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On the number of topologies on countable fields

V.I. Arnautov, G.N. Ermakova

Abstract. For any countable field R and any non-discrete metrizable field topology
7o of the field, the lattice of all field topologies of the field admits:

— Continuum of non-discrete metrizable field topologies of the field stronger than
the topology 7o and such that sup{ri, 72} is the discrete topology for any different
topologies;

— Continuum of non-discrete metrizable field topologies of the field stronger than 7o
and such that any two of these topologies are comparable;

— Two to the power of continuum of field topologies of the field stronger than 79, each
of them is a coatom in the lattice of all topologies of the field.
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Keywords and phrases: Countable field, topological fields, Hausdorff topology,
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1 Introduction

The study of possibility to set a non-discrete Hausdorff topology on infinite
algebraic systems in which existing operations are continuous was begun in [1]. In
this article, for any countable group, a method of constructing such group topologies
is given.

For countable rings, the problem the possibility to set non-discrete Hausdorff
ring topologies was studied in [2, 3].

For infinite fields the problem of the possibility to set of non-discrete field topolo-
gies was studied in [2].

The present article is a continuation of research in this direction. The main result
of this paper is Theorem 3.1, in which for any countable field R and any non-discrete
metrizable field topology 71y, the number of topologies which have some properties
in the lattice of all field topologies is specified.

For countable groups and rings, similar results were obtained in [4, 5, 6].

2 Notations and preliminaries

To present the main results we remind the following well-known result:

Theorem 2.1. A set  of subsets of a field R is a basis of filter of neighborhoods
of zero for some Hausdorff field topology on the field R if and only if the following
conditions are satisfied:
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1) N V={0}
VeQ
2) For any subset Vi and Vo € Q there exists a subset V3 € Q such that Vi C

Vin Vs
3) For any subset Vi € Q there exists a subset Vo € Q such that Vo + Vo C Vi;
4) For any subset Vi € Q there exists a subset Vo € Q such that —V, C Vi;
5) For any subset Vi € Q and any element r € R there exists a subset Vo € Q
such thatr- Vo C Vi and Vo -1 C Vi,
6) For any subset Vi € Q there exists a subset Vo € Q such that Va- Vo C V7.

7) For any subset Vi € Q) there exists a subset Vo € Q such that (H‘ZW c .

Proof. According to ([2], Proposition 1.2.2, Theorems 1.2.5 and 1.2.12) for the proof

of the Theorem it suffices to verify that for any subset V; € €) there exists a subset

Vg,eruchthatmge—i-Vl.

LetV1GQandletV2€Qbeasetsuchthat(GHZ%QVL If V3 € Qs a set

sueh that ~V; + V5 € Va and a € Vs and —e £ b € Va, then (¢4 € 7y =

etb-bta_  —bta WtV etV o
e+b) (et e+ )\ {0} = " e+ W)\ {0y =" "

S . e e+ Vi
From the arbitrariness of elements a and b it follows that RN - © +V3)<) o7 -

e + V1, and hence the theorem is completely proved.

Definition 2.2. A subset V of an Abelian group R(+) is called symmetric if
-V=V.

Notation 2.3. Let Vi, V5,... and 51,53, ... be non-empty symmetric subsets of a
field R, and e is the unit of the field R. If e € S, e ¢ Vi, and 0 € V}, for any natural
number k then we define by induction the subsets Fy, (Sl, e SV, Vk) of the
field R:

We take F1(S1; Vi) =Vi+Vi+Vi-Vi+ V- Vi +5;- Vi, and

Frp1(S1, 52, Se1: Vi Vo, oo Vigr) = Fi (S ViU By (S, .., Siq1; Va, o, Vig))

and we take

Fk(Sl,...,Sk;Vl,...,Vk)

Fe(St, 0 S Vs Vi) = e+ Fr(S1,..., Sk Vi, .., Vi) \ {0}

for any natural number k.

Proposition 2.4. Let Vi,V5,... and S1,S52,... be some sequences of non-empty
finite symmetric subsets of a field R. Ife € Sy C Se C ... ande ¢ V; and 0 € V; for
any natural number i, then the following statements are true:

Statement 1. Fk_l(SQ, ey S Vo, Vk) + Fk_l(SQ, ey S Vo, Vk)+

Fr1(S2, ..., Sk Vo, oo, Vi) - Fie1(S2, .o, Sk Vo, oo Vi )+
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Fk_l(sg,---,Sk;‘/Q,---,Vk)'Fk_l(SQ,---,Sk;‘/Q,---,Vk;)+
Sl'Fk_l(SQ,...,Sk;VQ,...,Vk) ng(5177Sk7V177Vk)

for any natural number k > 1, and hence,

_ 1.1. Fk_l(SQ, ey SV, o, Vk) + Fk_l(Sg, ey SV, Vk) -
Fy (S, . c Sk VA ., Vi) for any natural number k > 1,

" 1.2. Fk—l(SQV"aSk;Véy"'aVk)'Fk—l(527"'aSk;‘/Qy-"aVk) c
Fy(Sy,... 7€k; Vi,..., V&) for any natural number k > 1,

1.3. e+151:il((sizsikv‘fv‘$)\ o) C Fi(S1,...,Sk;V1,..., Vi) for any natural num-
ber k>1, B

14. 81 -Fr_1(S2, ..., Sk; Vay oo, Vi) C F(S1, ..., Sk; Vi, ..., Vi) for any natural
number k > 1; N

Statement 2. Fi(Sy,...,Sk;Vi,..., Vi) and Fi(St1,..., Sk Vi,..., Vi) are finite
symmetric sets for any natural number k; N

Statement 3. Fk(Sl, ceey Sk; {0}, ey {0}) = Fk(Sl, cee ,Sk; {0}, ceey {0}) = {0}
for any natural number k;

Statement 4. If k is a natural number and U; CV; C R and T; C S; C R for
any natural number 1 <1 < k, then

Fy(Ty, ..., T; Uty ..., Uy) C Fr(S1,-0, Sk Vi, oo, Vi)

and
Fo(Tv, ..., T Uy, ..., U) C Fiu(S1, ..., Ses Vi, .. Va);

Statement 5. If k and p are natural numbers and Vi; = {0} for any natural
number 1 < j < p, then

Fk(Sl, .. ,Sk7‘/1, .. ,Vk) = Fk)-i—p(Sl)' .. )Sk:-i-p;‘/l)' .. 7Vk‘+p)

and
Fk(Sl,. .. ,Sk;‘/l, .. ,Vk) == Fk)-i—p(Sl)' .. aSk‘-i-p;‘/lv .. 'aVk)-i-p);

Statement 6. For any natural number k > 2 the following equalities are true:

Fk(Sl,...,Sk;Vl,...,Vk):

Fk(slv"'ask;‘/lUFk—l (52,---,Sk;VQ,---,Vk),---,Vk_lUFl(Sk;Vk),Vk)

and N
Fk(Sl,...,Sk;Vl,...,Vk) =

Fo(Sty s Sk ViU Fiy (Say-ve s Sk Vo ooy Vi) oo, Vit U Fi (S Vi), Vi)

Statement 7. V; C Fi(S1,..., S Va,..., Vi) € Fp(S1,..., 6 Vi, .., Vi) for
any natural numbers k and 1 <t < k;
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Statement 8. f For any natural numbers k,s,t and t < s the following inclu-
stons are true:

Fk—‘rl(SSv cee aSk-i-s; |7 Vk+8) - Fk-i—s—t-i—l(sta cee aSk-i-s; Viyoon >Vk+s)

and
ﬁ’k—l—l(s& L JSk-i-S; ‘/:97 ceey Vk—l—s) g ﬁk-‘,—s—t-ﬁ-l(sta L JSk-i-S; ‘/%7 LI 7Vk+s)

Proof. Statement 1 for sets Fy(S1,...,Sk; Vi,..., V) follows from the definition of
the set Fj(S1,...,SkV1,..., Vi) for k > 1.

Statements 2 — 7 for sets Fi(S1,...,Sk; Vi,..., Vi) are proved easy by induction
on the number k and from the definition of sets F(Si,...,Sk;Vi,..., Vi) (see [2],
Proposition 5.3.2, or [6], Proposition 2.4).

Statement 8 for sets F(S1,...,Sk; Vi,..., Vi) is proved easy by induction on the
number s — ¢ (see [6], Proposition 2.4). N

We proceed to the proof of these statements for sets F(S1,...,5%;V1,..., Vi)

If a,b € Fr_1(S2,...,Sk; Va,..., V&), and ¢ € Sy then there exist aj,as, b1, by €
Fy_1(S2,...,Sk; Va,..., Vi) such that a = =%~ and b= blb . As 0 € V; for any ¢

e+ag e+b2

then from Statement 1 for the set Fy(Si,...,Sk; Vi,..., Vi) it follows that:

al n by _a1+a1-bg+bl+a2-bl
e+ as €+b2_ e+by+by+b1-by

F(S1 o SV Vi)
6—|—Fk(51,...,Sk;vl,...,vk)\{0}

a+b=

ka(Sl,...,Sk;Vl,...,Vk)

and
Q Z~)_ aq b1 o al-bl c
e4ay e+by e+by+b+b-by
Fk(Sl77Sk7‘/177Vk) o
=F(51,...,S:Vq1,...,V;
e+ Fp(S1,. -, Se Vi, Vi) \ {0} KOS S Vi Vi)
and
a ap bi -1 a1 e-(e+ba)+br\—1
S () (e ) = () )7 -
et b e+ as e + by e+ as e+ by
ai-(e+b)  ai+ai-b Fi(S1,. ., Sis Vi, ..., Vi)

= - =
e+by+(e+az) by e+ba+bi+az-b1 e+ Fp(S1,...., % Vi,..., Vi) \ {0}
ﬁk(Sl,...,Sk;Vl,...,Vk) and

S com ¢ Fpa(S1- 5 Sk Vis o Vi)
etay etar e+ F1(S,..., S VA, .., Vi) \ {0} —

c-a=-c

ka(slv"'ask;vla-"avk)' _
From the arbitrariness of elements a, b and c it follows that

Fi1(S2s -+, Sk; Vay oo, Vi) + 1 (Sa, -0, Sis Vay oo, Vi) € Fi(Sts- -+, Sks Vi, o, Vi),
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and hence the inclusion 1.1 is proved and
Fi1(S2, ., Sk Vay oo, Vi) Fim1(S2y oo Sis Vay oo, Vi) © Fo(St v, Sis Vi, Vi),

and hence the inclusion 1.2 is proved and

Fk—1(52775k7‘/277vk) Cﬁ’k(sl Skvl Vk)
e+ F1(S2,. . Sk Vo, .o, V) \ {0}

and hence the inclusion 1.3 is proved and
SQ‘ﬁk_l(SQ,...,Sk;VQ,.-.,Vk) gﬁk(sl775k7‘/177vk)7

and hence the inclusion 1.4 is proved.
Hence we have proved Statement 1 also for the set ﬁk(Sl, e SV, Vi),
For any set ﬁk(Sl, cey Sk VA, ..., Vi) each of Statements 2 — 8 follows from the
definition the set
widetildeFy(S1,...,Sk; Vi,...,Vk) and of the corresponding statement for the set
Fk(Sl, R ,Sk; Vi, ..., Vk)
Hence, Proposition 2.4 is proved. U

Definition 2.5. If R is a field and z is some variable, then we denote by:
— R[z] the polynomial ring on the field R;
— R[z] the field of fractions of the ring R[z].
We call elements of the field R[z] a rational function of x over the field R.

Definition 2.6. As usual, an element a € R is called a root of a rational function
f(x) € R[x] if f(a) =0.

Notation 2.7. If R = {0, £1, +r;, £, ...} is a countable field, then for any natural
number k we put Sy = {1, +ry, £ro, ..., £ri}.

Theorem 2.8. Let (R, 7T) be a topological field. If T is a non-discrete Hausdorff
topology then for any rational function f(a:) = e-{lf(;(l) of x over the field R such that
f(O) # 0 and e + f2(0) # 0 there exists a neighborhood W' of zero such that each
element r € W is not a root of the rational function f(z).

Proof. As f(0) = eff(go()o) # 0 then f1(0) # 0 and since (R, 79) is a Hausdorff space,

then there exists a neighborhood Wy of the element f(0) such that 0 ¢ Wy,.

As (R, 1) is a topological field then there exist neighborhoods W and Wy of
elements f1(0) and f2(0) such that Wy - (e + Wa)~! C W

Since any polynomial over a topological field is a continuous function, then there
exists a neighborhood W of zero in (R, 7p) such that fi(r) € Wy and fao(r) € Wy

for any element € W. Then f(r) = ) ey (e + Wa)~! C Wy, and hence

- etfa(r)
f(r) # 0 for any element r € W.
The theorem is proved. O
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3 Basic results

Theorem 3.1. If R = {O, +rq,, £, .. } s a countable field and 1y is a non-discrete,
Hausdorff, field topology such that the topological field (R, Ty) has a countable basis
of the filter of neighborhoods of zero, then the following statements are true:

1. For any infinite set A of natural numbers there exists a field topology T(A)
such that 9 < 7(A) and the topological field (R,T(A)) has a countable basis of the
filter of neighborhoods of zero;

2. sup{7(A),7(B)} is the discrete topology for any infinite sets A and B of
natural numbers such that AN B is a finite set;

3. There are continuum of field topologies stronger than o and such that any
two of them are comparable to each other;

4. There exist two to the power of continuum of field topologies such that
sup{r1, T2} is the discrete topology for any two different topologies T1 and To;

5. There exist two to the power of continuum of coatoms in the lattice of all field
topologies of the field R.

Proof. Since (R, 1) is a topological field and it is a Hausdorff space, then there
exists a countable basis {V1, Va,...} of the filter of neighborhoods of zero such that
Ve =Vi, Vi NS = () and

Vit1 + Vier1 + Vierr - Vi1 + Ve - Vierr + Sk - Ve
e+ Vit1 + Virr + Virr - Vierr + Vi - Vg + Sk - Vi

Fi(Spi1; Vir1) = CVi

for any natural number k.

Then for any natural numbers ¢ and n by induction on the number n it is easy
to prove that F,(Sit1,.-.,Sitn; Vit1 -+, Vien) C Vi.

Further the proof of Statement 1 will be realized in several steps.

Step I. By induction we construct a sequence ki, ko, . . . of natural numbers such
that k; > 4, for any natural number ¢ and we construct a sequence hq, ha, ... of
nonzero elements of the field R such that {—h;, h;} C Vj, and

ﬁn(sly' .. aSk‘a UA,I)' . '7UA,n)ﬂﬁn(sla .. '7Sk;UB,17 .. 'aUB,n) - {0}

for all subsets A and B of the set of natural numbers such that AN B = (), where
Uci = {hi,0,—h;} if i € C and Ug,; = {0} if i ¢ C, for any set C' of natural
numbers.

We take k1 = 2, and as h; we take an arbitrary element of the set V2\{0}.

If A and B are some sets of natural numbers such that A( B = 0, then k; ¢ A
or ki ¢ B, and hence, Ug ;1 = {0} or Up; = {0}. Then Fl(Sl; UAJ)ﬂFl(Sl; Up1) =
{0} for any sets A and B of natural number such that AN B = {.

Suppose that we defined natural numbers k1 < kg < ... < k;,, such that k; > 7 and
we defined nonzero elements hi, ha,. .., hy of the field R such that {h;,—h;} C Vj,
and

fn(Sl,...,Sk;UA,l,...,UA,n)ﬂﬁn(Sl,...,Sk;UB,l,...,UBm) = {0}
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for any sets A and B of natural numbers such that AN B = (.
For any sets A’ C {1,...,n} and B’ C {1,...,n} of natural numbers such that
A’'N B’ = () we consider a finite set

Qar gy = Fo1(Sts oo, Sni1;Unrg oo, Unr gy 2,0, —2}) —

(Fu(S1, -+ Sns1; Upra -, Upr n)\{0})

of rational functions over the field R in variable x.
Since, according to Statement 5 of Proposition 2.4,

FVnH(Sl, ceey Sn+1; UA/71 ceey UA’,na {0}) == Fvn(Sl, e ,Sn+1; UA/71, ey UA'JL)?
then according to inductive assumption,
Fo(S1y oS Uarty oo, Unr ) N (Fn(Sty- oS3 Upray -, Upr o)\ {0}) = 0.

If f(z) € Qar,pry for A", B" C {1,...,n}, and AN B" = ( then f(z) =
fi(z) + r for any fi(z) € Fui1(St,- s Sns1;Unrg oo, Uarp, {2,0,—2} and r €
Fn(Sly"'aS’n;UB’,la"'yUB’,nx As

£1(0) € Fpy1(St, .-+, S Uarg...,Uxp,{0}) = Fu(S1, -y Snst; Uaray- s Unrp)

then f1(0) # —r, and hence, f(0) # 0.
Since the set {1,...,n} has a finite number of subsets, then the set

q>n — U Q(A’,B’)
A, B'C{1,...n},A’ | B'=0

is a finite set of rational functions f(z) over the field R in variable  such that

f(0) #0.

Then, by Theorem 2.8, there exists a neighborhood W of zero in the topological
field (R, 19) such that any element r € W is not a root of any rational function of
the set ®,,.

Then there exists a natural number k;, 1 such that k,y1 > k, and Vg, ., CW.
We take hy41 an arbitrary element of the set V. \{0}.

We prove that

Fri1 (St Sst; Uty oo, Uanst) 0 Fn1 (81, o, Sni1;U 1, -+ o U nat) = {0}

for any subsets A and B of natural number such that AN B = () (definition of sets
Uc ) see above).
Assume the contrary, and let

0 75 r e ﬁnH(Sl, ... ,Sn+1; UAJ, RN UA7n+1)ﬂFvn+1(51, ... aSTL—I—l; UBJ, ce UB,n+1)-
Since AN B = () then from inductive assumption it follows that

Fo1(Sts- s Snit;Uatys ooy Uany {01) N Eg1 (Sty -0, Sni1;Us s+, U, {0)) =
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ﬁn(sla .. ->Sn+1§UA,17- . -aUA,n) m}%’Vn—l—l(‘s'ly- .. aSn—l—l;UB,la .. -)UB,n) = {0}7

and hence Ug i1 = {hn+1,0, —hpi1} or Up i1 = {hnt1,0, —hyy1} and as ANB =

() then from the definition of sets Uc; it follows that U 11 = {0} or Up 41 = {0}.
Assume, for definiteness, that Ug p+1 = {0} and Up 41 = {hn+1,0, —hpi1}.
Then

0 75 re ﬁn(Sl, .. .,Sn; UAJ,. . .,UA7n)ﬂFvn+1(Sl,. .. ,Sn—l—l;UB,la .. 'aUB,n+1)v

and hence, r = f(hp41) for some rational function

f(x) € Fuy1(S1, . Sus1; U, - -, Uy {2, 0, —x}).

AsUc,i = Ucnqi,...n},i for any natural number 1 <4 < n and any set C' of natural
numbers, then f(hnt1)—7 € Fop1(St, .o, Snt1:Uar 1, -+ Uar iy {Bng1,0, —hng1 })—

(ﬁn(sla .. 7Sn+l; UB’,17 ) UB/,H)\{O})7
for A/ =AN{1,...,n} and B'= B{1,...,n}.
We have contradiction with the definition of the element h,41. Therefore

Fri1 (St a3 Uty oo, Uans1) O Epg1 (81,0, Sps1;Uga -, Ugnir) = {0}

So, we defined the sequence ki, ko, ... of natural numbers such that k; > i for
any number ¢ and the sequence hi, ho,... of nonzero elements of the field R such
that {—h;, h;} C Vi, for any natural number ¢ and

ﬁ’n(sl,...,Sk;UAJ,...,UAm)ﬂﬁ’n (Sl,...,Sk;UBJ,...,UBm) = {0}

for any natural number n and any sets A and B of natural numbers such that
ANB=0.

Step II. For any pair (i,j) of natural numbers we consider the set

Uijya = FijUit1,a, - Uirj 4 Siv1s -5 Sitj),

where U; 4 = {0} if i ¢ A and U; 4 = {0, h;, —h;} if i € A.
We show that for the sets U(; j) 4 the following inclusions are true:
1. From Statement 3 of Proposition 2.4 it follows that

0e Fvn(SH_l, o aSi—l—n? Ui—l-l,A’ e, Ui+n,A) S U(i,j),A

for any natural numbers 7, 7 and
U(i,n),A = Fn(Si-‘rly cee 7Si+n; Ui+l,A7 ceey Ui—i—n,A) -

ﬁn(si-l-l" ooy Signi Viga, - -a‘/i-l-n) CV

for any natural numbers i, n and any set A of natural numbers.
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2. From Statements 4 and 5 of Proposition 2.4 it follows that U ;) 4 € Uggn),a
for any natural numbers j < n.

3. From Statement 8 of Proposition 2.4 it follows that U(; j 4 C Uy ;)4 for any
natural numbers k£ < ¢ and j.

4. From Statement 2 of Proposition 2.4 it follows that U j) 4 is a symmetric
set, i.e. —U(;j),4 = U j),a for any natural numbers i, j.

5. For any natural numbers ¢, j and j > 1 and any set A of natural numbers we
prove by induction on the number j the following inclusions:

Uti+1,5),4 - Ui+1,9),4 € Ugig), a5

U(i—i—l,j),A + U(i+1,j),A - U(i,j),A;

C Uy
e+ U(i—i—l,j),A (6.7), 4

In fact, if j = 2, then, from the definition of sets Uj; ;) o and Statement 1 of
Proposition 2.4 it follow:

Uit1.2).4 - Uis1.9).4 = F1(Six23Uira,4) - Fi(Sig2; Uiga,a) C

Fy(Sis1; Fi(Sivo; Uiso,a)) © Fi(Sit1;Uip1,4 U Fi (Sit2; Uigo,a)) =
Fo(Sis1, Siva; Uirr,.4, Uio,a) = Ui,2),A3
Utir12y.4 + Uir1.2).4 = Fi(Sit2: Uira,4) + Fi (Sit2; Uir2,4) C
F (Sit15Uip1,4 U Fi(Siyo; Uit2,4)) = Fi (Sit1; Fi(Sito; Uita,4)) €
Fy(Sis1, Siva; Ui1,4, Uira,a) = Ugia) a;
Uit12,4 Fvl(si+2;Ui+2,A)

e+Uit12,4 e+ Fi(Sizo;Uipo,a)
151(5i+1; Fi(Si+2;Uiy2.4)) € Fi(Sis1;Uir1,4 U Fi(Sivo; Uia,n)) =

Fo(Sit1, Sit2; Uip1,4, Uipa,a) = Ui2),A

for any natural number ¢ and any set A of natural numbers.
Assume that the required inclusions are proved for natural number j = n > 2
and any natural number ¢. Then:

U(i+1,n+1),A : U(i+1,n+1),A = Fn(Si-i-Qa oy Signtt;

Uix2,4, s Uisns1,4) - Fu(Sig2, -+, Signt13Uig2,4, - -, Uignt1,4) C

Fi(Sit1; Fu(Sivay -y Signt1; Uiga as -+, Uipngr,4)) C

Fi(Sit1;Uis1,4 U Fo(Siva - oo, Sivnt1; Uiga, a5 -« -, Uigny1,4)) =

Frov1(Siv1 - Sivnt1;Uiv1,45 - Uikng1,4) = Uggng1),45
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Utit1n+1),4 T Usint1),4 = Fa(Siv2, -+ o5 Signt1:Uir2,4, -+, Uigng1,4)+

Fo(Sivo, -, Siqnt1:Uir2.4, - - s Uigng1,4) ©

Fi(Sit1; Fu(Si2y -y Siant1; Uigo,as -+, Uipng1,4)) C

Fi(Sit1;Uiv1,4 U Fy(Sig2, - -, Signt1: Uir2,45 - - - Uigng1,4)) =

Frov1(Siv1 -+, Sivnt1;Uiv1,45 -+, Uikng1,4) = Uggng1),45

Ulit1,n+1),4
e+ Ulit1,n+1),4

Fo(Sivo, -, Signt1:Uir2.4, -+, Uigng1,4)

i c
e+ Fn(Sive, - Sitnt+1;Uir2,45 - -, Uitny1,4)

Fi(Sit1; Fu(Sivay -y Signt1; Uisa as -+, Uipngr,4)) C

Fi(Siv1;Uir1 U Fo(Sig2, - - -5 Sivni 13 Uivo,a, - -+, Uiing1,4)) =
Foy1(Siv1-- -, Sivnt1:Uir1,45 -+ Uigna1,4) = UG i, 4
and hence all inclusions specified in 5 are proved.
6. For any natural numbers 7, 7,k and j > 1 and any set A of natural numbers
we prove that 7 - Ugigr )4 € Ugij) A

In fact,
Tk - Uliskj)a © Sivk - Frrirj (Skrivts -+ Shritgs Urpin1,45 - -+ Unpinga)
Fi(Skti3 Uki, A U Fiagie i (Skgig1s - - - Sktitss Unpit1,As - - > Uiy, A)) =

Ulisk—-1,5),4 € Ui 4),4, and hence inclusion 6 is proved.

Step III. For every infinite set A of natural numbers and any natural number
i we take U;(4) = U U(ij),a and show that the set {Ui(A)]i € N} satisfies the
j=1

conditions of Theorem 2.1, and hence, this set is a basis of the filter of neighborhoods
of zero for a field topology 7(A) on the field R.
In fact, since

Ulins1),4 = Foy1(Siv1, -5 Sivns15Uir1,4, -+, Uipna1,4) C

Fr1(Siv1 - Sitnt1; Vigts -y Vignt1) C V5

for any natural numbers ¢ and n, then U;(A) = | Ui j),a € Vi. Then
j=1

{0} € N Ui(A) € N V; = {0}, and hence, the condition 1 of Theorem 2.1 is satis-
i=1 i=1
fied.
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From inclusions 2 and 3 (see Step II), it follows

(4) () Un(A (Ua.4) N

C8
(G
S
Z
S
I

1

N
Il
—

J

s

U(i,j),A ﬂ Uy.a) = | Ui jya = Ui(A),

[o¢]
where t = max{i, k}, and hence, the condition 2 of Theorem 2.1 is satisfied.
From inclusions 2 and 5 (see Step II) it follows

Ui(A) + Uk(4) = (U Ugjpa) + (U Ugaya) =
j=1 =1

“C8

1

J

and o o
Ui(A) - U(A) = (U Uigya) - (U Uiw.a) =
7j=1 =1

o0

UU (4,5),A " U(zl ):
j=1

j=1 t

(@G:

Ugi—1,),4 = Ui—1(4)
1

for any natural number ¢ > 1, and hence, conditions 3 and 6 of Theorem 2.1 are
satisfied.
From inclusion 3 (see Step II) it follows

(G
(G
|

—Ui(A) = —(

Ui,j),4) =
1 J

Tt

Il
—
—
Il
A

:UUA:A
j=1

for any natural number i, and hence, the condition 4 of Theorem 2.1 is satisfied.

Let now r € R.

If r = 0, then - U;(A) = {0} C Ui(A) and U;(A) -+ = {0} C U;(A) for any
natural number 7 and any set A of natural numbers.

If »r #£ 0, then r = r, or r = —r, for some natural number n. Then, from the
inclusion of 6 (see Step I1), it follows r, - Uiyn(A) C U;(A) for any natural number
1, and hence, the condition 5 of Theorem 2.1 is satisfied.

If now a,b € U;(A) = U Ui j),a then from inclusion 3 (see Step II) it follows

]_
that there exists a natural number n such that a,b € U; ) 4. Then (see inclusion

5 of Step II) =3 € i&% C U(i-1,n),a for any natural number ¢ > 1, and from
Ui(A)

e+U;(A)
number ¢ > 1, and hence condition 7 of Theorem 2.1 is satisfied.

the arbitrariness of elements a and b it follows C U;_1(A) for any natural
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Thus, we have shown that the set {U;(A)|i € N} satisfies conditions 1 — 7 of
Theorem 2.1, and hence, this set is a basis of the filter of neighborhoods of zero for
a field topology 7(A) of the field R.

R o)
Since U;(A) = U Uj; )4 € Vi for any natural number 4, then 7o < 7(A).
j=1
Thus Statement 3.1.1 is proved.

Proovs of Statements 2 - 5 can be obteined if we repeat the proof word for word
of the corresponding statements 3.12 — 3.1.5 in [6].
The theorem is proved. O
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