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A REPUBLICII MOLDOVA. MATEMATICA
Number 1(89), 2019, Pages 71–78
ISSN 1024–7696

Finite Non-commutative Associative Algebras

for Setting the Hidden Discrete Logarithm Problem

and Post-quantum Cryptoschemes on its Base

N.A. Moldovyan

Abstract. The paper considers finite non-commutative associative algebras every
of which contains a large set of the global one-sided (right and left) units. Formulas
describing all of the global units are derived for each of the algebras. Finite algebras
of such type are introduced as carriers of the hidden discrete logarithm problem that
is defined in three new forms. One of them is used to design the post-quantum
cryptoscheme for public key-distribution. Two others are applied to design the post-
quantum digital signature schemes.
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1 Introduction

Finite non-commutative groups and associative algebras represent significant
practical interest as carriers of the hidden discrete logarithm problem (HDLP) that
potentially can be used to design the post-quantum public-key cryptoschemes [1–3].
The known form of the HDLP definition is described by the formula

Y = Qw ◦ Gx ◦ Q−w, (1)

where ◦ is multiplication operation; w and x are integers; Y, Q, and G are elements
of a finite non-commutative group or of a finite non-commutative associative algebra
(FNAA) containing the global two-sided unit. Finding the integers w and x gives
the known form of the HDLP.

Formula (1) was used to design the public key-distribution protocols and public
encryption algorithms [2]. In the both cryptoschemes the public key Y is computed
using formula (1), where the pair of integers (w, x) represents the private key. No
digital signature scheme based on the HDLP is described in the literature.

The present paper introduces the 4-dimensional and 6-dimensional FNAAs con-
taing sufficiently large set of the one-sided units and no global two-sided unit. The
described FNAAs represent interest as carriers of the HDLP difined with formulas
different from (1). Two of the proposed new forms of the HDLP are used in the
introduced post-quantum digital signature schemes. Results of the paper contribute
to the actual problem of designing public-key post-quantum cryptoschemes [4, 5].
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2 Defining FNAA with the set of global one-sided units

Suppose an m-dimensional vector space is defined over the field GF (p) and e0,

e1, ... em−1 are some formal basis vectors. To denote a vector V one can use
notations V = (v0, v1, . . . , vm−1) and V = v0e0 + v1e1 + · · · + vm−1em−1, where
v0, v1, . . . , vm−1 ∈ GF (p). A finite vector space becomes a finite algebra after the
operation for multiplying two arbitrary vectors is defined as the second operation
that is distributive relative to the addition operation. If non-commutative associative
multiplication operation is defined, then we have an FNAA.

Usually the multiplication operation (denoted by ◦) of two vectors A =
∑m−1

i=0
aiei and B =

∑m−1

i=0
biei in an m-dimensional FNAA is defined as follows:

A ◦ B =

m−1
∑

j=0

m−1
∑

i=0

aibj(ei ◦ ej),

where the products of different pairs of formal basis vectors ei ◦ej are to be replaced
by a one-component vector in accordance with one so called basis vector multipli-
cation table (BVMT). We will assume that the left operand ei defines the row and
the right one ej defines the column. The cell of the BVMT at the intersection of
the ith row and jth column defines the value of the product ei ◦ ej .

Table 1 defines a 4-dimensional FNAA with the set of global right units. Formula
describing all global right unites can be obtained from the following vector equation
with the unknown vector X = (x0, x1, x2, x3) :

A ◦ X = A. (2)

The vector equation (2) defines the following system of four linear equations:



















a0x1 + a0x2 + a2x0 + a2x3 = a0;

µa3x0 + a1x1 + a1x2 + µa3x3 = a1;

µa1x1 + a2x1 + a2x2 + µa0x3 = a2;

a1x0 + a3x1 + a3x2 + a1x3 = a3.

(3)

The system (3) can be rewritten as two independent systems of two equations:

{

(x1 + x2) a0 + (x0 + x3) a2 = a0;

µ (x0 + x3) a0 + (x1 + x2) a2 = a2.
(4)

{

(x1 + x2) a1 + µ (x0 + x3) a3 = a1;

(x0 + x3) a1 + (x1 + x2) a3 = a3.
(5)

It is easy to see that each of the systems (4) and (5) has the same set of p2 different
solutions satisfying the following two conditions:

x0 + x3 = 0 and x1 + x2 = 1. (6)
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These solutions do not depend on the value A. The last means that every solution
acts as a global right unit, i.e., we have the set of p2 global right units described by
the following formula (defined by (6)):

R = (x0, x1, 1 − x1,−x0) , (7)

where x0, x1 = 0, 1, . . . p − 1.

Table 1. The BVMT setting the 4-dimensional FNAA containing the set of global
right units

◦ e0 e1 e2 e3

e0 µe2 e0 e0 µe2

e1 e3 e1 e1 e3

e2 e0 e2 e2 e0

e3 µe1 e3 e3 µe1

Consideration of the vector equation

X ◦ A = A (8)

gives the following formula for the single local left unit related to the vector A :

LA =

(

a0a1 − a2a3

∆
,
a2

1 + a1a2 − µa3a0 − µa2
3

∆
,

a2
2 + a1a2 − µa2

0 − µa0a3

∆
,
a2a3 − a0a1

∆

)

,

(9)

where ∆ = (a1 + a2)
2−µ (a0 + a3)

2 6= 0. Thus, the single local left unit corresponds
to any vector A coordinates of which satisfy condition ∆ 6= 0. Evidently, the formula
(9) defines the vector LA that is included in the set (7). The last means the local
left unit of the vector A is simultaneously its local two-sided unit EA. Besides, in
the considered 4-dimensional FNAA there exist ≤ p2 different local two-sided units.

For fixed vector A and arbitrary integer i ≥ 1 the local left unit LA corresponds
to every vector Ai, i.e., LAi = LA = EA. For some minimum integer ω we have
Aω = EA. The value ω can be called the local order of the vector A. All possible
powers of the vector A compose a finite cyclic group contained in the considered
4-dimensional FNAA. Vectors for which a local two-sided unit exists can be called
locally invertible.

The multiplication operation defined with Table 2 sets a 4-dimensional FNAA
containing the set of global left units described by the following formula:

L =

(

x0,
1 − τx0

µ
, x2,−

µx2

τ

)

, (10)



74 N.A. MOLDOVYAN

where x0, x2 = 0, 1, . . . p − 1. The single local right unit RA relates to an arbitrary
vector A = (a0, a1, a2, a3) coordinates of which satisfy condition ∆ = (τa0 + µa1)

2−
(µa2 + τa3)

2 6= 0. The value RA is expressed by the formula

RA =

(

µa1a3 − µa0a2

∆
,
τa0a1 + µa2

1 − µa2
2 − τa2a3

∆
,

τa0a2 − τa1a3

∆
,
µa1a3 − µa0a2

∆

)

.

(11)

One can easily show the formula (11) defines the vector RA that is included in the
set (10), i.e., the local unit RA is simultaneously the local two-sided unit EA of the
vector A. Any vector A satisfying the condition ∆ 6= 0 is a generator of a finite cyclic
group contained in the FNAA.

Table 2. The BVMT setting the 4-dimensional FNAA containing the set of global
left units.

◦ e0 e1 e2 e3

e0 τe0 τe1 τe2 τe3

e1 µe0 µe1 µe2 µe3

e2 µe3 µe2 µe1 µe0

e3 τe3 τe2 τe1 τe0

The 6-dimensional FNAAs containing the set of global one-sided units also rep-
resent interest for application in the design of the public-key cryptoscheme based
on the HDLP. Table 3 defines a non-commutative and associative multiplication
operation and sets the FNAA with the set of global left units. The formula describ-
ing the last set can be derived considering the vector equation (8) written for the
6-dimensional vectors A and X. Taking into account Table 3 we get directly the
following system of six linear equations:







































µa0x0 + τa2x1 + µa4x2 + τa0x3 + µa2x4 + τa4x5 = a0;

µa1x0 + τa3x1 + µa5x2 + τa1x3 + µa3x4 + τa5x5 = a1;

µa2x0 + τa4x1 + µa0x2 + τa2x3 + µa4x4 + τa0x5 = a2;

µa3x0 + τa5x1 + µa1x2 + τa3x3 + µa5x4 + τa1x5 = a3;

µa4x0 + τa0x1 + µa2x2 + τa4x3 + µa0x4 + τa2x5 = a4;

µa5x0 + τa1x1 + µa3x2 + τa5x3 + µa1x4 + τa3x5 = a5.

All solutions of the last system can be found considering the following two indepen-
dent systems of three linear equations:











a0 (µx0 + τx3) + a2 (τx1 + µx4) + a4 (µx2 + τx5) = a0;

a0 (µx2 + τx5) + a2 (µx0 + τx3) + a4 (τx1 + µx4) = a2;

a0 (τx1 + µx4) + a2 (µx2 + τx5) + a4 (µx0 + τx3) = a4.

(12)
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









a1 (µx0 + τx3) + a3 (τx1 + µx4) + a5 (µx2 + τx5) = a1;

a1 (µx2 + τx5) + a3 (µx0 + τx3) + a5 (τx1 + µx4) = a3;

a1 (τx1 + µx4) + a3 (µx2 + τx5) + a5 (µx0 + τx3) = a5.

(13)

Independently of the value A 6= (0, 0, 0, 0, 0, 0) each of the systems (12) and (13) has
the same solutions defined by the following three conditions:

µx0 + τx3 = 1; τx1 + µx4 = 0; µx2 + τx5 = 0.

The last conditions define the following formula describing the set of all p3 different
global left units

L =

(

x0, x1, x2,
1 − µx0

τ
,−

τx1

µ
,−

µx2

τ

)

, (14)

where x0, x1, x2 = 0, 1, . . . p − 1. If the vector A is locally invertible, then the single
local right unit RA corresponds to A. The vector RA is contained in the set (14)
and it represents the local two-sided unit of the vector A. Only the vectors from the
set (14) can act as local two-sided units. On the average about p3 different vectors
of the considered 6-dimensional FNAA correspond to a fixed value from (14) as to
local two-sided unit.

Table 3. The BVMT setting the 6-dimensional FNAA containing p3 different global
left units.

◦ e0 e1 e2 e3 e4 e5

e0 µe0 µe1 µe2 µe3 µe4 µe5

e1 τe4 τe5 τe0 τe1 τe2 τe3

e2 µe2 µe3 µe4 µe5 µe0 µe1

e3 τe0 τe1 τe2 τe3 τe4 τe5

e4 µe4 µe5 µe0 µe1 µe2 µe3

e5 τe2 τe3 τe4 τe5 τe0 τe1

It is sufficiently evident that every element of the considered FNAAs, which
relates to a fixed local two-sided unit generates a finite multiplicative group and
every locally invertible vector of the FNAA is included only in one such group.

3 New forms of the HDLP and public-key cryptoschemes based on

them

Let us consider some locally invertible elements N and T of the 6-dimensional
FNAA considered in the previous section, such that T ◦ N 6= N ◦ T. Suppose the
local orders of the vectors N and T are equal to integers ω and τ correspondingly.
Suppose also that the characteristic of the field GF (p) is sufficiently large and the
integers ω and τ have size 512 bits, besides the number ω is a prime. The following
equation holds Nω = EN , where EN is the local two-sided unit relative to N . Then
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the set of vectors
{

N,N2, ..., Nω−1, EN

}

together with the operation ◦ compose a
finite cyclic group of the order ω. For some left-sided unit from the set (14) one
can easily compute the 6-dimensional vector U such that T ◦ U = L. Using the
vectors N , T , and U as known parameters one can construct the following public
key-agreement scheme.

The first (second) user selects a pair of uniformly random integers w1 and x1

(w2 and x2) as his private key and then computes his public key as follows:

Y1 = Uw1 ◦ Nx1 ◦ Tw1 = (Uw1 ◦ N ◦ Tw1)x1

(Y2 = (Uw2 ◦ N ◦ Tw2)x2 = Uw2 ◦ Nx2 ◦ Tw2) .
(15)

The users exchange their public keys via a public channel. Then each of them can
compute the common secret value Z using his private key. The first (second) user
performs computations as follows:

Z = Uw1 ◦ Y x1
2

◦ Tw1 = Uw1+w2 ◦ Nx1x2 ◦ Tw1+w2

(

Z = Uw2 ◦ Y x2
1 ◦ Tw2 = Uw2+w1 ◦ Nx2x1 ◦ Tw2+w1

)

.

The proposed form of the HDLP described by equation (15) with unknown values
w and x is suitable to be defined in FNAAs that contain the set of global one-sided
units and no global two-sided unit which is needed for defining the HDLP of the
known form (see equation (1)).

The second proposed new form of the HDLP relates to constructing the digital
signature schemes and is also defined over FNAAs containing the set of global one-
sided units, for example, the 4-dimensional FNAA with the multiplication operation
set by Table 1, which contains the set of global right units {Ri : Ri ◦ V = V }, where
i is an integer and V is an arbitrary 4-dimensional vector. Like in the case of the
considered public key-agreement scheme we assume that the vector space is defined
over GF (p), where prime p has a large size (for example, 768 bits).

Evidently, for arbitrary right unit Ri and arbitrary integer j R
j
i = Ri holds.

Suppose N is a vector having sufficiently large prime local order ω and vectors
U, U ′, T, and D satisfy the following conditions T ◦ U = R1, T ◦ U ′ = R2, and
D ◦ U ′ = R3, where R1, R2, and R3 (R1 6= R2; R1 6= R3; R2 6= R3) are some global
right units. The signer’s private key is a uniformly random integer x < ω and the
set of the vectors N, U, and D. The public key represents the pair of the vectors Y

and Q that are computed as follows:

Y = U ◦ Nx ◦ T = (U ◦ N ◦ T )x ; Q = U ′ ◦ N ◦ D. (16)

The digital signature to some document M is computed as follows:
1. Select a random integer k < ω and compute the vector K = U ◦ Nk ◦ D.

2. Compute the first signature element e = Fh(M,K), where Fh is a specified
hash function.

3. Calculate the second signature element s = k−xe mod ω, where the bit string
e is interpreted as a binary number.
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Procedure of the signature verification is executed as follows:

1. Using the signature (e, s) representing a pair of integers compute the vector
K? = Y e ◦ Qs.

2. Compute the bit string e? = Fh(M,K?).

3. If e? = e, then the signature is accepted as a genuine. Otherwise the signature
is rejected as false one.

The correctness proof of the proposed signature scheme is evident:

K? = (U ◦ Nx ◦ T )e ◦
(

U ′ ◦ N ◦ D
)k−xe

= U ◦ Nxe ◦ T ◦ U ′ ◦ Nk−xe ◦ D =

= U ◦ Nxe ◦ R2 ◦ Nk−xe ◦ D = U ◦ Nxe+k−xe ◦ D = U ◦ Nk ◦ D = K ⇒

⇒ e? = Fh(M,K?) = Fh(M,K) = e.

The third proposed new form of the HDLP is also defined over FNAAs containing
a set of global one-sided units and also relates to constructing the digital signa-
ture schemes. Let us use the 6-dimensional FNAA the multiplication operation
in which is defined with Table 3. This algebra contains a set of global left units
{Li : Li ◦ V = V }, where V is an arbitrary 6-dimensional vector. The signer’s pri-
vate key is a random integer x < ω and the set of the vectors N, U, G, T, and D

satisfy the following conditions T ◦U = L1 and D ◦G = L2, where L1 and L2 6= L1

are some global left units. The public key represents the triple of the vectors Y , H,
and Q that are computed so that the follow equations hold:

Y = U ◦ Nx ◦ T = (U ◦ N ◦ T )x ; Q = G ◦ N ◦ D; T ◦ H ◦ G = L3, (17)

where L3 is a global left unit such that L3 6= L1 and L3 6= L2.

The digital signature (e, s) to a document M is computed as follows:

1. Select a random integer k < ω and compute the vector K = U ◦ Nk ◦ D.

2. Calculate the integers e = Fh(M,K) and s = k − xe mod ω.

Procedure of the signature verification is executed as follows:

1. Compute the vector K? = Y e ◦ H ◦ Qs and the bit string e? = Fh(M,K?).

2. If e? = e, then the signature is accepted. Otherwise it is rejected.

In the both proposed signature schemes the minimum signature size is 384
bits (128-bit value e and 256-bit value s) in the case of providing 128-bit secu-
rity (2128 multiplications in the used FNAA). Like in the Schnorr digital signature
algorithm [8], in two proposed signature schemes a finite cyclic group of the prime
order there is used. The novelty consists in hiding this cyclic group in FNAAs. The
public part of the proposed signature schemes is a fixed FNAA containing a set
of global one-sided units and the vectors Y, H, and Q. The vectors Y and Q are
connected with the hidden cyclic group generated by powers of the vector N that is
an element of the private key.

Estimation of the security of the propose signature scheme to attacks with using
hypothetic quantum computer is connected with estimation of the computational
difficulty of the reduction of the used HDLP to the discrete logarithm problem in
some cyclic group. The consideration of this item represents an individual task.
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4 Conclusion

We have introduced the 4-dimensional and 6-dimentional FNAAs containing a
large set of global one-sided units, which suit well to define the HDLP of new forms.
New forms of the HDLP have been used in the proposed new post-quantum public-
key cryptoschemes. For the first time the digital signature schemes based on the
HDLP have been introduced. The proposed signature schemes are more practical
than the post-quantum signature schemes selected in frame of the NIST PQCrypto
project [6, 7] as candidates for future post-quantum signature standards.

Apparently, the FNAAs and the HDLP were undeservedly ignored by the de-
velopers of the public-key post-quantum cryptoschemes in the course of the NIST
competition. However, the post-quantum cryptosystems proposed in this paper
require a study of their resistance to quantum attacks by a wide cryptographic com-
munity, like it is envisaged for the selected candidates at the next three-year stage
of the NIST PQCrypto project.
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