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Some properties of left-transitive quasigroups
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Abstract. Properties of left-transitive quasigroups (including their autotopisms
and pseudoautomorphisms), their connections with some quasigroup classes are es-
tablished. Left-transitive right GA-quasigroups are described.
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Basic concepts and definitions can be found in [1, 4, 11,13].

1 Introduction

Definition 1. A quasigroup (Q, ·) is said to be left-transitive if in this quasigroup
the identity

xy · xz = yz (1)

holds [7, 14].

In the article [14] it is proved: if quasigroup (Q, ·) satisfies identity of associativity
x · yz = xy · z (i.e., this quasigroup is a group), then (23)-parastrophe and (132)-
parastrophe of this quasigroup satisfy left-transitive identity (1), (13)-parastrophe
and (123)-parastrophe of this quasigroup satisfies right-transitive identity (i.e., the
identity yx · zx = yz).

In the articles [5, 6, 9, 12, 15] left-transitive quasigroups are called Ward quasi-
groups. In [9] important arguments for the need of the study of left-transitive
quasigroups are presented. In this article it is noticed that Frobenius used group
right division operation in his papers devoted to representation theory of groups [8].

From the results of mentioned above articles the following theorem follows.

Theorem 1. Any left-transitive quasigroup (G, ◦) can be obtained from a group
(G,+) (not necessary commutative) using the following construction

x ◦ y = −x + y = Ix + y, (2)

where x + Ix = 0 for all x, y ∈ G [14].

From Theorem 1 it follows that any left-transitive quasigroup (Q, ◦) is unipotent,
i. e., there exists a fixed element 0 of the set Q such that x ◦ x = 0 for all x ∈ Q.
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Remark 1. From Theorem 1 it follows that quasigroup (Q, ◦) is an isotopic image
of the group (Q,+) with isotopy (I, ε, ε).

Corollary 1. Left-transitive quasigroup (Q, ·) is commutative if and only if it is an
abelian group any element of which has the order two.

Proof. From commutativity, using equality (2), we obtain −x + y = −y + x for all
x, y ∈ Q. Therefore −x = x, x + x = 0 for all x ∈ Q.

Converse. It is clear that any commutative abelian group any element of which
(with exception of 0) has the order two is left-transitive.

The following corollary easily follows from Theorem 1, too.

Corollary 2. Any left-transitive quasigroup (Q, ·) has a left unit, i.e., there exists
an element f ∈ Q such that f · x = x for all x ∈ Q.

Proof. If we put x = y into the identity (1), then we have xx · xz = xz. Therefore
f = x · x.

If we use Theorem 1, then Lemma 2 takes the form:

Remark 2. Any left-transitive quasigroup (Q, ◦) has a left unit, namely, the element
0 is its left unit.

Proof. If we put x = 0 in the equation (2), where 0 is unit of the group (Q,+), then
0 ◦ y = −0 + y = y for all y ∈ Q.

Definition 2. A quasigroup (Q, ·) is an LIP-quasigroup if in (Q, ·) the following
equation holds true:

Ilx(xy) = y (3)

for all x, y ∈ Q, where Il is a map of the set Q [1, 4].

Notice in fact the map Il is a permutation of the set Q [4].

Remark 3. Any left-transitive quasigroup (Q, ·) is an LIP -quasigroup [7].

Proof. In identity (1) we substitute y = f , where fx = x for all x ∈ Q, and obtain
the following equality: xf · xz = fz. Further we have xf · xz = z. From the last
equality we have that Rf = Il.

Corollary 3. In left-transitive quasigroup (Q, ·) the following equality holds : R−1

f =
Rf .

Proof. From Remark 3 we have Rf = Il. Then R−1

f = I−1

l . But in LIP-quasigroups

Il = I−1

l [1, 13].

Theorem 2. Any loop which is an isotope of left-transitive quasigroup (Q, ·) is a
group [7].
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Proof. First method. From Theorem 1 it follows that any left-transitive quasigroup
(Q, ·) is isotope of group (Q,+) of the form x ◦ y = Ix + y, where x + Ix = 0 for all
x ∈ Q. Therefore among loop isotopes of quasigroup (Q, ·) there exists a group.

Further from Albert theorem [1,13] it follows that any loop which is an isotope
of left-transitive quasigroup (Q, ·) is a group.

Second method. Consider loop isotope of quasigroup (Q, ·) of the form

x + y = R−1

f x · L−1

f y = xf · y. (4)

We have used Lemma 2 and Corollary 3. From Theorem 1 it follows that this isotope
is a group.

Further from Albert theorem it follows that any loop which is an isotope of
left-transitive quasigroup (Q, ·) is a group.

Corollary 4. In left transitive quasigroup (Q, ·) and its isotopic group (Q,+) (The-
orem 1) we have R·

f = I+.

Proof. The proof follows from the equalities (2) and (4).

Definition 3. A quasigroup (Q, ·) is said to be left Bol quasigroup if the identity

x(y · xz) = R−1
ex

(x · yx) · z (5)

holds true, where x · ex = x for any x ∈ Q [7].

A quasigroup (Q, ·) is said to be right Bol quasigroup if the identity

(yx · z)x = yL−1

fx

(xz · x) (6)

holds true, where fx · x = x for any x ∈ Q [7].

In the left-transitive quasigroups the identity (6) is transformed into the following
right Bol loop identity

(yx · z)x = y(xz · x), (7)

since any left-transitive quasigroup has the left unit f (Lemma 2).

Example 1. We give an example of left transitive quasigroup. This is (23)-
parastrophe of the group S3.

* 0 1 2 3 4 5

0 0 1 2 3 4 5
1 2 0 1 4 5 3
2 1 2 0 5 3 4
3 3 4 5 0 1 2
4 4 5 3 2 0 1
5 5 3 4 1 2 0
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2 Results

2.1 Left-transitive quasigroups and some other quasigroup classes

In other way the following theorem is proved in [7].

Theorem 3. Any left-transitive quasigroup (Q, ·) is a left Bol quasigroup.

Proof. Consider loop isotope of quasigroup (Q, ·) of the form

x ◦ y = R−1

f x · L−1

f y = xf · y. (8)

From Theorem 2 it follows that this isotope is a group.
We write the left side of the equality (1) in the following form:

x(y · xz) = Rfx ◦ Rfy ◦ Rfx ◦ z. (9)

The right side can be rewritten in the form: R−1
ex

(x · yx) · z = Rf t ◦ z, where
t = R−1

ex

(x · yx). Then x · yx = Rex
t = t · ex. Passing in the last equality to the

operation “◦ ” we have Rfx ◦ Rfy ◦ x = Rf t ◦ ex,

Rfx ◦ Rfy ◦ x ◦ (ex)−1 = Rf t. (10)

From the equality x · ex = x we have Rfx ◦ ex = x, (ex)−1 = x−1
◦Rfx. If in the

equality (10) we substitute the last equality, then we have Rfx◦Rf y◦x◦x−1
◦Rfx =

Rf t, Rfx ◦ Rfy ◦ Rfx = Rf t. Therefore,

Rfx ◦ Rfy ◦ Rfx ◦ z = Rf t ◦ z. (11)

The right side of the equation (9) coincides with the left side of the equation (11)
that proves the lemma.

Proposition 1. Left-transitive quasigroup (Q, ·) is isotopic to an abelian group if
and only if translation Rf is an automorphism of quasigroup (Q, ·).

Proof. It is easy to check.

In [9] conditions when left-transitive quasigroup (Q, ·) is isotopic to an abelian
group are given using Theorem 1 in the following form:

Proposition 2. Left-transitive quasigroup (Q, ·) is isotopic to an abelian group if
and only if permutation I, x + Ix = 0 for all x ∈ Q, is an automorphism of group
(Q,+).

Proof. It is easy to check.

Lemma 1. Left-transitive quasigroup (Q, ·) satisfies the following identity (right Bol
loop identity)

(zx · y)x = z(xy · x) (12)

if and only if permutation Rf is an automorphism of quasigroup (Q, ·).
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Proof. The proof follows from equality (8) using direct calculations.

Remark 4. Using the equality (2) we can rewrite identity (12) in the following form
−z − y = −y − z. From this equality is follows that group (Q,+) is commutative
and that permutation Ix = −x for all x ∈ Q is an automorphism of group (Q,+).

Definition 4. A quasigroup (Q, ·) is said to be Moufang quasigroup if the identity

x(y · xz) = (x · yfx)x · z (13)

holds true, where fxx = x for any x ∈ Q [3].

Proposition 3. Any left-transitive quasigroup (Q, ·) is a Moufang quasigroup if and
only if translation Rf is an automorphism of quasigroup (Q, ·).

Proof. It is known that any left and right Bol quasigroup is a Moufang quasigroup.
See, for example [2, p. 80]. Result follows from Theorem 3 and Lemma 1.

Definition 5. A quasigroup (Q, ·) with the identity x ·yz = xy ·exz, where x ·ex = x

for all x ∈ Q, is called left F-quasigroup.

Theorem 4. Any left-transitive quasigroup (Q, ·) is a left F -quasigroup if and only
if translation Rf is an automorphism of the quasigroup (Q, ·).

Proof. It is clear that by proving this lemma we can use any of the approaches to
left-transitive quasigroups, namely the approach from Theorem 1 or Theorem 2.

Here we use the approach from Theorem 1. In this case from the equality x ·ex =
x we have that ex = 2x for any x ∈ Q. Suppose that left-transitive quasigroup (Q, ·)
is a left F-quasigroup. Then we can rewrite the equality (13) in the form

−x + (−y + z) = −(−x + y) + (−2x + z). (14)

Using group properties, further we have

−x − y + z = −y + x − 2x + z,−x − y = −y − x. (15)

Therefore, the group (Q,+) is commutative and in order to finish the proof we can
apply Proposition 1.

Converse. Suppose that in left-transitive quasigroup (Q, ·) the translation Rf

is an automorphism of the quasigroup (Q, ·). By Proposition 1 the group (Q,+) is
commutative and the identity (14) is true.

2.2 Nuclei of left-transitive quasigroups

Definition 6. A set Nl of a quasigroup (Q, ·) which consists of all elements a ∈ Q

such that
a · xy = ax · y (16)

for all x, y ∈ Q is called left nucleus of quasigroup (Q, ·) [11].
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A set Nr of a quasigroup (Q, ·) which consists of all elements a ∈ Q such that

x · ya = xy · a (17)

for all x, y ∈ Q is called right nucleus of quasigroup (Q, ·) [11].

Theorem 5. Left nucleus (Nl, ·) of left transitive quasigroup (Q, ·) is a normal
subgroup of quasigroup (Q, ·) which consists of elements of order two that lie in the
centre of group (Q,+).

Proof. It is well known [1,11] that the sets Nl and Nr form subgroups of quasigroup
(Q, ·).

Using representation (2) we can rewrite the equality (16) in the following form
−a − x + y = −(−a + x) + y, −a − x = −x + a. If x = 0, then we have −a = a,
a + a = 0.

The last means that the element a has order two, element a lies in the centre
(Z,+) of the group (Q,+), left nucleus (Nl,+) is an abelian normal subgroup of the
group (Q,+).

From Remark 1 and results on normal congruences of isotopic quasigroups [13]
it follows that (Nl, ·) � (Q, ·).

Theorem 6. If left transitive quasigroup (Q, ·) has non-empty right nucleus, then
it is a commutative 2-group.

Proof. Using the representation (2) we can rewrite the equality (17) in the following
form −x+(−y+a) = −(−x+y)+a, −x−y = −y+x, −y = x−y+x, −x = y+x−y,
Ix = y + x − y for all x, y ∈ Q.

The last means that the permutation I is an automorphism of the group (Q,+),
the group (Q,+) is commutative. From the equality −x = y + x − y we have
−x = x, x + x = 0. The last means that in the group (Q,+) all non-zero elements
have order two.

Corollary 5. If left transitive quasigroup (Q, ·) is associative, then (Q, ·) is an
abelian group any element of which (with the exception of its unit) has order two.

Proof. The proof follows from Theorem 5. In this case left nucleus coincides with
quasigroup (Q, ·).

2.3 Some morphisms of left transitive quasigroups

First next theorem was proved in [7]. Our proof differs from the proof given
in [7].

Theorem 7. Any autotopy (α, β, γ) of left-transitive quasigroup (Q, ·) has the form

(α, β, γ) = (L·

a, R
·

b, R
·

fL·

aR
·

b)R
·

fθ, (18)

where a, b are fixed elements of the set Q, θ is an automorphism of (Q, ·) and (Q,+).
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Proof. We shall use representation (2) of left-transitive quasigroup. From Remark
1 it follows that left-transitive quasigroup (Q, ·) and group (Q,+) are isotopic with
isotopy (I, ε, ε). Therefore autotopy groups of these quasigroups are isomorphic
[1, 13], and forms of autotopies are conjugate with isotopy (I, ε, ε).

It is well known [1,13] that any autotopy of a group (Q,+) has the following form
(L+

a , R+

b , L+
a R+

b )θ, where a, b are fixed elements of the set Q, θ is an automorphism
of group (Q,+). Therefore any autotopy of quasigroup (Q, ·) has the form

(IL+
a I,R+

b , L+
a R+

b )θ. (19)

It is known, if permutation θ is an automorphism of a quasigroup (Q, ·), then
θ is automorphism of any parastrophe of this quasigroup [13]. From representation
(2) we have that L·

x = IL+
x , IL·

x = L+
x , R·

x = R+
x I, R·

xI = R+
x for all x ∈ Q. Using

the facts that I2 = ε and I = R·

f we can rewrite (19) in the following form

(L·

aI,R·

bI, IL·

aR
·

bI)θ = (L·

a, R
·

b, R
·

fL·

aR
·

b)R
·

fθ, (20)

where θ is an automorphism of quasigroup (Q, ·).

Definition 7. The last component of an autotopy of a quasigroup is called a quasi-
automorphism [1].

Lemma 2. The groups of second and third components of the group of all auto-
topisms of an LIP-quasigroup coincide [13, Lemma 2.40. 1.].

Lemma 3. Any quasiautomorphism of left-transitive quasigroup (Q, ·) has the form
R·

bR
·

fθ.

Proof. From Remark 3 it follows that any left-transitive quasigroup is an LIP-
quasigroup. The rest follows from Lemma 2 and Theorem 7.

Right and left pseudoautomorphisms of a quasigroup are autotopies of a special
kind.

Definition 8. A bijection θ of a set Q is called a right pseudoautomorphism of a
quasigroup (Q, ·) if there exists at least one element c ∈ Q such that θx · (θy · c) =
θ(x · y) · c for all x, y ∈ Q, i.e.,

(θ,Rcθ,Rcθ) (21)

is an autotopy of a quasigroup (Q, ·). The element c is called a companion of θ.

A bijection θ of a set Q is called a left pseudoautomorphism of a quasigroup
(Q, ·) if there exists at least one element c ∈ Q such that (c · θx) · θy = c · θ(x · y) for
all x, y ∈ Q, i.e.,

(Lcθ, θ, Lcθ) (22)

is an autotopy of a quasigroup (Q, ·). The element c is called a companion of θ [1].

It is well known, if a quasigroup has non-trivial left and right pseudoautomorphism,
then it is a loop [1,11].
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2.4 G-property of left-transitive quasigroups

Definition 9. G-loop is a loop which is isomorphic to all its loop isotopes (LP -
isotopes) [4, 11].

The importance of the study of pseudoautomorphisms follows from the following
theorem of V. D. Belousov.

Theorem 8. A loop (L, ·) is a G-loop if and only if every element x ∈ L is a
companion of some right and some left pseudoautomorphism of (L, ·) [1, Theorem
3.8].

V. D. Belousov’s result opens the way for the study of G-property, i.e., for the
study of G-loops and left (right) G-quasigroups. There exist connections between
quasigroup nuclei and pseudoautomorphisms of a quasigroup [1, p. 47].

We start from the following definition.

Definition 10. A bijection α of a set Q is called a right A-pseudoautomorphism
of a quasigroup (Q, ·) if there exists a bijection β of the set Q such that the triple
(α, β, β) is an autotopy of quasigroup (Q, ·).

A bijection β of a set Q is called a left A-pseudoautomorphism of a quasigroup
(Q, ·) if there exists a bijection α of the set Q such that the triple (α, β, α) is an
autotopy of quasigroup (Q, ·) [13, Definition 1.159].

Notice sets of all the first, second, and third components of right (left) A-pseudo-
automorphisms of a quasigroup (Q, ·), sets of right (left) A-pseudo-automorphisms
of a quasigroup (Q, ·) form groups relative to operation of multiplication of these A-
pseudoautomorphisms as autotopisms of the quasigroup (Q, ·) [13, Theorem 1.161.].

We shall denote the above listed groups using the letter Π with various indexes as
follows: 1Π

A
l , 2Π

A
l , 3Π

A
l , 1Π

A
r , 2Π

A
r , and 3Π

A
r . The letter A in the right upper corner

means that this is an autotopical pseudoautomorphism. For example, 2Π
A
r denotes

the group of second components of right A-pseudo-automorphisms of a quasigroup
(Q, ·).

The following lemma shows that in “loop” case right and left A-pseudo-
automorphisms are transformed into standard pseudoautomorphisms.

Proposition 4. In a right loop (Q, ·) with the right identity element e, any
right A-pseudoautomorphism is a right pseudoautomorphism.

In a left loop (Q, ·) with the left identity element f , any left A-pseudoautomorphism
is a left pseudoautomorphism [13, Lemma 1.165.].

Definition 11. A quasigroup (Q, ·) is called a right GA-quasigroup if the group

2Π
A
r (or the group 3Π

A
r ) is transitive on the set Q.

A quasigroup (Q, ·) is called a left GA-quasigroup if the group 1Π
A
l (or the group

3Π
A
l ) is transitive on the set Q.

Right and left GA-quasigroups are called GA-quasigroups.
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Theorem 9. Case 1. Autotopy of left-transitive quasigroup (Q, ·) is a right A-
pseudoautomorphism if and only if there exists an element a ∈ Q such that

R·

f = L·

a. (23)

Case 2. Autotopy of left-transitive quasigroup (Q, ·) is a left A-pseudoautomorphism
if and only if the following equality is true:

L·

a = R·

fL·

aR
·

b (24)

for some fixed a, b ∈ Q.

Proof. The proof follows from Corollary 3 and Theorem 7.

Theorem 10. Left-transitive quasigroup (Q, ·) is a right GA-quasigroup if and only
if (Q, ·) is an abelian 2-group.

Proof. ⇒ Here we use equality (2). We can rewrite equality (23) Rfx = Lax,
x · f = a · x for all x ∈ Q in the form:

−x + f = −a + x. (25)

If we put x = 0 in the equation (25), then we have f = −a, −f = f = a.
Therefore a = f = 0 (Corollary 2, Remark 2).

Then the equality (25) can be rewritten in the form −x = x, x + x = 0 for all
x ∈ Q. Thus x · y = −x+ y = x+ y = y +x = −y +x = y ·x. We have used the well
known fact [10] that any group in which all non-zero elements have the order two,
is commutative. Properties of commutative left-transitive quasigroups are given in
Corollary 1.

⇐ It is easy to see.

Corollary 6. A left-transitive quasigroup (Q, ·) is a GA-quasigroup if and only if
(Q, ·) is an abelian 2-group.

Proof. Any GA-quasigroup is a right GA-quasigroup.

Given in Example 1 quasigroup does not satisfy equality (24). Then there exist
left-transitive quasigroups that are not left or right GA-quasigroups. Commuta-
tive left-transitive quasigroup is a right GA-quasigroup. It is easy to see that this
quasigroup is also a G-loop.

2.5 Simple left-transitive quasigroups

Proposition 5. Left-transitive quasigroup (Q, ·) is simple if and only if the group
(Q,+) is simple.

Proof. From the results given in [13, Remark 1.308] and the form of isotopy (Remark
1) it follows that sets (lattices) of normal congruences of left-transitive quasigroup
(Q, ·) and of corresponding group (Q,+) are equal.

Acknowledgement. Author thanks Referee for valuable remarks.
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RSS Moldoven., (4):3–17, 1966. (in Russian).

[4] Bruck R.H. A Survey of Binary Systems. Springer Verlag, New York, third printing, cor-
rected edition, 1971.

[5] Cardoso J. M., da Silva C.P. On Ward quasigroups. An. Stiint. Univ. ”AI. I. Cuza” Iaşi
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