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n-Torsion Regular Rings

Peter V. Danchev

Abstract. As proper subclasses of the classes of unit-regular and strongly regular
rings, respectively, the two new classes of n-torsion regular rings and strongly n-
torsion regular rings are introduced and investigated for any natural number n. Their
complete isomorphism classification is given as well. More concretely, although it has
been recently shown by Nielsen-Šter (TAMS, 2018) that unit-regular rings need not
be strongly clean, the rather curious fact that, for each positive odd integer n, the
n-torsion regular rings are always strongly clean is proved.
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Introduction and Fundamentals

Everywhere in the text of the present article, let all rings be assumed associative
with unity. Our standard notations and notions are in agreement with those from
[18], [20] and [25]. For instance, for such a ring R, U(R) denotes the group of all
units, Nil(R) the set of all nilpotents, Id(R) the set of all idempotents and J(R) the
Jacobson radical of R, respectively. Besides, the finite field with m elements will be
denoted by Fm; m ∈ N – the set of all naturals. For an element g of a group G, the
letter o(g) will denote the order of g. The symbol LCM(n1, . . . , nk) will be reserved
for the least common multiple of n1, . . . , nk ∈ N; k ∈ N.

About the more specific terminology, let us remember that a ring R is called
unit-regular in [16] if, for every r ∈ R, there is u ∈ U(R) with r = rur. If, however,
r = r2u, the ring R is called strongly regular. It is well known that strongly regular
rings are exactly the reduced unit-regular rings or, in other words, the abelian unit-
regular rings as being a subdirect product of division rings. In [8] it was also shown
that strongly regular rings are precisely the pseudo uniquely unit-regular rings.

At the same time, a ring R is called clean in [21] provided that, for every r ∈ R,
there are u ∈ U(R) and e ∈ Id(R) such that r = u + e. It was established in [2]
that unit-regular rings are always clean. If, in addition, ue = eu, the clean ring
R is called strongly clean. Surprisingly, in [23] a mysterious matrix example o f a
unit-regular ring which is not strongly clean was constructed.

Besides, a ring R is said to be n-torsion clean in [13] if, for each r ∈ R, there
exist u ∈ U(R) and e ∈ Id(R) such that r = u + e and un = 1 with n being the
smallest possible having this property. If, in addition, ue = eu, the n-torsion clean
ring is said to be strongly n-torsion clean.
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The aim of this article is to investigate in detail the following two newly de-
fined proper subclasses of unit-regular rings and (strongly) n-torsion clean rings,
respectively, by finding their close relationship.

Definition 1. A ring R is said to be n-torsion regular if there is n ∈ N and, for
each element r of R, there exists u ∈ U(R) such that r = rur with un = 1 and n is
the minimal possible having this property.

Without the restriction of minimality, the ring will just be called almost n-torsion
regular.

Note that these rings form a proper subclass of the class of all unit-regular rings.
It is clear that every unit-regular ring possessing unit group of bounded exponent n
for some n ∈ N, that is, Un(R) = {1}, is (almost) n-torsion regular. Even something
more: o(w) ≤ n for every w ∈ U(R). In fact, one can write that w−1 = w−1uw−1

for some u ∈ U(R) with un = 1 (and minimal n for all possible decompositions).
Thus w = u and o(w)/n, whence o(w) ≤ n, as claimed.

Definition 2. A ring R is said to be strongly n-torsion regular if there is n ∈ N
and, for each element r of R, there exists u ∈ U(R) such that r = r2u with un = 1
and n is the minimal possible having this property.

Without the restriction of minimality, the ring will just be called almost strongly
n-torsion regular.

Notice that these rings form a proper subclass of the class of all strongly regular
rings which, as aforementioned, are known to be a subdirect product of division
rings. It is plainly seen that boolean rings are precisely the rings which are strongly
1-torsion regular. Thus the introduced above classes of rings can be treated as
a natural generalization of boolean rings. Moreover, one sees that the (almost)
strongly n-torsion regular rings are actually the commutative (almost) n-torsion
regular ones. In fact, for any r ∈ R, one may have the sequence of equalities
r = r2u = r3u2 = · · · = rn+1un = rn+1 and so the utilization of the famous classical
Jacobson’s Theorem substantiates our claim.

Let us notice that in [9] the classes of invo-regular and strongly invo-regular rings
were investigated. In our terminology, (strongly) invo-regular rings are precisely
rings which are either (strongly) 1-torsion regular or (strongly) 2-torsion regular
or, in other words, they are almost 2-torsion regular removing the condition on
minimality.

1 Preliminaries and Examples

Imitating [13], for some arbitrary but fixed n ∈ N we shall say that a ring R
is almost n-torsion clean if, for every r ∈ R, there exists u ∈ U(R) with un = 1
and there exists e ∈ Id(R) such that r = u + e. If, in addition, the elements u and
e commute, R is said to be almost strongly n-torsion clean. The case n = 2 was
settled in detail in [5] under the name invo-clean rings. Precisely, there was proved
that invo-regular rings are, actually, invo-clean (see also [7] and [9]).
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Proposition 1. All almost n-torsion regular rings are almost m-torsion clean for
some m ≤ n.

Proof. Suppose that R is almost n-torsion regular, then R is unit-regular and, as
noted above, R has to be clean. But it is readily checked as above that in almost
n-torsion regular rings all units are n-bounded. Therefore, R is m-torsion clean for
some natural m less than or equal to n, as asserted.

Proposition 2. All almost strongly n-torsion regular rings are almost strongly n-
torsion clean for some m ≤ n.

Proof. Similar arguments as those from Proposition 1 work to get the pursued as-
sertion.

As immediate commutative examples of n-torsion regular rings for a concrete
n ∈ N, a direct check shows that F2 is 1-torsion regular, F3 and F3×F3 are 2-torsion
regular and F5 is 4-torsion regular. It is, however, very intriguing whether or not
non-commutative examples do exist. As it will be hopefully showed in the sequel
(compare with Theorem 1 stated and proved below), non-commutative examples do
not exist in the case of odd number n, however.

2 Preliminaries and Results

We start here with the following somewhat surprising fact.

Proposition 3. Let n be an odd natural. Then R is an almost n-torsion regular
ring if and only if R is an almost strongly n-torsion regular ring.

Proof. Since the right-to-left implication is self-evident, we will be concentrating on
the left-to-right one. First, one sees that 2 = 0. In fact, writing (−1) = (−1)w(−1)
for some w satisfying wn = 1, we infer that w = −1 and thus (−1)n = 1, i.e., −1 = 1
which amounts to 2 = 0, as expected.

What we intend to show next is that R is reduced (that is, all its nilpotents are
zero) and thus abelian (that is, all its idempotents are central). To that purpose,
given q ∈ Nil(R), we deduce that 1 + q ∈ 1 + Nil(R) ⊆ U(R). So, by what we
have commented above, (1 + q)n = 1 and expanding this by the Newton’s binomial
formula, we derive that

(1 + q)n =
n∑

i=0

(
n

i

)
qi.

But
(
n
0

)
=

(
n
n

)
= 1 as well as

(
n
1

)
= n = 2k + 1, which gives that

q + k2q
2 + · · ·+ kn−1q

n−1 + qn = 0,

where we put ki =
(
n
i

) ∈ N whenever i = 2, · · · , n− 1.
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Finally, one detects that q(1+k2q+· · ·+kn−1q
n−2+qn−1) = 0. Since the element

in the brackets is obviously invertible, we conclude that q = 0, as required. This
substantiates our claim that Nil(R) = {0}.

Furthermore, since for any r ∈ R it must be that r = rur for some n-torsion unit
u, and since ru is obviously an idempotent, whence by what we have already proved
above it is a central one, it follows that r = (ru)r = r(ru) = r2u, as required.

Concerning the even case for n, it was established in [9] that almost 2-torsion reg-
ular rings are almost strongly 2-torsion regular. We will now somewhat strengthen
this affirmation in the case when n = 4.

Proposition 4. Suppose R is an almost 4-torsion regular ring. Then R is almost
strongly 4-torsion regular.

Proof. If 2 = 0, we may adapt the idea from [9] to get the wanted claim. In
fact, for any u ∈ U(R), we have that u4 = 1 and hence u = 1 + (u − 1) with
(u− 1)4 = u4 − 1 = 0. Consequently, U(R) = 1 + Nil(R) and the application of [3]
or [12] assures that R must be boolean.

So, we shall assume that 2 6= 0. Writing 2 = 2v2 = 4v, for some v in R having
v4 = 1, and squaring, we obtain that 16 = 256, that is, 240 = 24.3.5 = 0. Since
(24, 3, 5) = 1, an easy trick ensures that R ∼= R1 × R2 × R3, where R1, R2, R3 are
either zero rings (not necessarily simultaneously) or almost 4-torsion regular rings
of characteristic 2, 3 and 5, respectively. We shall now examine the three possible
cases separately:

Case 1: 2 = 0. By what we have just shown, R1 is boolean (and so commutative).

Case 2: 3 = 0. As above, choosing q ∈ Nil(R2), we have (1 + q)4 = 1, i.e.,
q4 + q3 + q = 0. Therefore, q(1 + q2 + q3) = 0 which is tantamount to q = 0 as
1 + q2 + q3 inverts in R2. Thus R2 being reduced is abelian, and hence it has to be
almost strongly 4-torsion regular.

Case 3: 5 = 0. Same as above, for t ∈ Nil(R3), we obtain (1 + t)4 = 1, i.e.,
t4 − t3 + t2 − t = 0. Consequently, t(−1 + t − t2 + t3) = 0 which is equivalent to
t = 0 as −1 + t − t2 + t3 inverts in R3. Thus R2 will be reduced and thus abelian,
and hence it must be almost strongly 4-torsion regular.

Finally, after all procedures done, R is almost strongly 4-torsion regular, as
promised.

An important question which immediately arises is of whether or not the last
statement can be strengthened to an arbitrary natural n.

We continue with one more useful and applicable technicality.

Lemma 1. Let n ∈ N and let R be a ring whose elements satisfy the identity
xn+1 = x, while xk+1 6= x for some x, provided k < n and k ∈ N, that is, for every
k < n there exists x in R for which xk+1 is not equal to x. The next three items are
then true:
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1. R is reduced (i.e., Nil(R) = {0});

2. R is semiprimitive (i.e., J(R) = {0});

3. If R is primitive, then n = pm − 1 for some m ∈ N and R is a field with pm

elements.

Proof. Items (1) and (2) are rather obvious, which follow directly from the condition
xn+1 = x, so we omit their verification. The third item is an immediate consequence
of the fact that R is a PI-ring and of the significant classical Kaplansky’s Theorem
by using the method presented in details in [13].

The next statement sheds some additional light on the well-known characteriza-
tion of rings whose elements satisfy the equation xn+1 = x (compare also with [24]
and [10] for a more account).

Corollary 1. Suppose that n ∈ N. Then, for a ring R, the following two conditions
are equivalent:

1. R satisfies the equation xn+1 = x.

2. R is a subdirect product of finite fields Fp
mk
k

for some primes pk and integers
mk, k ∈ N, where (pmk

k − 1)/n for each k.

Proof. ”(1) ⇒ (2)”. With Lemma 1 at hand, R is a subdirect product of finite fields
Fi satisfying the equality xn+1 = x. Let us fix such a field F with pm elements. It
is then well known that U(F ) is a cyclic group of order pm − 1 which satisfies the
identity xn = 1. Thus pm − 1 divides n.

”(2) ⇒ (1)”. Letting R be a subdirect product of the required fields Fi, we then
easily see that each such field satisfies xn+1 = x, whence R will also satisfy this
identity.

By the same token, we can derive the following consequence.

Corollary 2. Suppose n ∈ N. Then, for a ring R, the following two conditions are
tantamount:

1. R satisfies the equation xn+1 = x with n minimal possible.

2. R is a subdirect product of finite fields Fp
mk
k

for some primes pk and integers
mk, k ∈ N, where (pmk

k − 1)/n for each k, and n = LCM(pmk
k − 1 | k ∈ N)

provided n is not a prime integer.

Some more clarifications to the quoted above statements are too needed. We do
that in the next statement.



A CLASS OF UNIT-REGULAR RINGS 25

Remark 1. For an arbitrary but fixed natural n, let J(n) be the class of rings which
satisfy the identity xn+1 = x, let TR(n) be the class of almost strongly n-torsion
regular rings (i.e., as in Definition 2, every element can be presented in the form
r = r2u = ur2 with un = 1), and let TC(n) be the class of strongly clean rings
such that every element can be presented as e + u with e2 = e and un = 1, where e
and u commute (see [13] for a more precise information). Then the relations J(n) =
TR(n) ⊆ TC(n) are valid. In fact, the inclusion TR(n) ⊆ J(n) is clear and also it
was already obtained above, whereas the converse containment is guaranteed with
the aid of Corollary 1. Thus J(n) = TR(n) holds, indeed. The same corollary also
shows that TR(n) ⊆ TC(n) (as well as, without any difficulty, Corollary 2 gives that
the same relations will also be fulfilled additionally assuming that n is minimal).

On the other hand, in order to confirm the above relationships by using an
element-wise presentation, for any element x the equality x = xn+1 forces that
x = x2y = yx2, where y = xn + xn−1 − 1 and possibly n ≥ 2. It is not too hard to
check that y2 = x2n−2−xn+1 and so y2 = 1 when n = 2. However, y3 = 2x3−1 6= 1
when n = 3, provided x3 6= 1 and 2 6= 0, etc., which unambiguously demonstrates
the complication of the general situation. Nevertheless, the utilization of [22] is a
guarantor that y could be chosen to be a unit and so yn = 1 because yn+1 = y.
About the minimality, as observed above, x = x2y with ym = 1 for some m < n will
imply by iteration that x = xm+1ym = xm+1 which contradicts that x = xm+1 is
not always an identity, that is, there exists some z ∈ R such that z 6= zm+1.

We are now ready to proceed to proving our main structural result, which is the
following criterion:

Theorem 1. Suppose n ∈ N is odd and R is a ring. Then the next two items are
equivalent:

(i) R is n-torsion regular.

(ii) R is strongly n-torsion regular.

Proof. The implication (i) ⇐ (ii) is straightforward. To show the reverse part (i) ⇒
(ii), we first will take into account the established above in Proposition 3 crucial fact
that almost n-torsion regular rings are, actually, almost strongly n-torsion regular.
That the minimality condition on n is trivially satisfied, now follows elementarily
by a direct verification.

For an arbitrary positive integer n, we can say slightly more in the ”strongly”
case. Specifically, the following is true:

Theorem 2. Suppose that n ∈ N. Then a ring R is strongly n-torsion regular ⇐⇒
R is a subdirect product of finite fields Fp

mk
k

for some primes pk and integers mk,
k ∈ N, where (pmk

k − 1)/n for each k, and n = LCM(pmk
k − 1 | k ∈ N) provided n is

not a prime integer.

Proof. It follows directly from Corollary 2 (2) in view of the comments in Remark 1
quoted above.



26 P.V. DANCHEV

As an immediate important consequence, in sharp contrast to [23], one yields
the following:

Corollary 3. For any odd n ∈ N, all (almost) n-torsion regular rings are strongly
regular, and thus they are strongly clean.

3 Concluding Discussion and Open Problems

In conclusion, let us give some more detailed comments and pose a few problems
of certain interest and importance:

In [3] the next class of rings was considered – for any r ∈ R, there exist q ∈ Nil(R)
and e ∈ Id(R) such that r = r(q + e)r. Besides, it was asked whether or not these
rings are nil-clean in the sense of Diesl ( [15]), saying that every element is the sum
of a nilpotent and an idempotent.

In this direction, we shall now put into consideration the following generalization
of invo-regular rings from [9]: Let, for each r ∈ R, there be v ∈ U(R) with o(v) ≤ 2
and e ∈ Id(R) such that r = r(v + e)r. We assert that such a ring R can be
decomposed as the direct product of a ring of characteristic 2 and of a ring of
characteristic 3. Indeed, writing 2 = 4(v+e) = 4v+4e, and so squaring 2−4v = 4e,
we deduce that 12 = 0. Since 4 = 0 ⇐⇒ 2 = 0 (in fact, 4 = 22 = 0 yields
that 2 ∈ J(R) = {0} as being a central nilpotent and taking into account that R
is von Neumann regular). Now, the Chinese Remainder Theorem gives the desired
decomposition, say R ∼= P × L. Moreover, it is clear that all units are of the type
v + e, so that if t is an arbitrary nilpotent, then 1 + t is a unit and it must be
that v = t + (1 − e). The Lemma on Involutions (see, e.g., [4] and [5]) applies
now to get that 1 − e = 1, i.e., e = 0. Consequently, t = v − 1 and it follows
that t2 = 0 when 2 = 0 and t = 0 when 3 = 0; to see the latter, one has that
t3 = (v − 1)3 = v3 − 1 = v − 1 = t whence t(t2 − 1) = 0 insures that t = 0
because t2 − 1 is obviously a unit. Therefore, to look at the direct factor P having
characteristic 2, we can present v + e = (v + 1) + (1 + e) ∈ Nil(P ) + Id(P ), where
(v + 1)2 = v2 + 1 = 0. So, in parallel to the above commentary, pertaining to [3],
one reasonably may ask whether it is nil-clean. As for the direct factor L having
characteristic 3, it is necessarily abelian being reduced and so any its element x
satisfies the equation x = x2(v + e) = (v + e)x2 since x(v + e) and (v + e)x are both
idempotents in L. That is why, L is a strongly regular ring and hence it is a subdirect
product of division rings. One may suspect that it could be embedded in the direct
product

∏
µ Z3 for some ordinal µ. Furthermore, if in addition we generally have

that ve = ev, then we may obtain a complete characterization like this: For any unit
u of the ring P we have that u = v + e will imply u2 = 1 + e ∈ U(P )∩ Id(P ) = {1}.
Therefore, (u − 1)2 = 0, so that u ∈ 1 + Nil(R) whence U(R) = 1 + Nil(R), and
thus, bearing in mind that P is exchange (as it is von Neumann regular), we can
successfully employ [3] or [12] (see also [6] or [11]) to get the desired description of P .
As for L, one observes for any u = v+e ∈ L that u3 = (v+e)3 = v3+e3 = v+e = u,
so that u2 = 1 holds again and we can process as in [6] or [11] taking into account
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that L is also exchange being von Neumann regular. In addition, U2R = {1} and R
is von Neumann regular (and hence exchange).

On the other vein, in [10] and [24] were classified those rings R whose elements
x satisfy the equation xn = x for some arbitrary fixed n ∈ N with n > 1. This was
considerably extended in [10] to rings satisfying the more general polynomial identity
xn = ±x. As these things are closely related to our considerations above, we will
now consider those rings R for which xn − x ∈ Nil(R). According to [19, Theorem
A.1], Nil(R) ¢ R whenever n 6≡ 1(mod 3) and n 6≡ 1(mod 8) – note that by the
paramount Dirichlet’s Theorem there exists an infinite number of primes having that
property. Consequently, in the factor-ring R/Nil(R) the equation xn = x is true for
all its elements, so by what we have noted above we can characterize such rings R.
Similarly, one can treat the rings R for which xn ± x ∈ Nil(R). Certainly, of some
interest and importance is the description of these rings when n does not possess
these two limitations, but this will be the theme of some other research work where
a new approach is in use.

We close the work with several challenging questions.

In regard to Corollary 3, one states the following:

Problem 1. Are (almost) n-torsion regular rings strongly clean for any n ∈ N?

Observing that Proposition 3 makes sense in that way when n is odd, so the
question remains left-open when n is even. However, in [9] this was answered in the
affirmative when n = 2 and in Proposition 4 when n = 4.

Problem 2. Does it follow that a ring is unit-regular if and only if it is both von
Neumann regular and clean?

It was proved in [16] that semiprimitive Artinian rings are always unit-regular.
Also, it is principally known that a ring is semiprimitive Artinian exactly when it is
simultaneously von Neumann regular and Noetherian. So, in that aspect, one may
ask the following:

Problem 3. Does it follow that a semiprimitive ring is Artinian if and only if it is
both Noetherian and clean?

Recall once again that the definition of an n-torsion clean ring is given in [13].

Problem 4. Suppose n is an arbitrary natural. Is it true that a ring is n-torsion
regular if and only if it is n-torsion clean and von Neumann regular (in particular,
unit-regular)?

In order to expand the considered above generalized version of invo-regular rings,
one can state:

Problem 5. Describe the following generalization of (almost) n-torsion regular
rings: ∀ r ∈ R, ∃ u ∈ U(R), un = 1, n ∈ N and ∃ e ∈ Id(R) such that r = r(u + e)r.

Since we are still in the class of von Neumann regular rings, a question that arises
is: are these rings unit-regular and/or clean? As we already have indicated above,
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by [2] all unit-regular rings are always clean and this implication is not reversible in
general.

On the other vein, let us recall that a ring R is called π-boolean if, for each
r ∈ R, there exists i ∈ N such that r2i = ri. In view of the related problems posed
in [3] and [12], one may ask the following:

Problem 6. Are π-boolean rings with nil-clean units also nil-clean?

Note that in such rings all units must be torsion.

Problem 7. Are von Neumann regular (in particular, unit-regular) rings with nil-
clean inner (inverse) elements or even with nil-clean units also nil-clean? Likewise,
is it true that von Neumann regular (in particular, unit-regular) rings with a finite
number of inner (inverse) elements are (strongly) clean?

In that direction, the interested reader can see and consult [8] as well.

In regard to the aforementioned Diesl’s nil-clean rings from [15], which were
somewhat discussed also above, we finish off with the next expansion.

Problem 8. Describe the structure of those rings whose elements are sums or
differences of a nilpotent of order ≤ 2 and an idempotent.

One observes that in such rings (in the general situation of a nilpotent they are
known in the existing literature as weakly nil clean rings – see, for consultation, [14]
and [1]), the index of nilpotence is at most 2. In fact, if t = q ± e is an arbitrary
nilpotent, where q2 = 0 and e2 = e, then it follows from [17, Proposition 2] that
e = 0 and so t = q has exponent not exceeding 2, as claimed.
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