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On invariant submanifolds of S-manifolds

Fatiha Mahi, Mohamed Belkhelfa

Abstract. We consider invariant, pseudo-parallel and Ricci generalized pseudo-
parallel submanifolds of S-manifolds. We show that the submanifolds are totally
geodesic under certain conditions. Also we study an invariant submanifold of S-
manifold satisfying Q(σ, R) = 0 and Q(S,σ) = 0, where S, R and σ are the Ricci
tensor, curvature tensor and the second fundamental form respectively.
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1 Introduction

An n-dimensional submanifold M in an m-dimensional Riemannian manifold
M̃ is pseudo-parallel [1, 2] if its second fundamental form σ satisfies the following
condition

R̃ . σ = LQ(g, σ), (1)

where R̃ is the curvature operator with respect to the Van der Waerden–Bortolotti
connection ∇̃ of M̃ , L is some smooth function on M and Q(g, σ) is a (0, 4)-tensor
on M determined by Q(g, σ)(Z,W ;X,Y ) = ((X ∧g Y ) . σ)(Z,W ).
Recall that the (0, k + 2)-tensor Q(B,T ) associated with any (0, k)-tensor field T ,
k ≥ 1 and (0, 2)-tensor field B, is defined by

Q(B,T )(X1,X2, ...,Xk ;X,Y ) = ((X ∧B Y ) . T )(X1,X2, ...,Xk)

= −T ((X ∧B Y )X1,X2, ...,Xk) − ...

−T (X1,X2, ...,Xk−1, (X ∧B Y )Xk) , (2)

where X ∧B Y is defined by

(X ∧B Y )Z = B(Y,Z)X − B(X,Z)Y. (3)

In particular, if L = 0 in (1), M is called a semi-parallel submanifold [6].

Pseudo-parallel submanifolds were introduced in [1, 2] as naturel extension of
semi-parallel submanifolds and as the extrinsic analogues of pseudo-symmetric Rie-
mannian manifolds in the sense of Deszcz [7], which generalize semi-symmetric Rie-
mannian manifolds.

c© F. Mahi, M. Belkhelfa, 2019

30



ON INVARIANT SUBMANIFOLDS OF S-MANIFOLDS 31

On the other hand, Murathan et al. [13] defined submanifolds satisfying the con-
dition

R̃ . σ = LQ(S, σ), (4)

where S is the Ricci tensor of M .

The submanifolds satisfying the condition (4) are called Ricci generalized pseudo-

parallel.

In [12] Kowalczyk studied semi-Riemannian manifold satisfying Q(S,R) = 0 and
Q(S, g) = 0 where S and R are the Ricci tensor and curvature tensor respectively.
Recently, many authors studied invariant submanifolds on various spaces, we refer,
for example to [11,14,15,18].

Motivated by the studies of the above authors, in this work we consider invariant,
pseudo-parallel and Ricci generalized pseudo-parallel submanifolds of S-manifolds.
We show that these submanifolds are totally geodesic under certain conditions.

2 Basic concepts

We remember some necessary useful notions and results for our next considera-
tions.

Let M̃n be an n-dimensional Riemannian manifold and Mm an m-dimensional
submanifold of M̃n. Let g be the metric tensor field on M̃n as well as the metric
induced on Mm. We denote by ∇̃ the covariant differentiation in M̃n and by ∇ the
covariant differentiation in Mm. Let TM̃ (resp. TM) be the Lie algebra of vector

fields on M̃n (resp. on Mm) and T⊥M the set of all vector fields normal to Mm.
The Gauss-Weingarten formulas are given by

∇̃XY = ∇XY + σ(X,Y ) , ∇̃XV = −AV X + ∇⊥

XV.

X, Y ∈ TM , V ∈ T⊥M , where ∇⊥ is the connection in the normal bundle, σ

is the second fundamental form of Mm and AV is the Weingarten endomorphism
associated with V . AV and σ are related by g(AV X,Y ) = g(σ(X,Y ), V ).

The submanifold Mm is said to be totally geodesic in M̃n if its second fundamental
form is identically zero and it is said to be minimal if H ≡ 0, where H is the mean
curvature vector defined by H = 1

m
trace(σ) [5]. From the definition it is clear that

any totally geodesic submanifold is obviously a minimal submanifold.
We denote by R̃, R and R⊥ the curvature tensors associated with ∇̃, ∇ and ∇⊥

respectively.

The basic equations of Gauss and Ricci are

g(R̃(X,Y )Z,W ) = g(R(X,Y )Z,W ) + g(σ(X,Z), σ(Y,W ))

−g(σ(X,W ), σ(Y,Z)) ,

g(R̃(X,Y )N,V ) = g(R
⊥

(X,Y )N,V ) − g([AN , AV ]X,Y ) ,
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respectively, X,Y,Z,W ∈ TM , N,V ∈ T⊥M .

The covariant derivative ∇̃σ of the second fundamental form σ is given by

∇̃Xσ(Y,Z) = ∇⊥

X(σ(Y,Z)) − σ(∇XY,Z) − σ(Y,∇XZ),

where ∇̃σ is a normal bundle-valued tensor of type (0, 3). If ∇̃σ = 0, then M is
called parallel [8].

The operators R̃(X,Y ) from the curvature of ∇̃ and X ∧ Y can be extended as
derivations of tensor fields in the usual way, so

(R̃(X,Y ) . σ)(Z,W ) = R⊥(X,Y )(σ(Z,W )) − σ(R(X,Y )Z,W )

−σ(Z,R(X,Y )W ), (5)

Putting in formulas (2) and (3) T = σ and B = g or B = S respectively, we obtain
the tensors Q(g, σ) and Q(S, σ)

Q(g, σ)(Z,W ;X,Y ) = ((X ∧g Y ) . σ)(Z,W )

= −σ((X ∧g Y )Z,W ) − σ(Z, (X ∧g Y )W )

= −g(Y,Z)σ(X,W ) + g(X,Z)σ(Y,W )

−g(Y,W )σ(Z,X) + g(X,W )σ(Z, Y ), (6)

and

Q(S, σ)(Z,W ;X,Y ) = ((X ∧S Y ) . σ)(Z,W )

= −σ((X ∧S Y )Z,W ) − σ(Z, (X ∧S Y )W )

= −S(Y,Z)σ(X,W ) + S(X,Z)σ(Y,W )

−S(Y,W )σ(Z,X) + S(X,W )σ(Z, Y ). (7)

Now, let M̃2n+s be a (2n+s)-dimensional Riemannian manifold endowed with an
ϕ-structure (that is a tensor field of type (1, 1) and rank 2n satisfying ϕ3 + ϕ = 0).

If moreover there exist on M̃2n+s global vector fields ξ1, ...., ξs (called structure

vector fields), and their duals 1-forms η1, ..., ηs such that for all X,Y ∈ TM̃ and
α, β ∈ {1, ..., s} (see [3, 10])

ηα(ξβ) = δαβ, ϕξα = 0, ηα(ϕX) = 0, ϕ2X = −X +
∑s

α=1
ηα(X)ξα , (8)

then there exists on M̃ a Riemannian metric g satisfying

g(X,Y ) = g(ϕX,ϕY ) +
∑s

α=1
ηα(X)ηα(Y ), (9)

and

ηα(X) = g(X, ξα), g(ϕX,Y ) = −g(X,ϕY ), (10)
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for all α ∈ {1, ..., s}. M̃ is then said to be a metric ϕ-manifold. The ϕ-structure is
normal if Nϕ + 2

∑s
α=1

ξα ⊗ dηα = 0 where Nϕ is the Nijenhuis torsion of ϕ.

Let φ be the fundamental 2-form on M defined for all vector fields X, Y on M̃ by

φ(X,Y ) = g(X,ϕY ).

A normal metric ϕ-structure with closed fundamental 2-form will be called K-
structure and M̃2n+s called K-manifold. Finally if dη1 = ... = dηs = φ, the K-
structure is called S-structure and M̃ is called S-manifold.

The Riemannian connection ∇̃ of an S-manifold satisfies

∇̃Xξα = −ϕX, α ∈ {1, ..., s},

(∇̃Xϕ)Y =
∑s

α=1
(g(ϕX,ϕY )ξα + ηα(Y )ϕ2X), X, Y ∈ T (M̃).

Also in an S-manifold the following relations hold [9]:

R̃(X,Y )ξα = (

s∑

β=1

ηβ(X))ϕ2Y − (

s∑

β=1

ηβ(Y ))ϕ2X , (11)

S(X, ξα) = 2n
s∑

β=1

ηβ(X), (12)

for all α ∈ {1, ..., s}.

When s = 1, an S-manifold reduces to a Sasakian manifold.

Let M̃ be a (2n+s)-dimensional S-manifold with structure tensors (ϕ, ξα, ηα, g),

α ∈ {1, ..., s}. A (2m + s)-dimensional submanifold M of M̃ is said to be invariant

if all of ξα (α = 1, ..., s) are always tangent to M and ϕX ∈ TM , for any X ∈ TM .
It is easy to show that an invariant submanifold of an S-manifold is an S-manifold
too.

Lemma 1 (see [4]). Let M be an invariant submanifold of an S-manifold M̃ . Then,

for any X,Y ∈ TM , α ∈ {1, ..., s}

σ(X, ξα) = 0 , (13)

σ(X,ϕY ) = ϕσ(X,Y ) = σ(ϕX,Y ) . (14)

Proposition 1 (see [10]). Any invariant submanifold M of an S-manifold M̃ is

minimal.

Theorem 1 (see [16]). Let M be an invariant submanifold of an S-manifold M̃ .

Then M is parallel if and only if M is totally geodesic.
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3 Pseudo-parallel invariant submanifolds

In this section we study pseudo-parallel (resp. Ricci generalized pseudo-parallel)
invariant submanifolds of S-manifolds.

Theorem 2. Let M be an invariant submanifold of an S-manifold. Then, M is

pseudo-parallel if and only if M is totally geodesic, provided L 6= 1.

Proof. Suppose that M is pseudo-parallel, then R̃ . σ = LQ(g, σ) holds on M . So,
from (5) and (6) we get

R⊥(X,Y )σ(Z,W ) − σ(R(X,Y )Z,W ) − σ(Z,R(X,Y )W )

= L {−g(Y,Z)σ(X,W ) + g(X,Z)σ(Y,W )

−g(Y,W )σ(X,Z) + g(X,W )σ(Y,Z)} , (15)

for all X,Y,Z,W ∈ TM .

Putting X = ξα in (15) and from (13), for any α ∈ {1, ..., s} we have

R⊥(ξα, Y )σ(Z,W ) − σ(R(ξα, Y )Z,W ) − σ(Z,R(ξα, Y )W )

= L{g(ξα, Z)σ(Y,W ) + g(ξα,W )σ(Y,Z)} . (16)

Again putting W = ξα in (16), we have

−σ(Z,R(ξα, Y )ξα) = Lσ(Y,Z). (17)

Since M is an S-manifold, then from (11) we get

R̃(ξα, Y )ξα = ϕ2Y . (18)

Substituting (18) in (17) and from (14), (8) we have

(1 − L)σ(Z, Y ) = 0 ,

i. e. σ(Z, Y ) = 0, which gives M is totally geodesic, provided L 6= 1. If σ = 0, then
it can be trivially proved that M is pseudo-parallel.

As a direct consequence of Theorem 2, we get the following

Corollary 1. Let M be an invariant submanifold of an S-manifold. Then, M is

semi-parallel if and only if M is totally geodesic.

Theorem 3. Let M be an invariant submanifold of an S-manifold. Then, M

is Ricci generalized pseudo-parallel if and only if M is totally geodesic, provided

L 6= 1

2m
.
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Proof. Let M be a (2m + s)-dimensional invariant Ricci generalized pseudo-parallel
submanifold of an S-manifold. Therefore

R̃ . σ = LQ(S, σ) ,

for all vector fields X,Y,Z,W tangent to M , where L denotes the real-valued func-
tion on M . The above equation can written as

R⊥(X,Y )σ(Z,W ) − σ(R(X,Y )Z,W ) − σ(Z,R(X,Y )W )

= L {−S(Y,Z)σ(X,W ) + S(X,Z)σ(Y,W )

−S(Y,W )σ(X,Z) + S(X,W )σ(Y,Z)} . (19)

Putting W = X = ξα, for any α ∈ {1, ..., s} in (19), we obtain

−σ(Z,

s∑

β=1

ηβ(ξα)ϕ2Y −

s∑

β=1

ηβ(Y )ϕ2ξα) = LS(ξα, ξα)σ(Y,Z) .

This implies
−σ(Z,ϕ2Y ) = LS(ξα, ξα)σ(Y,Z) . (20)

Since M is an S-manifold, by the use of (12), (8) and (14), we have

σ(Y,Z) = 2m Lσ(Y,Z) .

So,
(1 − 2m L)σ(Y,Z) = 0 .

Conversely, let M be totally geodesic, i.e. σ = 0, then from (19) we get M is Ricci
generalized pseudo-parallel.

4 Invariant submanifolds satisfying some conditions

Recall that the (0, 4) Riemann-Christoffel curvature tensor R of (M,g) is related
to the (1, 3)-tensor R by R(X,Y,Z,W ) = g(R(X,Y )Z,W ), it possesses the following
property [17]:

R(X,Y,Z,Z) = 0,

for any vector fields X,Y,Z and W .
Let us consider that M be an invariant (2m + s)-dimensional submanifold of an

(2n + s)-dimensional S-manifold M̃ .

Theorem 4. An invariant submanifold of an S-manifold satisfies Q(σ,R) = 0 if

and only if it is totally geodesic.

Proof. If M satisfies Q(σ,R) = 0, then we have

0 = Q(σ,R)(U1, U2, U3, U4;X,Y )
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= ((X ∧σ Y ) . R)(U1, U2, U3, U4)

= −R((X ∧σ Y )U1, U2, U3, U4) − R(U1, (X ∧σ Y )U2, U3, U4)

−R(U1, U2, (X ∧σ Y )U3, U4) − R(U1, U2, U3, (X ∧σ Y )U4),

for all vector fields X,Y,Ui (i = 1, ..., 4) tangent to M .
Putting in formula (2) B = σ and T = R, the above equation turns into

0 = −σ(Y,U1)R(X,U2, U3, U4) + σ(X,U1)R(Y,U2, U3, U4)

−σ(Y,U2)R(U1,X,U3, U4) + σ(X,U2)R(U1, Y, U3, U4)

−σ(Y,U3)R(U1, U2,X,U4) + σ(X,U3)R(U1, U2, Y, U4)

−σ(Y,U4)R(U1, U2, U3,X) + σ(X,U4)R(U1, U2, U3, Y ). (21)

Putting U3 = Y = ξα, α ∈ {1, ..., s} in (21) we have

σ(X,U1)R(ξα, U2, ξα, U4) + σ(X,U2)R(U1, ξα, ξα, U4) = 0, (22)

by the use of (11), (22) becomes

σ(X,U1)g(ϕ2U2, U4) − σ(X,U2)g(ϕ2U1, U4) = 0.

This implies

−σ(X,U1)g(U2, U4) + σ(X,U1)

s∑

β=1

ηβ(U2)ηβ(U4)

+σ(X,U2)g(U1, U4) − σ(X,U2)
s∑

β=1

ηβ(U1)ηβ(U4) = 0, (23)

We consider {e1, ..., em, em+1 = ϕe1, ..., e2m = ϕem, e2m+1 = ξ1, ..., e2m+s = ξs}
a local orthonormal frame of TM . We insert U4 = U2 = ek in (23) and taking
summation over k = 1, ..., 2m + s, we get

−(2m + s)σ(X,U1) + sσ(X,U1) + σ(X,U1) = 0,

which implies
(−2m + 1)σ(X,U1) = 0.

Hence, M is totally geodesic. Conversely, if σ = 0, then from (21) it follows that
Q(σ,R) = 0.

Theorem 5. An invariant submanifold of an S-manifold satisfies Q(S, σ) = 0 if

and only if it is totally geodesic.

Proof. If Q(S, σ) = 0, and from (7) we get

0 = −S(Y,Z)σ(X,W ) + S(X,Z)σ(Y,W )

= −S(Y,W )σ(Z,X) + S(X,W )σ(Z, Y ).
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Putting X = W = ξα in the above equation, for any α ∈ {1, ..., s} we have

S(ξα, ξα)σ(Y,Z) = 0.

By (12), we have
2m σ(Y,Z) = 0.

Conversely, let M be totally geodesic, taking account of (7), we get Q(S, σ) = 0.

In view of our results and Theorem 1 , we can state the following Corollary:

Corollary 2. Let M be an invariant (2m + s)-dimensional submanifold of an S-

manifold. Then the following assertions are equivalent:

1. M is parallel.

2. M is semi-parallel.

3. M is pseudo-parallel, provided L 6= 1.

4. M is Ricci generalized pseudo-parallel, provided L 6= 1

2m
.

5. M satisfies the condition Q(σ,R) = 0.

6. M satisfies the condition Q(S, σ) = 0.

7. M is totally geodesic.
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