
f̃(0) 6= 0.

Then, by Theorem 2.8, there exists a neighborhood W of zero in the topological
field (R, τ0) such that any element r ∈ W is not a root of any rational function of
the set Φn.

Then there exists a natural number kn+1 such that kn+1 > kn and Vkn+1 ⊆ W .
We take hn+1 an arbitrary element of the set Vkn+1\{0}.

We prove that

F̃n+1(S1, . . . , Sn+1;UA,1, . . . , UA,n+1) ∩ F̃n+1(S1, . . . , Sn+1;UB,1, . . . , UB,n+1) = {0}

for any subsets A and B of natural number such that A ∩ B = ∅ (definition of sets
UC,k see above).

Assume the contrary, and let

0 6= r ∈ F̃n+1(S1, . . . , Sn+1;UA,1, . . . , UA,n+1)∩F̃n+1(S1, . . . , Sn+1;UB,1, . . . , UB,n+1).

Since A ∩ B = ∅ then from inductive assumption it follows that

F̃n+1(S1, . . . , Sn+1;UA,1, . . . , UA,n, {0}) ∩ F̃n+1(S1, . . . , Sn+1;UB,1, . . . , UB,n, {0}) =
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F̃n(S1, . . . , Sn+1;UA,1, . . . , UA,n) ∩ F̃n+1(S1, . . . , Sn+1;UB,1, . . . , UB,n) = {0},

and hence UA,n+1 = {hn+1, 0,−hn+1} or UB,n+1 = {hn+1, 0,−hn+1} and as A∩B =
∅ then from the definition of sets UC,i it follows that UA,n+1 = {0} or UB,n+1 = {0}.

Assume, for definiteness, that UA,n+1 = {0} and UB,n+1 = {hn+1, 0,−hn+1}.
Then

0 6= r ∈ F̃n(S1, . . . , Sn;UA,1, . . . , UA,n)
⋂

F̃n+1(S1, . . . , Sn+1;UB,1, . . . , UB,n+1),

and hence, r = f̃(hn+1) for some rational function

f̃(x) ∈ F̃n+1(S1, . . . , Sn+1;UB,1, . . . , UB,n, {x, 0,−x}).

As UC,i = UC
⋂
{1,...,n},i for any natural number 1 ≤ i ≤ n and any set C of natural

numbers, then f̃(hn+1)−r ∈ F̃n+1(S1, . . . , Sn+1;UA′,1, . . . , UA′,n, {hn+1, 0,−hn+1})−

(F̃n(S1, . . . , Sn+1;UB′,1, . . . , UB′,n)\{0}),
for A′ = A

⋂
{1, . . . , n} and B′ = B

⋂
{1, . . . , n}.

We have contradiction with the definition of the element hn+1. Therefore

F̃n+1(S1, . . . , Sn+1;UA,1, . . . , UA,n+1) ∩ F̃n+1(S1, . . . , Sn+1;UB,1 . . . , UB,n+1) = {0}.

So, we defined the sequence k1, k2, . . . of natural numbers such that ki ≥ i for
any number i and the sequence h1, h2, . . . of nonzero elements of the field R such
that {−hi, hi} ⊆ Vki

for any natural number i and

F̃n(S1, . . . , Sk;UA,1, . . . , UA,n) ∩ F̃n (S1, . . . , Sk;UB,1, . . . , UB,n) = {0}

for any natural number n and any sets A and B of natural numbers such that
A ∩ B = ∅.

Step II. For any pair (i, j) of natural numbers we consider the set

U(i,j),A = F̃j(Ui+1,A, . . . , Ui+j,A;Si+1, . . . , Si+j),

where Ui,A = {0} if i /∈ A and Ui,A = {0, hi,−hi} if i ∈ A.

We show that for the sets U(i,j),A the following inclusions are true:

1. From Statement 3 of Proposition 2.4 it follows that

0 ∈ F̃n(Si+1, . . . , Si+n;Ui+1,A, . . . , Ui+n,A) ∈ U(i,j),A

for any natural numbers i, j and

U(i,n),A = F̃n(Si+1, . . . , Si+n;Ui+1,A, . . . , Ui+n,A) ⊆

F̃n(Si+1, . . . , Si+n;Vi+1, . . . , Vi+n) ⊆ Vi

for any natural numbers i, n and any set A of natural numbers.
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2. From Statements 4 and 5 of Proposition 2.4 it follows that U(k,j),A ⊆ U(k,n),A

for any natural numbers j ≤ n.
3. From Statement 8 of Proposition 2.4 it follows that U(i,j),A ⊆ U(k,j),A for any

natural numbers k ≤ i and j.
4. From Statement 2 of Proposition 2.4 it follows that U(i,j),A is a symmetric

set, i.e. −U(i,j),A = U(i,j),A for any natural numbers i, j.
5. For any natural numbers i, j and j > 1 and any set A of natural numbers we

prove by induction on the number j the following inclusions:

U(i+1,j),A · U(i+1,j),A ⊆ U(i,j),A;

U(i+1,j),A + U(i+1,j),A ⊆ U(i,j),A;

U(i+1,j),A

e + U(i+1,j),A
⊆ U(i,j),A.

In fact, if j = 2, then, from the definition of sets U(i,j),A and Statement 1 of
Proposition 2.4 it follow:

U(i+1,2),A · U(i+1,2),A = F̃1(Si+2;Ui+2,A) · F̃1(Si+2;Ui+2,A) ⊆

F̃1

(
Si+1; F̃1(Si+2;Ui+2,A)

)
⊆ F̃1(Si+1;Ui+1,A ∪ F̃1(Si+2;Ui+2,A)) =

F̃2(Si+1, Si+2;Ui+1,A, Ui+2,A) = U(i,2),A;

U(i+1,2),A + U(i+1,2),A = F̃1(Si+2;Ui+2,A) + F̃1(Si+2;Ui+2,A) ⊆

F̃1

(
Si+1;Ui+1,A ∪ F̃1(Si+2;Ui+2,A)

)
= F̃1

(
Si+1; F̃1(Si+2;Ui+2,A)

)
⊆

F̃2(Si+1, Si+2;Ui+1,A, Ui+2,A) = U(i,2),A;

U(i+1,2),A

e + U(i+1,2),A
=

F̃1(Si+2;Ui+2,A)

e + F̃1(Si+2;Ui+2,A)
⊆

F̃1

(
Si+1; F̃1(Si+2;Ui+2,A)

)
⊆ F̃1(Si+1;Ui+1,A ∪ F̃1(Si+2;Ui+2,A)) =

F̃2(Si+1, Si+2;Ui+1,A, Ui+2,A) = U(i,2),A

for any natural number i and any set A of natural numbers.
Assume that the required inclusions are proved for natural number j = n ≥ 2

and any natural number i. Then:

U(i+1,n+1),A · U(i+1,n+1),A = F̃n(Si+2, . . . , Si+n+1;

Ui+2,A, . . . , Ui+n+1,A) · F̃n(Si+2, . . . , Si+n+1;Ui+2,A, . . . , Ui+n+1,A) ⊆

F̃1(Si+1; F̃n(Si+2, . . . , Si+n+1;Ui+2,A, . . . , Ui+n+1,A)) ⊆

F̃1

(
Si+1;Ui+1,A ∪ F̃n(Si+2 . . . , Si+n+1;Ui+2,A, . . . , Ui+n+1,A)

)
=

F̃n+1(Si+1 . . . , Si+n+1;Ui+1,A, . . . , Ui+n+1,A) = U(i,n+1),A;
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U(i+1,n+1),A + U(i+1,n+1),A = F̃n(Si+2, . . . , Si+n+1;Ui+2,A, . . . , Ui+n+1,A)+

F̃n(Si+2, . . . , Si+n+1;Ui+2,A, . . . , Ui+n+1,A) ⊆

F̃1(Si+1; F̃n(Si+2, . . . , Si+n+1;Ui+2,A, . . . , Ui+n+1,A)) ⊆

F̃1(Si+1;Ui+1,A ∪ F̃n(Si+2, . . . , Si+n+1;Ui+2,A, . . . , Ui+n+1,A)) =

F̃n+1(Si+1 . . . , Si+n+1;Ui+1,A, . . . , Ui+n+1,A) = U(i,n+1),A;

U(i+1,n+1),A

e + U(i+1,n+1),A
=

F̃n(Si+2, . . . , Si+n+1;Ui+2,A, . . . , Ui+n+1,A)

e + F̃n(Si+2, . . . , Si+n+1;Ui+2,A, . . . , Ui+n+1,A)
⊆

F̃1(Si+1; F̃n(Si+2, . . . , Si+n+1;Ui+2,A, . . . , Ui+n+1,A)) ⊆

F̃1(Si+1;Ui+1 ∪ F̃n(Si+2, . . . , Si+n+1;Ui+2,A, . . . , Ui+n+1,A)) =

F̃n+1(Si+1 . . . , Si+n+1;Ui+1,A, . . . , Ui+n+1,A) = U(i,n+1),A,

and hence all inclusions specified in 5 are proved.

6. For any natural numbers i, j, k and j > 1 and any set A of natural numbers
we prove that rk · U(i+k,j),A ⊆ U(i,j),A.

In fact,

rk · U(i+k,j),A ⊆ Si+k · F̃k+i+j(Sk+i+1, . . . , Sk+i+j;Uk+i+1,A, . . . , Uk+i+j,A) ⊆

F̃1(Sk+i;Uk+i,A ∪ F̃k+i+j(Sk+i+1, . . . , Sk+i+j;Uk+i+1,A, . . . , Uk+i+j,A)) =

U(i+k−1,j),A ⊆ U(i,j),A, and hence inclusion 6 is proved.

Step III. For every infinite set A of natural numbers and any natural number

i we take Ûi(A) =
∞⋃

j=1
U(i,j),A and show that the set {Ûi(A)|i ∈ N} satisfies the

conditions of Theorem 2.1, and hence, this set is a basis of the filter of neighborhoods
of zero for a field topology τ(A) on the field R.

In fact, since

U(i,n+1),A = F̃n+1(Si+1, . . . , Si+n+1;Ui+1,A, . . . , Ui+n+1,A) ⊆

F̃n+1(Si+1 . . . , Si+n+1;Vi+1, . . . , Vi+n+1) ⊆ Vi

for any natural numbers i and n, then Ûi(A) =
∞⋃

j=1
U(i,j),A ⊆ Vi. Then

{0} ⊆
∞⋂
i=1

Ûi(A) ⊆
∞⋂
i=1

Vi = {0}, and hence, the condition 1 of Theorem 2.1 is satis-

fied.
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From inclusions 2 and 3 (see Step II), it follows

Ûi(A)
⋂

Ûk(A) = (

∞⋃

j=1

(
U(i,j),A

)⋂( ∞⋃

l=1

U(k,l),A

)
=

∞⋃

j=1

∞⋃

l=1

(
U(i,j),A

⋂
U(k,l),A

)
=

∞⋃

j=1

U(t,j),A = Ût(A),

where t = max{i, k}, and hence, the condition 2 of Theorem 2.1 is satisfied.
From inclusions 2 and 5 (see Step II) it follows

Ûi(A) + Ûk(A) =
( ∞⋃

j=1

U(i,j),A

)
+

( ∞⋃

l=1

U(i,l),A

)
=

⋃

j=1

⋃

j=1

(
U(i,j),A + U(i,l),A

)
=

∞⋃

t=1

U(i−1,t),A = Ûi−1(A)

and

Ûi(A) · Ûk(A) =
( ∞⋃

j=1

U(i,j),A

)
·
( ∞⋃

l=1

U(i,l),A

)
=

∞⋃

j=1

∞⋃

j=1

(
U(i,j),A · U(i,l),A

)
=

∞⋃

t=1

U(i−1,t),A = Ûi−1(A)

for any natural number i > 1, and hence, conditions 3 and 6 of Theorem 2.1 are
satisfied.

From inclusion 3 (see Step II) it follows

−Ûi(A) = −(

∞⋃

j=1

U(i,j),A) =

∞⋃

j=1

∞⋃

l=1

(
−U(i,j),A

)
=

∞⋃

j=1

Uj,A = Ûi(A)

for any natural number i, and hence, the condition 4 of Theorem 2.1 is satisfied.
Let now r ∈ R.
If r = 0, then r · Ûi(A) = {0} ⊆ Ûi(A) and Ûi(A) · r = {0} ⊆ Ûi(A) for any

natural number i and any set A of natural numbers.
If r 6= 0, then r = rn or r = −rn for some natural number n. Then, from the

inclusion of 6 (see Step II), it follows rn · Ûi+n(A) ⊆ Ûi(A) for any natural number
i, and hence, the condition 5 of Theorem 2.1 is satisfied.

If now a, b ∈ Ûi(A) =
∞⋃

j=1
U(i,j),A then from inclusion 3 (see Step II) it follows

that there exists a natural number n such that a, b ∈ U(i,n),A. Then (see inclusion

5 of Step II) a
e+b

∈
U(i,n),A

e+U(i,n),A
⊆ U(i−1,n),A for any natural number i > 1, and from

the arbitrariness of elements a and b it follows Ûi(A)

e+Ûi(A)
⊆ Ûi−1(A) for any natural

number i > 1, and hence condition 7 of Theorem 2.1 is satisfied.
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Thus, we have shown that the set {Ûi(A)|i ∈ N} satisfies conditions 1 – 7 of
Theorem 2.1, and hence, this set is a basis of the filter of neighborhoods of zero for
a field topology τ(A) of the field R.

Since Ûi(A) =
∞⋃

j=1
U(i,j),A ⊆ Vi for any natural number i, then τ0 ≤ τ(A).

Thus Statement 3.1.1 is proved.

Proovs of Statements 2 - 5 can be obteined if we repeat the proof word for word
of the corresponding statements 3.12 – 3.1.5 in [6].

The theorem is proved.
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