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Properties of annihilator graph of a commutative

semigroup

Yahya Talebi, Sahar Akbarzadeh

Abstract. Let S be a commutative semigroup with zero. Let Z(S) be the set of all
zero-divisors of S. We define the annihilator graph of S, denoted by ANNG(S), as
the undirected graph whose set of vertices is Z(S)∗ = Z(S) − {0}, and two distinct
vertices x and y are adjacent if and only if annS(xy) 6= annS(x) ∩ annS(y). In this
paper, we study some basic properties of ANNG(S) by means of Γ(S). We also show
that if Z(S) 6= S, then ANNG(S) is a subgraph of Γ(S). Moreover, we investigate
some properties of the annihilator graph ANNG(S) related to minimal prime ideals
of S. We also study some connections between the domination numbers of annihilator
graphs and zero-divisor graphs.

Mathematics subject classification: 20M14, 05C75.
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1 Introduction

Let R be a commutative ring with nonzero identity, and let Z(R) be its set of
zero-divisors. There has been considerable attention in the literature to associating
graphs with algebraic structures (see [1] and [4]). Probably the most attention has
been to the zero-divisor graph Γ(R) for a commutative ring R.

Throughout this paper S is a commutative semigroup with zero whose operation
is written multiplicative and S∗ = S − {0}. The set of all zero-divisors of S is
denoted by Z(S) and Z(S)∗ = Z(S)−{0}. The concept of a zero divisor graph of S

is a simple undirected graph Γ(S) whose vertices are Z(S)∗ and for each two distinct
elements x and y in Z(S)∗ x is adjacent to y in Γ(S) if and only if xy = 0. In [7, 8]
it is proved that Γ(S) is connected and the diameter of Γ(S) is less than or equal
to three, if Γ(S) contains a cycle, then its girth is less than or equal to four. In [2],
Badawi introduced the concept of the annihilator graph for a commutative ring R,
denoted by AG(R), with vertices Z(R)∗ and two distinct vertices x and y adjacent
if and only if annR(xy) 6= annR(x)∪annR(y). Khashyarmanesh and Afkhami in [9]
studied the annihilator graph associated to a commutative semigroup S with zero.

In [3], P. P. Baruah, K. Patra defined and studied the annihilator graph
ANNG(R) of a commutative ring R, where the set of vertices of ANNG(R) is
Z(R)∗ = Z(R) − {0}, and two distinct vertices x and y are adjacent if and only
if annR(xy) 6= annR(x) ∩ annR(y). They proved that ANNG(R) is connected with
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diameter at most two. Also, if ANNG(R) contains a cycle, they obtained that girth
of ANNG(R) is at most four.

In this paper, we give the definition of the annihilator graph in other way. In this
paper, we define the annihilator graph for a commutative semigroup S, denoted by
ANNG(S). The graph ANNG(S) is an undirected graph with vertex set Z(S)∗ =
Z(S)−{0}, and two distinct vertices x and y are adjacent if and only if annS(xy) 6=
annS(x) ∩ annS(y), where annS(x) = {s ∈ S | xs = 0}. We investigate some
basic properties of ANNG(S) by means of Γ(S) and AG(S). We also show that if
Z(S) 6= S, then ANNG(S) is a subgraph of Γ(S). Also, some relations between the
domination numbers of ANNG(S) and Γ(S) are studied.

In order to make this paper easier to follow, we recall various notions which will
be used in the sequel. We use the standard terminology of graphs contained in [5].
Let G be an undirected graph. We denote the vertex set and the edge set of G

by V (G) and E(G). We use the notation x ∼ y to denote that x is adjacent to y

in G. The distance between two vertices x and y of G, denoted by d(x, y), is the
length of a shortest path connecting x and y, if such a path exists; otherwise, we
use d(x, y) = ∞.

The diameter of G is diam(G) = sup{d(x, y) | x and y are distinct vertices of
G}. The girth of G, denoted by gr(G), is the length of a shortest cycle in G. (If G

contains no cycle, then gr(G) = ∞). We say that G is connected if there exists a
path between any two distinct vertices. A graph G is complete if any two distinct
vertices are adjacent. The complete graph with n vertices will be denoted by Kn.
Also, we say that G is totally disconnected if no two vertices of G are adjacent.

A complete bipartite graph is a graph G which may be partitioned into two
disjoint nonempty vertex sets A and B such that two distinct vertices are adjacent
if and only if they are in distinct vertex sets. If one of the vertex sets is singleton,
we call G is a star graph. We denote the complete bipartite graph by Km,n, where
|A| = m and |B| = n (we allow m and n to be infinite cardinal); hence a star graph
is a K1,m.

Let G and H be two graphs. We use the notation H ≤ G (respectively, H ∼= G)
to denote that H is a subgraph of G (respectively, H is isomorphic to G). Also a
subgraph H of G is called an induced subgraph if, for each two distinct vertices of
H such that x ∼ y in G, we have x ∼ y in H.

Suppose that G and H are two graphs. H is called a refinement of G if V (G) =
V (H) and each edge in G is an edge in H.

A subset S of V is called a dominating set if every vertex in V −S is adjacent to at
least one vertex in S. The domination number γ(G) of G is the minimum cardinality
among the dominating sets of S. For any two graphs G and H, if G is identical to
H, then we write G = H, otherwise, we write G 6= H. Throughout this paper, we
consider commutative semigroups with more than one nonzero zero-divisor.
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2 Basic properties of ANNG(S)

In this section, we start by introducing some propositions for later applications
in this paper and study some basic properties of the annihilator graph ANNG(S) in
commutative semigroup.

The following proposition contains two cases of Lemma 2.1 of [2].

Proposition 1. Let R be a commutative ring.
(1) Let x and y be distinct elements of Z(R)∗. Then x ∼ y is not an edge of

AG(R) if and only if annR(xy) = annR(x) or annR(xy) = annS(y).
(2) If x ∼ y is an edge of Γ(R) for some distinct elements x, y ∈ Z(R)∗, then

x ∼ y is an edge of AG(R). In particular, if P is a path in Γ(R), then P is a path
in AG(R).

(3) If x ∼ y is not an edge of AG(R) for some distinct elements x, y ∈ Z(R)∗,
then annR(x) ⊆ annR(y) or annR(y) ⊆ annR(x).

Proposition 2 (see [6]). If G is the graph of a semigroup then G satisfies all of the
following conditions.

(1) G is connected.
(2) Any two vertices of G are connected by a path with ≤ 3 edges.
(3) If G contains a cycle then the core of G is a union of quadrilaterals and

triangles, and any vertex not in the core of G is an end.
(4) For each pair x, y of nonadjacent vertices of G, there is a vertex z with

N(x) ∪ N(y) ⊂ N(z).

Proposition 3 (see [10]). Let R be a ring.
(1) diam (Γ(R)) = 0 if and only if R is (nonreduced and) isomorphic to either

Z4 or Z2[y]
y2 .

(2) diam (Γ(R)) = 1 if and only if xy = 0 for each distinct pair of zero divisors
and R has at least two nonzero zero divisors.

(3) diam(Γ(R)) = 2 if and only if either (i) R is reduced with exactly two minimal
primes and at least three nonzero zero divisors, or (ii) Z(R) is an ideal whose square
is not (0) and each pair of distinct zero divisors has a nonzero annihilator.

(4) diam(Γ(R)) = 3 if and only if there are zero divisors a 6= b such that (0 :
(a, b)) = (0) and either (i) R is a reduced ring with more than two minimal primes,
or (ii) R is nonreduced.

Proposition 4 (see [11]). Suppose for a fixed integer n ≥ 2, that R = R1×
R2 × ... × Rn, where Ri is an integral domain for each i = 1, 2, ..., n. Then

(1) γ(Γ(R)) = n = w(Γ(R)) if n ≥ 3.
(2) γ(Γ(R)) = 2 = w(Γ(R)) if n = 2 and min{|R1|, |R2|} ≥ 3.
(3) γ(Γ(R)) = 1 < w(Γ(R)) if n = 2 and min{|R1|, |R2|} = 2.

Lemma 1. Let S be a commutative semigroup.
(1) If x and y are distinct elements of Z(S)∗, then x ∼ y is not an edge of

ANNG(S) if and only if annS(x) = annS(xy) = annS(y).
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(2) If x ∼ y is an edge of Γ(S) for some distinct elements x, y ∈ Z(S)∗, then
x ∼ y is an edge of ANNG(S).

(3) If dΓ(S)(x, y) = 3 for some distinct elements x, y Z(S)∗, then x ∼ y is an
edge of ANNG(S).

(4) If x ∼ y is not an edge of ANNG(S) for some distinct elements x, y ∈ Z(S)∗,
then there is a w ∈ Z(S)∗−{x, y} such that x ∼ w ∼ y is a path in Γ(S), and hence
x ∼ w ∼ y is also a path ANNG(S).

(5) If x ∼ y is an edge of AG(S) for some distinct elements x, y ∈ Z(S)∗, then
x ∼ y is an edge of ANNG(S).

(6) If ANNG(S) = Γ(S), then ANNG(S) = AG(S).

Proof. (1) Suppose that x ∼ y is not an edge of ANNG(S). Then annS(xy) =
annS(x) ∩ annS(y) by definition. Thus annS(xy) ⊆ annS(x) and annS(xy) ⊆
annS(y). But annS(x) ⊆ annS(xy) and annS(y) ⊆ annS(xy). Hence annS(x) =
annS(xy) = annS(y).

Conversely, suppose that annS(x) = annS(xy) = annS(y). Then annS(xy) =
annS(x) ∩ annS(y). Hence x ∼ y is not an edge of ANNG(S) by definition.

(2) Suppose that x ∼ y is an edge of Γ(S) for some distinct elements x, y ∈ Z(S)∗.
Then xy = 0 and annS(xy) = annS(0) = S. Since x 6= 0, y 6= 0, then annS(x) 6= S

and annS(y) 6= S. Therefore annS(xy) 6= annS(x) and annS(xy) 6= annS(y). Hence
x ∼ y is an edge of ANNG(S) by (1).

(3) Suppose that dΓ(S)(x, y) = 3 for some distinct elements x, y ∈ Z(S)∗. So
assume x ∼ a ∼ b ∼ y is a shortest path connecting x and y in Γ(S), where
a, b ∈ Z(S)∗ and a 6= b. This implies xa = 0, ab = 0, by = 0, xb 6= 0 and
ay 6= 0. Now xa = 0 ⇒ xya = 0 ⇒ a ∈ annS(xy) and by = 0 ⇒ xyb = 0 ⇒
b ∈ annS(xy). Thus {a, b} ⊆ ann(xy) such that a 6∈ annS(y) and b 6∈ annS(x).
Therefore annS(xy) 6= annS(x) and annS(xy) 6= annS(y). Hence x ∼ y is an edge
of ANNG(S) by (1).

(4) Suppose that x ∼ y is not an edge of ANNG(S) for some distinct elements
x, y ∈ Z(S)∗. Then annS(x) = annS(y) = annS(xy) by (1). Also x ∼ y is not
an edge of Γ(S) by (2) and hence xy 6= 0. Therefore w ∈ {x, y}, then xy = 0, a
contradiction. Thus w ∈ Z(S)∗ − {x, y} such that x ∼ w ∼ y is a path in Γ(S).
Hence x ∼ w ∼ y is a path in ANNG(S) by (2).

(5) Suppose that x ∼ y is an edge of AG(S) for some distinct elements x, y ∈
Z(S)∗. Then annS(xy) 6= annS(x) and annS(xy) 6= annS(y) by (1) of Proposition
1. Hence x ∼ y is an edge of ANNG(S) by (1).

(6) Let ANNG(S) = Γ(S). If possible, suppose that ANNG(S) 6= AG(S). Then
there are some distinct elements x, y ∈ Z(S)∗ such that x ∼ y is an edge of ANNG(S)
that is not an edge of AG(S). So x ∼ y is not an edge of Γ(S) by (2) of Proposition
1, and hence ANNG(S) 6= Γ(S), a contradiction. Thus ANNG(S) = AG(S).

In view of Lemma 1 (4), we have Theorem 1.

Theorem 1. Let S be a commutative semigroup with |Z(S)∗| ≥ 2. Then ANNG(S)
is connected and diam (ANNG(S)) ≤ 2.



26 PROPERTIES OF ANNIHILATOR GRAPH OF A COMMUTATIVE SEMIGROUP

Proof. Let x and y be two distinct elements of Z(S)∗. If x ∼ y is an edge of
ANNG(S), then d(x, y) = 1.

Suppose that x ∼ y is not an edge of ANNG(S). Then there is a w ∈ Z(S)∗ −
{x, y} such that x ∼ w ∼ y is a path in Γ(S), and hence x ∼ w ∼ y is a path in
ANNG(S) by Lemma 1 (4). Thus d(x, y) = 2. Hence ANNG(S) is connected and
diam (ANNG(S)) ≤ 2.

3 Some properties of ANNG(S) by means of AG(S) and Γ(S)

In this section, we express some basic properties of ANNG(S) by Γ(S).

Theorem 2. If Z(S) 6= S, then Γ(S) ≤ ANNG(S).

Proof. Since Z(S) 6= S, there exists an element a ∈ S − Z(S). Then, for each two
distinct elements x, y ∈ S∗, we have ax 6= 0 and ay 6= 0. Hence a 6∈ annS(x) and
a 6∈ annS(y). Thus a 6∈ annS(x) ∩ annS(y). Now let x and y be adjacent in Γ(S).

Therefore xy = 0. Hence a(xy) = 0 ⇒ a ∈ annS(xy). So, annS(xy) 6= annS(x)∩
annS(y), which implies that x is adjacent to y in ANNG(S). We also have V (Γ(S)) =
V (ANNG(S)), and so Γ(S) is a subgraph of ANNG(S).

Recall that a monoid is a semigroup with an identity.

Corollary 1. Let S be a monoid such that 1 6= 0. Then Γ(S) ≤ ANNG(S).

Proposition 5. Let Z(S) 6= S. Then ANNG(S) is connected with diameter less
than four and gr(ANNG(S)) ≤ 4 or ∞.

Proof. Since Γ(S) is a subgraph of ANNG(S), it follows, from (1) of Propo-
sition 2.

Proposition 6. Suppose that for each two distinct elements x and y of S, we have
xy = 0, xy = y or xy = x, then ANNG(S) ≤ Γ(S).

Proof. Let x and y be adjacent vertices in ANNG(S). Hence annS(x) 6= annS(xy) 6=
annS(y) by Lemma 1 (1). Then xy 6= x and xy 6= y. So, by hypothesis, xy = 0. Thus
x ∼ y is an edge in Γ(S). Because V (Γ(S)) = V (ANNG(S)), we have ANNG(S) ≤
Γ(S).

The next corollary immediately follows from Theorem 2 and Proposition 6.

Corollary 2. Suppose that Z(S) 6= S and, for each two distinct elements x and y

of S, we have xy = 0, xy = y or xy = x, then ANNG(S) ∼= Γ(S).

The next theorem shows that there exists a path in ANNG(S) which is not a
path in Γ(S).
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Theorem 3. Let x and y be distinct nonzero adjacent vertices in ANNG(S) and
xy 6= 0. If there is a w ∈ annS(xy) − {x, y} such that wx 6= 0 or wy 6= 0, then
x ∼ w ∼ y is a path in ANNG(S) which is not a path in Γ(S) and ANNG(S)
contains a cycle C of length 3 such that at least two edges of C are not the edges of
Γ(S).

Proof. Suppose that x ∼ y is an edge of ANNG(S) with xy 6= 0. Assume that there
is a w ∈ annS(xy)−{x, y} such that wx 6= 0 or wy 6= 0. Hence x 6∈ annS(w) or y 6∈
annS(w). Then x 6∈ annS(w)∩annS(y). Since w ∈ annS(xy), we have 0 = w(xy) =
x(wy), and hence x ∈ annS(wy). Thus annS(wy) 6= annS(w) ∩ annS(y). Therefore
w is adjacent to y in ANNG(S). Similarly, y ∈ annS(xw) − (annS(x) ∩ annS(w)).
Hence w is adjacent to x in ANNG(S). Thus x ∼ w ∼ y is a path in ANNG(S).
Since wx 6= 0 or wy 6= 0, we have x ∼ w ∼ y is not a path in Γ(S). Therefore,
C : x ∼ w ∼ y ∼ x is a cycle of length 3 in ANNG(S) and at least two edges C are
not the edges of Γ(S).

Theorem 4. Let x and y be distinct adjacent vertices in ANNG(S) such that xy 6= 0,
for some x, y ∈ Z(S)∗. If x2y 6= 0 and xy2 6= 0, then there exists w ∈ Z(S)∗−{x, y}
such that x ∼ w ∼ y is a path in ANNG(S) which is not a path in Γ(S). In this
case gr(ANNG(S)) = 3.

Proof. Suppose that x is adjacent to y in ANNG(S) and xy 6= 0. Then there exists
w ∈ annS(xy)−(annS(x)∩annS(y)) such that w 6= 0. If w = x, then wxy = x2y = 0,
which is impossible. If w = y, then wxy = xy2 = 0, which is impossible. Therefore
w ∈ annS(xy) − {x, y} such that wx 6= 0 or wy 6= 0. Thus x ∼ w ∼ y is a path
in ANNG(S) which is not a path in Γ(S). Now C : x ∼ w ∼ y ∼ x is a cycle in
ANNG(S) of length three, and so gr(ANNG(S)) = 3.

Recall that the semigroup S is called reduced if, for each x ∈ S, xn = 0 implies
that x = 0.

Corollary 3. Let S be a reduced commutative semigroup. Suppose that there exist
distinct elements x, y in Z(S)∗ such that x is adjacent to y in ANNG(S) and xy 6= 0.
Then there exists w ∈ annS(xy)−{x, y} such that x ∼ w ∼ y is a path in ANNG(S)
which is not a path in Γ(S).

Proof. Since S is reduced and xy 6= 0, we have x2y2 = (xy)2 6= 0. This implies
x2y 6= 0 and xy2 6= 0. Now the claim clearly follows from Theorem 4.

Theorem 5. Let S be a reduced semigroup, where Γ(S) ≤ ANNG(S) and Γ(S) 6=
ANNG(S). Then gr(ANNG(S)) = 3. Moreover, there is a cycle of length three in
ANNG(S) such that at least two edges of C are not the edges of Γ(S).

Proof. Since ANNG(S) 6= Γ(S), there are some distinct elements x, y ∈ Z(S)∗ such
that x ∼ y is an edge of ANNG(S) that is not an edge of Γ(S). As S is reduced,
we have (xy)2 6= 0. This implies x2y 6= 0 and xy2 6= 0. Now the claim follows from
Theorem 4.
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Corollary 4. Let S be a reduced semigroup, Z(S) 6= S and Γ(S) 6= ANNG(S).
Then gr(ANNG(S)) = 3.

The following example shows that the condition that S being reduced in Corol-
lary 4 is necessary.

Example 1. Let S = Z8 be a multiplicative semigroup. Then S is not a reduced
semigroup and Γ(S) ∼= K1,2 and ANNG(S) ∼= K3. Also 2̄ ∼ 6̄ is an edge in
ANNG(S) which is not an edge in Γ(S) and 4̄ is the only element belonging to
annS(2̄.6̄) − {2̄, 6̄}. But 2̄ ∼ 4̄ ∼ 6̄ is a path in ANNG(S) which is a path in Γ(S).

Theorem 6. Let x and y be distinct adjacent vertices in ANNG(S) such that x is
not adjacent to y in AG(S). Then there is a w ∈ Z(S)∗−{x, y} such that x ∼ w ∼ y

is a path in ANNG(S) and ANNG(S) contains a cycle C : x ∼ w ∼ y ∼ x of length
three such that exactly one edge of C is not an edge of AG(S).

Proof. Suppose that x ∼ y is an edge of ANNG(S) that is not an edge of AG(S).
Then annS(x) ⊆ annS(y) or annS(y) ⊆ annS(x) by (3) of Proposition 1, and there
is a w ∈ Z(S)∗ − {x, y} such that x ∼ w ∼ y is a path in Γ(S). Thus x ∼ w ∼ y is
a path in ANNG(S) by Lemma 1 (2). Hence C : x ∼ w ∼ y ∼ x is a cycle of length
three in ANNG(S). We have x ∼ w ∼ y is a path in AG(S) and thus exactly one
edge of C is not an edge of AG(S).

Corollary 5. Suppose that Γ(S) ≤ ANNG(S) and ANNG(S) 6= Γ(S), then
gr(ANNG(S)) = 3. Moreover, there is a cycle C in ANNG(S) of length three,
such that exactly one edge of C is not an edge of AG(S).

Proof. Since ANNG(S) 6= AG(S), there are x and y in Z(S)∗ such that x is adjacent
to y in ANNG(S) that is not an edge in AG(S). Now the claim follows from
Theorem 6.

Lemma 2. Let S be a reduced commutative semigroup, and let z ∈ Z(S)∗. Then
annS(z) = annS(zn) for each positive integer n ≥ 2.

Proof. Let x ∈ annS(zn). So xzn = 0, which implies that 0 = (xzn).xn−1 = xnzn =
(xz)n. Since S is reduced, we have xz = 0 and x ∈ annS(z). Also it is clear that
annS(z) ⊆ annS(zn). Thus annS(zn) = annS(z).

Lemma 3. Let S be reduced, and ANNG(S) be a complete graph. Then, for each
x ∈ Z(S)∗, we have x2 = x.

Proof. Let x ∈ Z(S)∗. If possible, suppose that x2 6= x. Since S is reduced, we
have x3 6= 0. Now annS(x) = annS(x2) and annS(x) = annS(x3) by Lemma 2.
Therefore annS(x) = annS(x3) = annS(x2) and hence x is not adjacent to x2 in
ANNG(S), a contradiction.

Theorem 7. Let S be reduced and ANNG(S) be complete. Then Γ(S) is complete.



YAHYA TALEBI, SAHAR AKBARZADEH 29

Proof. Suppose that x is not adjacent to y in Γ(S). Since ANNG(S) is a complete
graph, therefore x is adjacent to y in ANNG(S) and xy 6= 0. We have xy 6= x,
xy 6= y and x2 = x by Lemma 3. Then x(xy) = x2 · y = xy and hence x is not
adjacent to y in ANNG(S). It is a contradiction. Thus x is adjacent to y in Γ(S).
Therefore, Γ(S) is complete.

If Z(S) 6= S, then by Theorem 2, Γ(S) ≤ ANNG(S). Now the next corollary
immediately follows from Theorem 7.

Corollary 6. Suppose that S is reduced and Z(S) 6= S. Then ANNG(S) is complete
if and only if is Γ(S) complete.

Definition 1. (1) A nonempty subset I of S is called an ideal if xS ⊆ I, for each
x ∈ I.

(2) An ideal P in S is called a prime ideal of S if xSy ⊆ P implies x ∈ P or
y ∈ P .

(3) A prime ideal P is said to be a minimal prime ideal belonging to I if I ⊆ P

and there is no prime ideal Q in S such that I ⊆ Q ⊆ P .

Recall that if S is a reduced commutative semigroup, then it has at least two min-
imal prime ideal. So for a reduced commutative semigroup S, we have |min(S)| ≥ 2
where min(S) is the set of all minimal prime ideals of S. If Z(S) is an ideal of S,
then |min(S)| may be infinite, as Z(S) = ∪{I | I ∈ min(S)} [6].

Theorem 8. Let S be a reduced commutative semigroup and suppose that Z(S) is
an ideal of S. Then Γ(S) 6= ANNG(S) 6= AG(S) and gr(ANNG(S)) = 3.

Proof. Let z ∈ Z(S)∗ and c ∈ annS(z)−{0}. We have c 6= z, as S is reduced. Since
Z(S) is an ideal of S, we have c+z ∈ Z(S)∗−{c, z}. Since (c+z)z = cz+z2 = z2 6= 0,
we have (c + z) ∼ z is not an edge of Γ(S).

Now annS((c + z)z) = annS(z2) = annS(z). But annS(c + z) ⊂ annS(z) =
annS((c + z)z). Since annS((c + z)z) = annS(z), we have (c + z) ∼ z is not an edge
of AG(S) by (1) of Proposition 1. Also since annS((c+ z)z) 6= annS(c+ z), we have
(c + z) ∼ z is an edge of ANNG(S) by Lemma 1 (1). Thus Γ(S) 6= ANNG(S) 6=
AG(S) and hence gr(ANNG(S)) = 3 by Theorem 5.

Theorem 9. Suppose that S is a reduced commutative semigroup and |min(S)| ≥ 3.
Then ANNG(S) 6= Γ(S) and gr(ANNG(S)) = 3.

Proof. If Z(S) is an ideal of S, then ANNG(S) 6= Γ(S) by Theorem 8. Now assume
that Z(S) is not an ideal of S. Since |min(S)| ≥ 3, we have diam(Γ(S)) = 3
by Proposition 3. Thus ANNG(S) 6= Γ(S) by Theorem 1. As S is reduced and
ANNG(S) 6= Γ(S), we have gr(ANNG(S)) = 3 by Theorem 5.

Theorem 10. Let S be a reduced commutative semigroup. Then ANNG(S) = Γ(S)
if and only if |min(S)| = 2.
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Proof. Suppose that ANNG(S) = Γ(S). Then we have |min(S)| = 2 by Theorem
9. Conversely, suppose that |min(S)| = 2. Let P and Q be the two minimal prime
ideals of S. Since S is reduced, we have Z(S) = P ∪ Q and P ∩ Q = {0}. Let
x, y ∈ Z(S)∗. Suppose that x, y ∈ P . So neither x ∈ Q nor y ∈ P and thus xy 6= 0.
Since PQ ⊆ P ∩ Q = {0}, we have annS(xy) = annS(x) = annS(y) = Q. Hence
x ∼ y is not an edge of ANNG(S) by Lemma 1 (1).

Similarly, if x, y ∈ Q, then x ∼ y is not an edge of ANNG(S). If x ∈ P and
y ∈ Q, then xy = 0, hence x ∼ y is an edge of Γ(S). Therefore by Lemma 1 (2),
x ∼ y is an edge of ANNG(S). Thus each edge of ANNG(S) is an edge of Γ(S).
Hence ANNG(S) = Γ(S).

Corollary 7. Let S be a reduced commutative semigroup. Then ANNG(S) =
AG(S) = Γ(S) if and only if |min(S)| = 2.

Theorem 11. Let S be a reduced commutative semigroup. Then the following state-
ments are equivalent:

(1) |min(S)| = 2 and at least one minimal prime ideal of S has exactly two
distinct elements;

(2) AG(S) = Γ(S) = K1,n for some n ≥ 1;

(3) ANNG(S) = K1,n for some n ≥ 1.

Proof. Since |min(S)| = 2, we have ANNG(S) = AG(S) = Γ(S) by Corollary 7.
But AG(S) = Γ(S) = K1,n for some n ≥ 1. Hence ANNG(S) = K1,n.

Theorem 12. Let S be a reduced commutative semigroup. Then we have the fol-
lowing:

(1) If γ(ANNG(S)) = 1, then γ(Γ(S)) ∈ {1, 2}.

(2) If |min(S)| = 2, γ(Γ(S)) = 1, then γ(ANNG(S)) = 1.

Proof. The result follows from Theorem 11 and Proposition 4. Since γ(ANNG(S)) =
1 for a star graph K1,n.

Corollary 8. Let S be a reduced commutative semigroup and |min(S)| < ∞. If
γ(ANNG(S)) > 1, then γ(ANNG(S)) = γ(Γ(S)).
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