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On fully idempotent semimodules

Rafieh Razavi Nazari, Shaban Ghalandarzadeh

Abstract. Let S be a semiring and M an S-semimodule. Let N and L be subsemi-
modules of M . Set N ⋆ L := HomS(M, L)N =

∑
{ϕ(N) | ϕ ∈ HomS(M, L)}. Then

N is called an idempotent subsemimodule of M , if N = N ⋆ N . An S-semimodule M

is called fully idempotent if every subsemimodule of M is idempotent. In this paper
we study the concept of fully idempotent semimodules as a generalization of fully
idempotent modules and investigate some properties of idempotent subsemimodules
of multiplication semimodules.
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Keywords and phrases: semiring, fully idempotent semimodule, multiplication
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1 Introduction

A semiring is a nonempty set S with two operations addition (+) and multipli-
cation (·) such that (S,+) is a commutative monoid with identity element 0; (S, .) is
a monoid with identity element 1 6= 0; 0a = 0 = a0 for all a ∈ S and multiplication
distributes over addition. The semiring S is commutative if the monoid (S, .) is
commutative. All semirings in this paper are commutative. An ideal I of a semiring
S is a subset of S such that a+ b ∈ I and sa ∈ I for all a, b ∈ I and s ∈ S.

Let S be a semiring. An S-semimodule is an additive abelian monoid (M,+, 0M )
with a scalar multiplication S×M →M((s,m) 7→ sm) such that (s1s2)m = s1(s2m);
s(m1+m2) = sm1+sm2; (s1+s2)m = s1m+s2m; 1m = m and s0M = 0M = 0m for
all s, s1, s2 ∈ S and all m,m1,m2 ∈M . A nonempty subset N of an S-semimodule
M is a subsemimodule of M if N is closed under addition and scalar multiplication.
A subsemimodule N of an S-semimodule M is subtractive if m+n ∈ N and m ∈ N
imply that n ∈ N for all m,n ∈ M . An S-semimodule M is called subtractive if
every subsemimodule of M is subtractive.

Suppose that M and M ′ are S-semimodules. Then a map α from M to M ′ is
an S-homomorphism if α(m+m′) = α(m) + α(m′) for all m,m′ ∈M and α(sm) =
s(α(m)) for all m ∈M and s ∈ S.

Let M be an S-semimodule and N a subsemimodule of M . Then N induces
a congruence relation on M as follows: m ≡N n if and only if m + a = n + b for
some a, b ∈ N . The set of equivalence classes is an S-semimodule and denoted by
M/N . The equivalence class of m ∈ M is denoted by m/N . The S-semimodule
M/N is called the factor semimodule of M by ≡N . Factor semiring can be defined
in a similar way. For more details on factor semimodules see [7] and [4].
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Let R be a ring. A submodule N of an R-module M is called idempotent if
N = HomR(M,N)N =

∑
{ϕ(N) | ϕ ∈ HomR(M,N)} [9]. Hence an ideal I of a

ring R is an idempotent submodule of R if and only if I = I2. An R-module M is
called fully idempotent if every submodule ofM is idempotent. A semiring S is called
fully idempotent if any ideal of S is idempotent. Fully idempotent semirings were
studied in [3]. In this paper we introduce fully idempotent semimodules. In Section
2, we generalize some results of [9] to semimodules. We investigate some properties
of idempotent subsemimodules and we prove that over semirings such that every
nonzero semimodule has an injective envelope, all semimodules are fully idempotent
if and only if all cyclic semimodules are injective. In Section 3, we study idempotent
subsemimodules of multiplication semimodules and generalize some results of [11] to
semimodules. We prove that a pure subsemimodule of a multiplication semimodule
M is a multiplication and idempotent subsemimodule of M and the converse is true
for some class of semirings and semimodules.

2 Idempotent subsemimodules

In this section we introduce fully idempotent semimodules as a generalization of
fully idempotent modules and give some properties of these semimodules.

Suppose that M is an S-semimodule. Let N and L be subsemimodules of M .
Set N ⋆ L := HomS(M,L)N =

∑
{ϕ(N) | ϕ ∈ HomS(M,L)}. It is clear that ϕ(N)

is a subsemimodule of L for all ϕ ∈ HomS(M,L) and hence N ⋆ L is too.

Definition 1. A subsemimodule N of an S-semimodule M is called an idempotent
subsemimodule if N = N ⋆ N =

∑
{ϕ(N) | ϕ ∈ HomS(M,N)}.

An S-semimodule M is called fully idempotent if every subsemimodule of M is
idempotent.

Definition 2. [1] Let M and N be two S-semimodules. Then N is called M -
generated if there exists a surjective S-homomorphism ϕ : M (I) → N for some
set I. Note that N is M -generated if and only if for each x ∈ N , there exist
a positive integer k, S-homomorphisms αi : M → N (1 ≤ i ≤ k) and elements
xi ∈ M (1 ≤ i ≤ k) such that x =

∑k
i=1 αi(xi). An S-semimodule M is called a

self-generator semimodule if every subsemimodule of M is M -generated.

From above definition, it is obvious that any idempotent subsemimodule of an
S-semimodule M is M -generated.

Definition 3. A subsemimoduleN of an S-semimodule M is called a fully invariant
subsemimodule of M if for every ϕ ∈ HomS(M,M), ϕ(N) ⊆ N .

Theorem 1. Let M be an S-semimodule.

1. Suppose that N is a subsemimodule of M . If L is an idempotent subsemimodule

of M such that L ⊆ N , then L is an idempotent subsemimodule of N .
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2. If N is a direct summand of M and L an idempotent subsemimodule of N ,

then L is an idempotent subsemimodule of M .

3. Let M be a subtractive semimodule. Suppose that K is a fully invariant sub-

semimodule of M , and let L be an idempotent subsemimodule of M such that

K ⊆ L. Then L/K is an idempotent subsemimodule of M/K.

Proof. The proofs of (1) and (2) are similar to [9, Lemma 2.2]. Since the definition
of M/K for semimodules is different from the one for modules, we only prove part
(3). Let x ∈ L. Then there are a positive integer k, S-homomorphisms ϕi : M → L
(1 ≤ i ≤ k) and elements xi ∈ L (1 ≤ i ≤ k) such that x =

∑k
i=1 ϕi(xi). For each

i (1 ≤ i ≤ k), we define an S-homomorphism ϕi : M/K → L/K by ϕi(m/K) =
ϕi(m)/K. If m/K = n/K for some m,n ∈M , then m+ t = n+ s for some s, t ∈ K.
Thus ϕi(m)+ϕi(t) = ϕi(n)+ϕi(s). SinceK is a fully invariant subsemimodule ofM ,
ϕi(s), ϕi(t) ∈ K. Hence ϕi(m)/K = ϕi(n)/K. Therefore ϕi is well-defined. Then
x/K =

∑k
i=1 ϕi(xi/K). Hence L/K is an idempotent subsemimodule of M/K.

Remark 1. Suppose that S is a subtractive semiring. Let I be an idempotent ideal of
S and J an ideal of S such that I ⊆ J . If J/I is an idempotent ideal of the semiring
S/I, then J is an idempotent ideal of S. If x ∈ J , then x/I = (

∑k
i=1 yizi)/I where

yi, zi ∈ J for all i, 1 ≤ i ≤ k. Thus x+t =
∑k

i=1 yizi+s for some t, s ∈ I. Since I is an
idempotent ideal of S, t =

∑n
i=1 aibi and s =

∑m
j=1 cjdj where ai, bi, cj , dj ∈ I ⊆ J

for all i, 1 ≤ i ≤ n and all j, 1 ≤ j ≤ m. Since J2 is a subtractive ideal of S, we
conclude that x ∈ J2.

Definition 4. Let M be an S-semimodule. An S-semimodule U is called M -
projective, if for each surjective S-homomorphism f : M → N and each S-
homomorphism g : U → N , there exists an S-homomorphism h : U → M such
that fh = g.

Theorem 2. Suppose that M is a subtractive semimodule. Let K be an idempotent

subsemimodule of M and let N be a subsemimodule of M such that K ⊆ N and

N/K is an idempotent subsemimodule of M/K. If M is N -projective, then N is an

idempotent subsemimodule of M .

Proof. Suppose that x ∈ N . Then there exist a positive integer k, S-homomorphisms
ϕi : M/K → N/K (1 ≤ i ≤ k) and elements xi ∈ N (1 ≤ i ≤ k) such that x/K =∑k

i=1 ϕi(xi/K). Let 1 ≤ i ≤ k. Put ψi = ϕiπ where π : M → M/K is defined by
π(m) = m/K. Then ψi ∈ HomS(M,N/K). Since M is N -projective, there exists
an S-homomorphism θi : M → N such that ψi = π′θi where π′ : N → N/K is
defined by π′(n) = n/K.

Thus x/K =
∑k

i=1 θi(xi)/K. Then x + a =
∑k

i=1 θi(xi) + b for some a, b ∈ K.
Since K is an idempotent subsemimodule of M , there exist positive integers r1, r2,
elements si, tj ∈ K (1 ≤ i ≤ r1, 1 ≤ j ≤ r2) and S-homomorphisms αi : M → K
(1 ≤ i ≤ r1), βj : M → K (1 ≤ j ≤ r2) such that a =

∑r1
i=1 αi(si) and b =

∑r2
j=1

βj(tj). Then x +
∑r1

i=1 αi(si) =
∑k

i=1 θi(xi) +
∑r2

j=1 βj(tj). Moreover
∑r1

i=1 αi(si),
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∑k
i=1 θi(xi),

∑r2
j=1 βj(tj) ∈ N⋆N . Since N⋆N is a subtractive subsemimodule of M ,

we conclude that x ∈ N ⋆ N . Therefore N ⋆ N = N and hence N is an idempotent
subsemimodule of M .

The above theorem is an extension of Proposition 2.3 in [9] to subtractive semi-
modules.

Lemma 1. Let N be a subsemimodule of an S-semimodule M . Suppose that N =∑
(i∈I) Sxi for some index set I. Then N is an idempotent subsemimodule of M

if and only if for each i ∈ I there exist a positive integer k(i), S-homomorphisms

ϕit : M → N (1 ≤ t ≤ k(i)) and elements xit ∈ N (1 ≤ t ≤ k(i)) such that

xi =
∑k(i)

t=1 ϕit(xit).

Proof. The proof is similar to [9, Lemma 2.4].

If {Ni|i ∈ I} is a collection of idempotent subsemimodules of an S-semimodule
M , then by Lemma 1, N =

∑
i∈I Ni is an idempotent subsemimodule of M .

Let {Mi|i ∈ I} be a family of S-semimodules. Then ⊕i∈IMi = ⊕i∈Iλi(Mi) such
that λi : Mi → ⊕i∈IMi is defined by λi(m) = (nj) where nj = 0 if j 6= i and nj = m
if j = i (see [12, Theorem 3.4]).

Now we obtain the following result similar to [9, Corollary 2.6].

Theorem 3. Let {Mi|i ∈ I} be a family of S-semimodules and M = ⊕i∈IMi. If

for each i ∈ I, Ni is an idempotent subsemimodule of the S-semimodule Mi, then

⊕i∈INi is an idempotent subsemimodule of M .

Proof. It follows from Theorem 1 (2).

Theorem 4. Let L be an idempotent subsemimodule of an S-semimodule M and N
an L-generated subsemimodule of M . Then N +L is an idempotent subsemimodule

of M .

Proof. It is similar to the proof of [9, Theorem 2.7].

Now we extend [9, Corollary 2.8] to semimodules as follows:

Corollary 1. Let S be a semiring and M an S-semimodule. Let m be an element

of M such that Sm is an idempotent subsemimodule of M and Sm ∼= S. Then every

subsemimodule N of M such that m ∈ N is an idempotent subsemimodule of M .

Proof. By [7, Proposition 17.11], there exist a set I and a surjective S-homomorphism
ϕ : S(I) → N . Since S ∼= Sm, N is Sm-generated. By Theorem 4, N is an idempo-
tent subsemimodule of M .

Theorem 5. Let S be a Boolean algebra and M an S-semimodule. Suppose that

m ∈M . If ann(m) = 0, then Sm ∼= S.
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Proof. Let ϕ : S → Sm be a map defined by ϕ(s) = sm. Then ϕ is a surjective
S-homomorphism. Suppose that ϕ(s) = ϕ(t) for some s, t ∈ S. Then sm = tm.
Since S is a Boolean algebra, there exist s′, t′ ∈ S such that s+ s′ = t+ t′ = 1 and
ss′ = tt′ = 0. Then s′tm = s′sm = 0. Therefore s′t ∈ ann(m) and hence s′t = 0.
Moreover ts+ ts′ = t. It follows that st = t. A similar argument shows that ts = s.
Therefore s = t and hence ϕ is injective.

Corollary 2. Let S be a Boolean algebra and M an S-semimodule. Let m be an

element of M such that Sm is an idempotent subsemimodule of M and ann(m) = 0.
Then every subsemimodule N of M such that m ∈ N is an idempotent subsemimod-

ule of M .

With a similar proof for [11, Theorem 2.8], the following theorem can be obtained.

Theorem 6. Let M be an S-semimodule and N an idempotent subsemimodule of

M . Suppose that I is an idempotent ideal of S. Then IN is an idempotent subsemi-

module of M .

Corollary 3. Let M be an S-semimodule and I an idempotent ideal of S. Then

IM is an idempotent subsemimodule of M .

Lemma 2. Suppose that M is a fully idempotent semimodule. Let N be a subsemi-

module of M and I an ideal of S. Then N ∩ IM = IN .

Proof. It is similar to the proof of [11, Lemma 2.13].

Definition 5. Let S be a semiring and M an S-semimodule. A subsemimodule N
is called pure in M if N ∩ IM = IN for all ideals I of S.

Definition 6. Let M be an S-semimodule and N a subsemimodule of M . We say
that N has property (A), if there exists an S-homomorphism φ : M → N such that
φı = idN where ı : N → M is the inclusion map. Note that every direct summand
of M and every injective subsemimodule of M has property (A).

In the following example we give a subsemimodule of a semimodule which has
property (A), but is not a direct summand.

Example 1. Let B3 = {0, 1, 2}. Define the addition and multiplication on B3

by a + b = max{a, b} and a · b = 0 if a = 0 or b = 0 and a · b = max{a, b}
otherwise [2, Example 3.7]. Then (B3,+, ·) is a semiring. By [2, Fact 4.11], {0, 2}
is an injective B3-semimodule and hence it has property (A). But {0, 2} is not a
direct summand of B3.

Definition 7. Let M be an S-semimodule. We say that M has property (B), if
every cyclic subsemimodule of M has property (A).
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It is clear that if every cyclic subsemimodule of an S-semimodule M is a direct
summand of M , then M has property (B). Moreover if S is a semiring such that
all cyclic S-semimodules are injective, which is called CI-semiring [2], then every
S-semimodule has property (B).

In [14], an S-semimodule M is called regular if for each m ∈M , there exists an
S-homomorphism g ∈ HomS(M,S) such that m = g(m)m. If S is a semiring such
that it is a regular S-semimodule, then S is a multiplicatively regular semiring [14,
Definition 3.3.1].

It is known that an R-module M is a regular module if and only if every cyclic
submodule of M is a direct summand of M and projective [16]. Similar to [16,
Theorem 2.2], we have the following result.

Theorem 7. Let M be an S-semimodule. Then M is a regular S-semimodule if

and only if M has property (B) and every cyclic subsemimodule of M is projective.

Proof. (→): Let m ∈ M . Then there exists an S-homomorphism g ∈ HomS(M,S)
such that m = g(m)m. Define a map f : M → Sm by f(n) = g(n)m. Then f is an
S-homomorphism and f(m) = g(m)m = m. Hence fı = idSm where ı : Sm→M is
the inclusion map. Therefore Sm has property (A). Moreover by [14, Proposition
3.3.4] every cyclic subsemimodule of M is projective.

(←): Now assume that M has property (B) and m ∈ M . Then since Sm is
projective, by [14, Theorem 3.4.12], there exist a positive integer n and {mi}1≤i≤n ⊆
Sm and {fi}1≤i≤n ⊆ HomS(Sm,S) such that m =

∑n
i=1 fi(m)mi. For each i

(1 ≤ i ≤ n), there exists si ∈ S such that mi = sim. Then m =
∑n

i=1 fi(m)sim.
Let g =

∑n
i=1 fisi. Since M has property (B), there exists an S-homomorphism

φ : M → Sm such that φ(m) = m. Put h = gφ. Then h ∈ HomS(M,S) and
m = h(m)m. Therefore M is a regular S-semimodule.

Now we can restate [14, Corollary 3.3.5] as follows:

Corollary 4. A semiring S is a multiplicatively regular semiring if and only if S
has property (B) and every cyclic subsemimodule of S is projective.

Theorem 8. Let N be a subsemimodule of M with property (A) and let L be an

idempotent subsemimodule of N . Then L is an idempotent subsemimodule of M .

Proof. Let x ∈ L. Then x =
∑k

i=1 αi(xi) where k is a positive integer, αi ∈
HomS(N,L) and xi ∈ L for all i, 1 ≤ i ≤ k. There exists an S-homomorphism
φ : M → N such that φı = idN since N has property (A). Let βi = αiφ. Then
x =

∑k
i=1 βi(xi) and hence L is an idempotent subsemimodule of M .

Corollary 5. Let N be a subsemimodule of M with property (A). Then N is an

idempotent subsemimodule of M .

Now with the use of above definition we extend some more results of [9] to
semimodules.
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Theorem 9. Let F be a nonzero free S-semimodule with basis {fi}(i∈I) for some

index set I. Let L be a subsemimodule of F such that F = L+
∑

(j∈J) Sfj for some

proper subset J of I. Then L is an idempotent subsemimodule of F .

Proof. Let i ∈ I\J . Then there exist a finite subset J ′ of J and elements sj ∈ S
(j ∈ J ′) and x ∈ L such that fi =

∑
(j∈J ′) sjfj + x. Let y ∈ F . Then there exist

a finite subset K of I and elements ut ∈ S (t ∈ K) such that y =
∑

(t∈K) utft. If
i ∈ K, then y =

∑
t6=i utft + uifi. Thus y =

∑
t6=i utft + ui

∑
(j∈J ′) sjfj + uix. If

i /∈ K, we put ui = 0. We can define a map ϕ : F → Sx by ϕ(y) = uix. Then
ϕ is a well-defined S-homomorphism. Let x =

∑
(t∈I′) utft for some finite subset

I ′ of I. If i /∈ I ′, then fi =
∑

(j∈J ′) sjfj +
∑

(t∈I′) utft which is a contradiction.

Thus i ∈ I ′. Therefore fi =
∑

(j∈J ′) sjfj +
∑

(t∈I′,t6=i) utft + uifi. We conclude
that ui = 1. Hence ϕ(x) = x. Therefore Sx has property (A) and hence it is an
idempotent subsemimodule of F .

Now, we prove that Sx ∼= S. Define a map α : S → Sx by α(s) = sx. Then
α is a surjective S-homomorphism. Let sx = s′x for some s, s′ ∈ S. Since x =∑

(t∈I′,t6=i) stft + fi, we conclude that s = s′. Therefore α is injective and S ∼= Sx.
Hence by Corollary 1, L is an idempotent subsemimodule of F .

In [9, Theorem 3.1] it is shown that if R is a commutative ring, then every
cyclic idempotent submodule of an R-module M , is a direct summand of M . For
semimodules we have the following result.

Theorem 10. Let N be a cyclic idempotent subsemimodule of an S-semimodule M .

Then N has property (A).

Proof. Suppose that N = Sx. Then x =
∑k

i=1 fi(six) where k is a positive integer,

fi ∈ HomS(M,N) and si ∈ S for all i, 1 ≤ i ≤ k. Let g =
∑k

i=1 sifi. Then
g(x) = x and hence gı = idN where ı : N → M is the inclusion map. Therefore N
has property (A).

Similar to [9, Lemma 2.15], we have the following result.

Lemma 3. Let M be an S-semimodule. Then the following statements are equiva-

lent:

1. M is fully idempotent.

2. Sm is an idempotent subsemimodule of M for every m ∈M .

Let R be a ring. In [9], an R-moduleM is called regular if every cyclic submodule
of M is a direct summand and it is shown that for a commutative ring R, an R-
moduleM is fully idempotent if and only if it is regular [9, Proposition 3.4]. Similarly
we have the following result for semimodules.

Theorem 11. Let S be a semiring. Then an S-semimodule M is fully idempotent

if and only if it has property (B).
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Proof. Suppose that M is fully idempotent and N a cyclic subsemimodule of M .
Then by Theorem 10, N has property (A). Now assume that M has property
(B). Then by Corollary 5, every cyclic subsemimodule of M is an idempotent
subsemimodule of M . Thus by Lemma 3, M is fully idempotent.

Assume that R is a ring. Then every R-module can be embedded in an injective
module. But this is not true for arbitrary semirings (see [7, Proposition 17.21]).

An S-monomorphism α : M → N of S-semimodules is essential if and only if,
for any S-homomorphism β : N → N ′, the map βα is an S-monomorphism only
when β is an S-monomorphism. Suppose that M is an S-semimodule. Let E be an
injective S-semimodule such that M ⊆ E and the inclusion map ı : M → E is an
essential S-homomorphism. Then E is called an injective envelope of M . For more
details on injective envelopes of semimodules see [7] and [8].

Theorem 12. Let S be a semiring such that every S-semimodule has an injective

envelope. Then every S-semimodule is fully idempotent if and only if every injective

S-semimodule is fully idempotent.

Proof. (→): Obvious.

(←): Let M be an S-semimodule and N a subsemimodule of M . Suppose that
E(M) is the injective envelope of M . Then N is an idempotent subsemimodule of
E(M) and hence by Theorem 1(1), N is an idempotent subsemimodule of M .

Similar to [9, Theorem 3.7], we have the following result.

Theorem 13. Let S be a semiring such that every nonzero S-semimodule has an

injective envelope. Then every S-semimodule is fully idempotent if and only if S is

a CI-semiring.

Proof. (→): Suppose that every S-semimodule is fully idempotent. Let Sm be a
cyclic S-semimodule and E = E(Sm) an injective envelope of Sm. By Theorem 10,
Sm has property (A). Hence Sm is an injective S-semimodule since it is a retract
of E.

(←): Suppose that every cyclic S-semimodule is injective. Let M be an S-
semimodule and m ∈ M . Since Sm is an injective S-semimodule, it has property
(A). Thus by Theorem 11, M is fully idempotent.

Let S be semiring and F a free S-semimodule with a basis B = {fi}(i∈I) for some
index set I. Suppose that x ∈ F . Then there are a finite subset K of I and elements
st ∈ S (t ∈ K) such that x =

∑
(t∈K) stft. Let βB(x) be the ideal generated by

coefficients of x. Let B′ = {ej}(j∈J) be another basis of F . For each t ∈ K, there
exist a finite subset Jt of J and elements stj ∈ S(j ∈ Jt) such that ft =

∑
(j∈Jt)

stjej .
Hence x =

∑
(t∈K)

∑
(j∈Jt)

ststjej . Therefore βB′(x) ⊆ βB(x). A similar argument
shows that βB(x) ⊆ βB′(x). Hence βB(x) is independent of the basis B. Let N be
a subsemimodule of the free S-semimodule F . Then we define β(N) =

∑
x∈N β(x).

Clearly β(N) is an ideal of S (cf. [9, §4]).
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The following theorem characterizes the idempotent subsemimodules of a free
semimodule.

Theorem 14. Let N be a subsemimodule of a free S-semimodule F . Then β(N)N =
HomS(F,N)N .

Proof. Let ϕ : F → N be an S-homomorphism and B = {fi}(i∈I) a basis of F .
Suppose that x ∈ N . Then there exist a finite subset J of I and elements si ∈ S
(i ∈ J) such that x =

∑
(i∈J) sifi. Thus ϕ(x) =

∑
(i∈J) siϕ(fi) ∈ β(N)N .

Now let x, y ∈ N and s ∈ S such that s ∈ β(x). Suppose that x =
∑n

i=1 bifi.
Thus there exist ai ∈ S (1 ≤ i ≤ n) such that s =

∑n
i=1 aibi. For each i (1 ≤ i ≤ n),

define a map αi : F → N by αi(fi) = y and αi(fj) = 0 for all j 6= i. Then αi is a well
defined S-homomorphism and αi(x) = biy. Let αx =

∑n
i=1 aiαi. Then αx : F → N

is an S-homomorphism and αx(x) =
∑n

i=1 aiαi(x) =
∑n

i=1 aibiy = sy. Now let r ∈
β(N). Then r =

∑m
i=1 si where for each i (1 ≤ i ≤ m) there exists xi ∈ N such that

si ∈ β(xi). Then ry =
∑m

i=1 siy =
∑m

i=1 αxi
(xi). Hence ry ∈ HomS(F,N)N .

As immediate consequences of Theorem 14 we have the following corollaries.

Corollary 6. A subsemimodule N of a free S-semimodule F is an idempotent sub-

semimodule of F if and only if N = β(N)N .

Corollary 7. Let N be a subsemimodule of a free S-semimodule F such that β(N) =
S. Then N is an idempotent subsemimodule of F .

A semiring S is called ideal-simple if it has no nontrivial ideals [6].

Corollary 8. Let S be an ideal-simple semiring. Then every free S-semimodule is

fully idempotent.

3 Idempotent subsemimodules of multiplication semimodules

In this section we investigate idempotent subsemimoules of multiplication semi-
modules and generalize some results of [11] to semimodules.

If N and L are subsemimodules of an S-semimodule M , we set (N : L) = {s ∈
S | sL ⊆ N}. Note that (N : L) is an ideal of S.

Definition 8. [5] Let S be a semiring and M an S-semimodule. Then M is called
a multiplication S-semimodule if for each subsemimodule N of M there exists an
ideal I of S such that N = IM . In this case it is easy to see that N = (N : M)M .

From Corollary 3, we conclude that every multiplication semimodule over a
Boolean algebra is a fully idempotent semimodule.

Lemma 4. Assume that M is a subtractive multiplication semimodule and K ⊆
N ⊆ M . If N is an idempotent subsemimodule of M , then N/K is an idempotent

subsemimodule of M/K.
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Proof. Similar to the proof of [15, Lemma 3] we can show that K is a fully invariant
subsemimodule of M . Therefore, since M is a multiplication semimodule, there is an
ideal I of S such that K = IM . If f ∈ End(M), then f(K) = f(IM) = If(M) ⊆
IM = K. Thus by Theorem 1(3), N/K is idempotent.

Now with the use of above theorem, we can show that for a fully idempotent
subtractive multiplication semimodule M and a subsemimodule N of M , M/N will
be fully idempotent too.

A semiring S is yoked if for all a, b ∈ S, there exists an element t of S such that
a+ t = b or b+ t = a.

An element m of an S-semimodule M is cancellable if m + m′ = m + m′′ im-
plies that m′ = m′′. An S-semimodule M is cancellative if every element of M is
cancellable.

Let M be an S-semimodule and p a maximal ideal of S. We say that M is
p-cyclic if there exist m ∈M , t ∈ S and q ∈ p such that t+ q = 1 and tM ⊆ Sm.

Theorem 15. Let S be a yoked semiring such that every maximal ideal of S is

subtractive and let M be a finitely generated faithful multiplication cancellative S-

semimodule. Then a subsemimodule N of M is an idempotent subsemimodule of M
if and only if I = (N : M) is an idempotent ideal of S.

Proof. (→): Let N be an idempotent subsemimodule of M . Assume that I2 6= I and
s ∈ I\I2. Put J = {t ∈ S | ts ∈ I2}. Then there exists a maximal ideal p such that
J ⊆ p. By [13, Theorem 25], M 6= Mp and hence M is p-cyclic from [13, Theorem
6]. Therefore there exist m ∈M , t ∈ S and q ∈ p such that t+ q = 1 and tM ⊆ Sm.
We prove that t2N ⊆ Im. Let x ∈ N . Then tx = um for some u ∈ S. Then
tuM ⊆ (u)m = (t)x ⊆ N . Thus tu ∈ I and hence t2x = tum ∈ Im. Moreover,
since s ∈ I, sm ∈ N . Thus sm =

∑k
i=1 ϕi(xi), where k is a positive integer,

ϕi ∈ HomS(M,N) and xi ∈ N for all i, 1 ≤ i ≤ k. Now let ϕ : M → N and
x ∈ N . Then t2x ∈ Im and hence t2ϕ(x) ∈ Iϕ(m). Since ϕ(m) ∈ N , t2ϕ(m) ∈ Im.
Thus t4ϕ(x) ∈ t2Iϕ(m) ⊆ I2m. Now define an S-homomorphism α : M → N by
α(m) = sm. Thus t4sm = mb for some b ∈ I2. Since S is yoked, there exists c ∈ S
such that t4s+c = b or b+c = t4s. Suppose that t4s+c = b. Then t4sm+cm = bm.
Thus cm = 0 and hence tcM ⊆ cm = 0. Since M is a faithful S-semimodule, tc = 0.
Then t5s = bt ∈ I2. Thus t5 ∈ J ⊆ p which is a contradiction. Therefore J = S and
hence I2 = I. Now suppose that b+ c = t4s. A similar argument shows that I2 = I.

(←): It follows from Corollary 3.

The above theorem is a generalization of [9, Theorem 3.9].

Lemma 5. Let S be a semiring and M a multiplication S-semimodule. Then M is

a self-generator S-semimodule.

Proof. Let N be a subsemimodule of M and x ∈ N . Then there exists an ideal I
of S such that N = IM . Thus x =

∑n
i=1 aixi where ai ∈ I and xi ∈ M for all i
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(1 ≤ i ≤ n). For each i, we define a map θi : M → IM = N by θi(m) = aim. Then
θi is an S-homomorphism and x =

∑n
i=1 θi(xi). Therefore N is M -generated.

In the next result we state [10, Corollary 3.2] for semimodules.

Theorem 16. Suppose that M is a multiplication semimodule. Let N and L be

subsemimodules of M . Then N ⋆L = IJM where I and J are ideals of S such that

N = IM and L = JM .

Proof. Since L is M -generated,
∑
{ϕ(M) | ϕ ∈ HomS(M,L)} = L. Thus N ⋆ L =∑

{ϕ(N) | ϕ ∈ HomS(M,L)} =
∑
{ϕ(IM) | ϕ ∈ HomS(M,L)} =

∑
{Iϕ(M) | ϕ ∈

HomS(M,L)} = IL = IJM .

Now with the use of Theorem 16, we generalize [11, Theorem 2.6] to multiplica-
tion semimodules.

Theorem 17. Suppose that M is a multiplication S-semimodule. Let K be a mul-

tiplication idempotent subsemimodule of M and N an idempotent subsemimodule of

K. Then N is an idempotent subsemimodule of M .

Proof. SinceM is a multiplication semimodule, K = (K : M)M . ThenK = K⋆K =
(K : M)M ⋆ (K : M)M = (K : M)2M = (K : M)K by Theorem 16. Since K is a
multiplication semimodule, N = (N : K)K. Then N = N ⋆ N = (N : K)K ⋆ (N :
K)K = (N : K)2K = N(N : K). It follows that N = (N : K)K = (N : K)(K :
M)K ⊆ ((N : K)K : M)K = (N : M)K ⊆ (N : K)K. Therefore N = (N : M)K.
Moreover by Theorem 16, N ⋆ N = (N : M)M ⋆ (N : M)M = (N : M)2M = (N :
M)N . Since K is a multiplication semimodule, (N : M)N ∩K = (N : M)N = ((N :
M)N : K)K ⊇ (N : K)(N : M)K = (N : K)N = N .

Theorem 18. Let M be a multiplication semimodule and let M1 and M2 be fully

idempotent subsemimodules of M such that M = M1 ⊕M2. Then M is also fully

idempotent.

Proof. Since M is a multiplication semimodule, every subsemimodule of M is fully
invariant. Let πi : M → Mi be the canonical projection of M onto Mi for i = 1, 2.
Suppose that N is a subsemimodule of M . Then πi(N) ⊆ N ∩Mi for i = 1, 2. Let
x ∈ N . Then there exist x1 ∈ M1 and x2 ∈ M2 such that x = x1 + x2. Hence
π1(x) = x1 ∈ N ∩M1 and π2(x) = x2 ∈ N ∩M2. Thus x ∈ N ∩M1 + N ∩M2.
Therefore N = N ∩M1 +N ∩M2. Since the representation x = x1 + x2 is unique,
N = N ∩M1⊕N ∩M2. Since N ∩M1 and N ∩M2 are idempotent subsemimodules
of M1 and M2 respectively, N is the idempotent subsemimodule of M by Theorem
3.

In the next theorem, we show that every pure subsemimodule of a multiplication
semimodule is idempotent similar to [11, Theorem 3.1].

Theorem 19. Let M be a multiplication S-semimodule. If N is a pure subsemi-

module of M , then N is a multiplication idempotent subsemimodule of M .
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Proof. Let K be a subsemimodule of M . We prove that K ∩ N = (K : N)N .
Since M is a multiplication S-semimodule, K = (K : M)M . Since N is a pure
subsemimodule, (K : N)N = N ∩ (K : N)M . Then (K : N)N = N ∩ (K : N)M ⊇
N ∩ (K : M)M = N ∩K ⊇ (K : N)N . Hence K ∩ N = (K : N)N . Therefore N
is a multiplication subsemimodule of M . Now since N is a pure subsemimodule of
M , (N : M)N = N ∩ (N : M)M = N . Moreover by Theorem 16, N ⋆ N = (N :
M)M ⋆ (N : M)M = (N : M)2M = (N : M)N . Therefore N ⋆N = N and hence N
is an idempotent subsemimodule of M .

In the following theorem we prove the converse of Theorem 19 for some class of
semirings and semimodules.

Theorem 20. Let S be a yoked semiring such that every maximal ideal of S is

subtractive and let M be a finitely generated faithful multiplication cancellative S-

semimodule. If N is a multiplication idempotent subsemimodule of M , then N is a

pure subsemimodule of M .

Proof. Since N is an idempotent subsemimodule of M , (N : M) is an idempotent
ideal by Theorem 15. Then N = (N : M)M = (N : M)2M = (N : M)(N : M)M =
(N : M)N . Suppose that K is a subsemimodule of M . Then (K : N)N = (K :
N)(N : M)N ⊆ (K : M)N ⊆ (K : N)N . Therefore (K : N)N = (K : M)N .
Now let I be an ideal of S. Since N is a multiplication S-semimodule, N ∩ IM =
(IM : N)N . Hence N ∩ IM = (IM : N)N = (IM : M)N = IN . Note that
IM = (IM : M)M and hence I = (IM : M) by [13, Theorem 25].
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