Some properties of left-transitive quasigroups

N.N.Didurik

Abstract. Properties of left-transitive quasigroups (including their autotopisms and pseudoautomorphisms), their connections with some quasigroup classes are established. Left-transitive right GA-quasigroups are described.

Mathematics subject classification: 20N05.

Keywords and phrases: Quasigroup, left-transitive quasigroup, left Bol quasigroup, Moufang quasigroups, left nucleus, medial quasigroup.

Basic concepts and definitions can be found in [1, 4, 11, 13].

1 Introduction

Definition 1. A quasigroup (Q, \cdot) is said to be left-transitive if in this quasigroup the identity

$$xy \cdot xz = yz \tag{1}$$

holds [7, 14].

In the article [14] it is proved: if quasigroup (Q, \cdot) satisfies identity of associativity $x \cdot yz = xy \cdot z$ (i.e., this quasigroup is a group), then (23)-parastrophe and (132)-parastrophe of this quasigroup satisfy left-transitive identity (1), (13)-parastrophe and (123)-parastrophe of this quasigroup satisfies right-transitive identity (i.e., the identity $yx \cdot zx = yz$).

In the articles [5, 6, 9, 12, 15] left-transitive quasigroups are called Ward quasigroups. In [9] important arguments for the need of the study of left-transitive quasigroups are presented. In this article it is noticed that Frobenius used group right division operation in his papers devoted to representation theory of groups [8].

From the results of mentioned above articles the following theorem follows.

Theorem 1. Any left-transitive quasigroup (G, \circ) can be obtained from a group (G, +) (not necessary commutative) using the following construction

$$x \circ y = -x + y = Ix + y, \tag{2}$$

where x + Ix = 0 for all $x, y \in G$ [14].

From Theorem 1 it follows that any left-transitive quasigroup (Q, \circ) is unipotent, i.e., there exists a fixed element 0 of the set Q such that $x \circ x = 0$ for all $x \in Q$.

[©] N.N.Didurik, 2018

Remark 1. From Theorem 1 it follows that quasigroup (Q, \circ) is an isotopic image of the group (Q, +) with isotopy $(I, \varepsilon, \varepsilon)$.

Corollary 1. Left-transitive quasigroup (Q, \cdot) is commutative if and only if it is an abelian group any element of which has the order two.

Proof. From commutativity, using equality (2), we obtain -x + y = -y + x for all $x, y \in Q$. Therefore -x = x, x + x = 0 for all $x \in Q$.

Converse. It is clear that any commutative abelian group any element of which (with exception of 0) has the order two is left-transitive. \Box

The following corollary easily follows from Theorem 1, too.

Corollary 2. Any left-transitive quasigroup (Q, \cdot) has a left unit, i.e., there exists an element $f \in Q$ such that $f \cdot x = x$ for all $x \in Q$.

Proof. If we put x = y into the identity (1), then we have $xx \cdot xz = xz$. Therefore $f = x \cdot x$.

If we use Theorem 1, then Lemma 2 takes the form:

Remark 2. Any left-transitive quasigroup (Q, \circ) has a left unit, namely, the element 0 is its left unit.

Proof. If we put x = 0 in the equation (2), where 0 is unit of the group (Q, +), then $0 \circ y = -0 + y = y$ for all $y \in Q$.

Definition 2. A quasigroup (Q, \cdot) is an LIP-quasigroup if in (Q, \cdot) the following equation holds true:

$$I_l x(xy) = y \tag{3}$$

for all $x, y \in Q$, where I_l is a map of the set Q [1,4].

Notice in fact the map I_l is a permutation of the set Q [4].

Remark 3. Any left-transitive quasigroup (Q, \cdot) is an *LIP*-quasigroup [7].

Proof. In identity (1) we substitute y = f, where fx = x for all $x \in Q$, and obtain the following equality: $xf \cdot xz = fz$. Further we have $xf \cdot xz = z$. From the last equality we have that $R_f = I_l$.

Corollary 3. In left-transitive quasigroup (Q, \cdot) the following equality holds : $R_f^{-1} = R_f$.

Proof. From Remark 3 we have $R_f = I_l$. Then $R_f^{-1} = I_l^{-1}$. But in LIP-quasigroups $I_l = I_l^{-1}$ [1,13].

Theorem 2. Any loop which is an isotope of left-transitive quasigroup (Q, \cdot) is a group [7].

Proof. First method. From Theorem 1 it follows that any left-transitive quasigroup (Q, \cdot) is isotope of group (Q, +) of the form $x \circ y = Ix + y$, where x + Ix = 0 for all $x \in Q$. Therefore among loop isotopes of quasigroup (Q, \cdot) there exists a group.

Further from Albert theorem [1,13] it follows that any loop which is an isotope of left-transitive quasigroup (Q, \cdot) is a group.

Second method. Consider loop isotope of quasigroup (Q, \cdot) of the form

$$x + y = R_f^{-1} x \cdot L_f^{-1} y = xf \cdot y.$$
(4)

We have used Lemma 2 and Corollary 3. From Theorem 1 it follows that this isotope is a group.

Further from Albert theorem it follows that any loop which is an isotope of left-transitive quasigroup (Q, \cdot) is a group.

Corollary 4. In left transitive quasigroup (Q, \cdot) and its isotopic group (Q, +) (Theorem 1) we have $R_f^{\cdot} = I^+$.

Proof. The proof follows from the equalities (2) and (4).

Definition 3. A quasigroup (Q, \cdot) is said to be left Bol quasigroup if the identity

$$x(y \cdot xz) = R_{e_x}^{-1}(x \cdot yx) \cdot z \tag{5}$$

holds true, where $x \cdot e_x = x$ for any $x \in Q$ [7].

A quasigroup (Q, \cdot) is said to be right Bol quasigroup if the identity

$$(yx \cdot z)x = yL_{f_x}^{-1}(xz \cdot x) \tag{6}$$

holds true, where $f_x \cdot x = x$ for any $x \in Q$ [7].

In the left-transitive quasigroups the identity (6) is transformed into the following right Bol loop identity

$$(yx \cdot z)x = y(xz \cdot x),\tag{7}$$

since any left-transitive quasigroup has the left unit f (Lemma 2).

Example 1. We give an example of left transitive quasigroup. This is (23)parastrophe of the group S_3 .

*	0	1	2	3	4	5
0	0	1	2	3	4	5
1	2	0	1	4	5	3
2	1	2	0	5	3	4
3	3	4	5	0	1	2
4	4	5	3	2	0	1
5	5	3	4	1		0

2 Results

2.1 Left-transitive quasigroups and some other quasigroup classes

In other way the following theorem is proved in [7].

Theorem 3. Any left-transitive quasigroup (Q, \cdot) is a left Bol quasigroup.

Proof. Consider loop isotope of quasigroup (Q, \cdot) of the form

$$x \circ y = R_f^{-1} x \cdot L_f^{-1} y = xf \cdot y.$$
(8)

From Theorem 2 it follows that this isotope is a group.

We write the left side of the equality (1) in the following form:

$$x(y \cdot xz) = R_f x \circ R_f y \circ R_f x \circ z. \tag{9}$$

The right side can be rewritten in the form: $R_{e_x}^{-1}(x \cdot yx) \cdot z = R_f t \circ z$, where $t = R_{e_x}^{-1}(x \cdot yx)$. Then $x \cdot yx = R_{e_x}t = t \cdot e_x$. Passing in the last equality to the operation " \circ " we have $R_f x \circ R_f y \circ x = R_f t \circ e_x$,

$$R_f x \circ R_f y \circ x \circ (e_x)^{-1} = R_f t.$$
⁽¹⁰⁾

From the equality $x \cdot e_x = x$ we have $R_f x \circ e_x = x$, $(e_x)^{-1} = x^{-1} \circ R_f x$. If in the equality (10) we substitute the last equality, then we have $R_f x \circ R_f y \circ x \circ x^{-1} \circ R_f x = R_f t$, $R_f x \circ R_f y \circ R_f x = R_f t$. Therefore,

$$R_f x \circ R_f y \circ R_f x \circ z = R_f t \circ z. \tag{11}$$

The right side of the equation (9) coincides with the left side of the equation (11) that proves the lemma. \Box

Proposition 1. Left-transitive quasigroup (Q, \cdot) is isotopic to an abelian group if and only if translation R_f is an automorphism of quasigroup (Q, \cdot) .

Proof. It is easy to check.

In [9] conditions when left-transitive quasigroup (Q, \cdot) is isotopic to an abelian group are given using Theorem 1 in the following form:

Proposition 2. Left-transitive quasigroup (Q, \cdot) is isotopic to an abelian group if and only if permutation I, x + Ix = 0 for all $x \in Q$, is an automorphism of group (Q, +).

Proof. It is easy to check.

Lemma 1. Left-transitive quasigroup (Q, \cdot) satisfies the following identity (right Bol loop identity)

$$(zx \cdot y)x = z(xy \cdot x) \tag{12}$$

if and only if permutation R_f is an automorphism of quasigroup (Q, \cdot) .

Proof. The proof follows from equality (8) using direct calculations.

Remark 4. Using the equality (2) we can rewrite identity (12) in the following form -z - y = -y - z. From this equality is follows that group (Q, +) is commutative and that permutation Ix = -x for all $x \in Q$ is an automorphism of group (Q, +).

Definition 4. A quasigroup (Q, \cdot) is said to be Moufang quasigroup if the identity

$$x(y \cdot xz) = (x \cdot yf_x)x \cdot z \tag{13}$$

holds true, where $f_x x = x$ for any $x \in Q$ [3].

Proposition 3. Any left-transitive quasigroup (Q, \cdot) is a Moufang quasigroup if and only if translation R_f is an automorphism of quasigroup (Q, \cdot) .

Proof. It is known that any left and right Bol quasigroup is a Moufang quasigroup. See, for example [2, p. 80]. Result follows from Theorem 3 and Lemma 1. \Box

Definition 5. A quasigroup (Q, \cdot) with the identity $x \cdot yz = xy \cdot e_x z$, where $x \cdot e_x = x$ for all $x \in Q$, is called left F-quasigroup.

Theorem 4. Any left-transitive quasigroup (Q, \cdot) is a left F-quasigroup if and only if translation R_f is an automorphism of the quasigroup (Q, \cdot) .

Proof. It is clear that by proving this lemma we can use any of the approaches to left-transitive quasigroups, namely the approach from Theorem 1 or Theorem 2.

Here we use the approach from Theorem 1. In this case from the equality $x \cdot e_x = x$ we have that $e_x = 2x$ for any $x \in Q$. Suppose that left-transitive quasigroup (Q, \cdot) is a left F-quasigroup. Then we can rewrite the equality (13) in the form

$$-x + (-y + z) = -(-x + y) + (-2x + z).$$
(14)

Using group properties, further we have

$$-x - y + z = -y + x - 2x + z, -x - y = -y - x.$$
(15)

Therefore, the group (Q, +) is commutative and in order to finish the proof we can apply Proposition 1.

Converse. Suppose that in left-transitive quasigroup (Q, \cdot) the translation R_f is an automorphism of the quasigroup (Q, \cdot) . By Proposition 1 the group (Q, +) is commutative and the identity (14) is true.

2.2 Nuclei of left-transitive quasigroups

Definition 6. A set N_l of a quasigroup (Q, \cdot) which consists of all elements $a \in Q$ such that

$$a \cdot xy = ax \cdot y \tag{16}$$

for all $x, y \in Q$ is called left nucleus of quasigroup (Q, \cdot) [11].

A set N_r of a quasigroup (Q, \cdot) which consists of all elements $a \in Q$ such that

$$x \cdot ya = xy \cdot a \tag{17}$$

for all $x, y \in Q$ is called right nucleus of quasigroup (Q, \cdot) [11].

Theorem 5. Left nucleus (N_l, \cdot) of left transitive quasigroup (Q, \cdot) is a normal subgroup of quasigroup (Q, \cdot) which consists of elements of order two that lie in the centre of group (Q, +).

Proof. It is well known [1,11] that the sets N_l and N_r form subgroups of quasigroup (Q, \cdot) .

Using representation (2) we can rewrite the equality (16) in the following form -a - x + y = -(-a + x) + y, -a - x = -x + a. If x = 0, then we have -a = a, a + a = 0.

The last means that the element a has order two, element a lies in the centre (Z, +) of the group (Q, +), left nucleus $(N_l, +)$ is an abelian normal subgroup of the group (Q, +).

From Remark 1 and results on normal congruences of isotopic quasigroups [13] it follows that $(N_l, \cdot) \leq (Q, \cdot)$.

Theorem 6. If left transitive quasigroup (Q, \cdot) has non-empty right nucleus, then it is a commutative 2-group.

Proof. Using the representation (2) we can rewrite the equality (17) in the following form -x+(-y+a) = -(-x+y)+a, -x-y = -y+x, -y = x-y+x, -x = y+x-y, Ix = y + x - y for all $x, y \in Q$.

The last means that the permutation I is an automorphism of the group (Q, +), the group (Q, +) is commutative. From the equality -x = y + x - y we have -x = x, x + x = 0. The last means that in the group (Q, +) all non-zero elements have order two.

Corollary 5. If left transitive quasigroup (Q, \cdot) is associative, then (Q, \cdot) is an abelian group any element of which (with the exception of its unit) has order two.

Proof. The proof follows from Theorem 5. In this case left nucleus coincides with quasigroup (Q, \cdot) .

2.3 Some morphisms of left transitive quasigroups

First next theorem was proved in [7]. Our proof differs from the proof given in [7].

Theorem 7. Any autotopy (α, β, γ) of left-transitive quasigroup (Q, \cdot) has the form

$$(\alpha, \beta, \gamma) = (L_a^{\cdot}, R_b^{\cdot}, R_f^{\cdot} L_a^{\cdot} R_b^{\cdot}) R_f^{\cdot} \theta, \qquad (18)$$

where a, b are fixed elements of the set Q, θ is an automorphism of (Q, \cdot) and (Q, +).

Proof. We shall use representation (2) of left-transitive quasigroup. From Remark 1 it follows that left-transitive quasigroup (Q, \cdot) and group (Q, +) are isotopic with isotopy $(I, \varepsilon, \varepsilon)$. Therefore autotopy groups of these quasigroups are isomorphic [1,13], and forms of autotopies are conjugate with isotopy $(I, \varepsilon, \varepsilon)$.

It is well known [1,13] that any autotopy of a group (Q, +) has the following form $(L_a^+, R_b^+, L_a^+ R_b^+)\theta$, where a, b are fixed elements of the set Q, θ is an automorphism of group (Q, +). Therefore any autotopy of quasigroup (Q, \cdot) has the form

$$(IL_{a}^{+}I, R_{b}^{+}, L_{a}^{+}R_{b}^{+})\theta.$$
(19)

It is known, if permutation θ is an automorphism of a quasigroup (Q, \cdot) , then θ is automorphism of any parastrophe of this quasigroup [13]. From representation (2) we have that $L_x^{\cdot} = IL_x^+$, $IL_x^{\cdot} = L_x^+$, $R_x^{\cdot} = R_x^+I$, $R_x^{\cdot}I = R_x^+$ for all $x \in Q$. Using the facts that $I^2 = \varepsilon$ and $I = R_f^{\cdot}$ we can rewrite (19) in the following form

$$(L_a^{\cdot}I, R_b^{\cdot}I, IL_a^{\cdot}R_b^{\cdot}I)\theta = (L_a^{\cdot}, R_b^{\cdot}, R_f^{\cdot}L_a^{\cdot}R_b^{\cdot})R_f^{\cdot}\theta,$$
(20)

where θ is an automorphism of quasigroup (Q, \cdot) .

Definition 7. The last component of an autotopy of a quasigroup is called a quasiautomorphism [1].

Lemma 2. The groups of second and third components of the group of all autotopisms of an LIP-quasigroup coincide [13, Lemma 2.40. 1.].

Lemma 3. Any quasiautomorphism of left-transitive quasigroup (Q, \cdot) has the form $R_b^{\cdot} R_f^{\cdot} \theta$.

Proof. From Remark 3 it follows that any left-transitive quasigroup is an LIPquasigroup. The rest follows from Lemma 2 and Theorem 7. \Box

Right and left pseudoautomorphisms of a quasigroup are autotopies of a special kind.

Definition 8. A bijection θ of a set Q is called a right pseudoautomorphism of a quasigroup (Q, \cdot) if there exists at least one element $c \in Q$ such that $\theta x \cdot (\theta y \cdot c) = \theta(x \cdot y) \cdot c$ for all $x, y \in Q$, i.e.,

$$(\theta, R_c \theta, R_c \theta) \tag{21}$$

is an autotopy of a quasigroup (Q, \cdot) . The element c is called a companion of θ .

A bijection θ of a set Q is called a left pseudoautomorphism of a quasigroup (Q, \cdot) if there exists at least one element $c \in Q$ such that $(c \cdot \theta x) \cdot \theta y = c \cdot \theta(x \cdot y)$ for all $x, y \in Q$, i.e.,

$$(L_c\theta, \theta, L_c\theta) \tag{22}$$

is an autotopy of a quasigroup (Q, \cdot) . The element c is called a companion of θ [1].

It is well known, if a quasigroup has non-trivial left and right pseudoautomorphism, then it is a loop [1, 11].

2.4 G-property of left-transitive quasigroups

Definition 9. G-loop is a loop which is isomorphic to all its loop isotopes (LP-isotopes) [4,11].

The importance of the study of pseudoautomorphisms follows from the following theorem of V. D. Belousov.

Theorem 8. A loop (L, \cdot) is a G-loop if and only if every element $x \in L$ is a companion of some right and some left pseudoautomorphism of (L, \cdot) [1, Theorem 3.8].

V. D. Belousov's result opens the way for the study of G-property, i.e., for the study of G-loops and left (right) G-quasigroups. There exist connections between quasigroup nuclei and pseudoautomorphisms of a quasigroup [1, p. 47].

We start from the following definition.

Definition 10. A bijection α of a set Q is called a right A-pseudoautomorphism of a quasigroup (Q, \cdot) if there exists a bijection β of the set Q such that the triple (α, β, β) is an autotopy of quasigroup (Q, \cdot) .

A bijection β of a set Q is called a left A-pseudoautomorphism of a quasigroup (Q, \cdot) if there exists a bijection α of the set Q such that the triple (α, β, α) is an autotopy of quasigroup (Q, \cdot) [13, Definition 1.159].

Notice sets of all the first, second, and third components of right (left) A-pseudoautomorphisms of a quasigroup (Q, \cdot) , sets of right (left) A-pseudo-automorphisms of a quasigroup (Q, \cdot) form groups relative to operation of multiplication of these Apseudoautomorphisms as autotopisms of the quasigroup (Q, \cdot) [13, Theorem 1.161.].

We shall denote the above listed groups using the letter Π with various indexes as follows: ${}_{1}\Pi_{l}^{A}, {}_{2}\Pi_{l}^{A}, {}_{3}\Pi_{l}^{A}, {}_{1}\Pi_{r}^{A}, {}_{2}\Pi_{r}^{A}$, and ${}_{3}\Pi_{r}^{A}$. The letter A in the right upper corner means that this is an autotopical pseudoautomorphism. For example, ${}_{2}\Pi_{r}^{A}$ denotes the group of second components of right A-pseudo-automorphisms of a quasigroup (Q, \cdot) .

The following lemma shows that in "loop" case right and left A-pseudoautomorphisms are transformed into standard pseudoautomorphisms.

Proposition 4. In a right loop (Q, \cdot) with the right identity element e, any right A-pseudoautomorphism is a right pseudoautomorphism.

In a left loop (Q, \cdot) with the left identity element f, any left A-pseudoautomorphism is a left pseudoautomorphism [13, Lemma 1.165.].

Definition 11. A quasigroup (Q, \cdot) is called a right GA-quasigroup if the group ${}_{2}\Pi_{r}^{A}$ (or the group ${}_{3}\Pi_{r}^{A}$) is transitive on the set Q.

A quasigroup (Q, \cdot) is called a left GA-quasigroup if the group ${}_{1}\Pi_{l}^{A}$ (or the group ${}_{3}\Pi_{l}^{A}$) is transitive on the set Q.

Right and left GA-quasigroups are called GA-quasigroups.

Theorem 9. Case 1. Autotopy of left-transitive quasigroup (Q, \cdot) is a right Apseudoautomorphism if and only if there exists an element $a \in Q$ such that

$$R_f^{\cdot} = L_a^{\cdot}.$$
 (23)

Case 2. Autotopy of left-transitive quasigroup (Q, \cdot) is a left A-pseudoautomorphism if and only if the following equality is true:

$$L_a^{\cdot} = R_f^{\cdot} L_a^{\cdot} R_b^{\cdot} \tag{24}$$

for some fixed $a, b \in Q$.

Proof. The proof follows from Corollary 3 and Theorem 7.

Theorem 10. Left-transitive quasigroup (Q, \cdot) is a right GA-quasigroup if and only if (Q, \cdot) is an abelian 2-group.

Proof. \Rightarrow Here we use equality (2). We can rewrite equality (23) $R_f x = L_a x$, $x \cdot f = a \cdot x$ for all $x \in Q$ in the form:

$$-x + f = -a + x. \tag{25}$$

If we put x = 0 in the equation (25), then we have f = -a, -f = f = a. Therefore a = f = 0 (Corollary 2, Remark 2).

Then the equality (25) can be rewritten in the form -x = x, x + x = 0 for all $x \in Q$. Thus $x \cdot y = -x + y = x + y = y + x = -y + x = y \cdot x$. We have used the well known fact [10] that any group in which all non-zero elements have the order two, is commutative. Properties of commutative left-transitive quasigroups are given in Corollary 1.

 \Leftarrow It is easy to see.

Corollary 6. A left-transitive quasigroup (Q, \cdot) is a GA-quasigroup if and only if (Q, \cdot) is an abelian 2-group.

Proof. Any GA-quasigroup is a right GA-quasigroup.

Given in Example 1 quasigroup does not satisfy equality (24). Then there exist left-transitive quasigroups that are not left or right GA-quasigroups. Commutative left-transitive quasigroup is a right GA-quasigroup. It is easy to see that this quasigroup is also a G-loop.

2.5 Simple left-transitive quasigroups

Proposition 5. Left-transitive quasigroup (Q, \cdot) is simple if and only if the group (Q, +) is simple.

Proof. From the results given in [13, Remark 1.308] and the form of isotopy (Remark 1) it follows that sets (lattices) of normal congruences of left-transitive quasigroup (Q, \cdot) and of corresponding group (Q, +) are equal.

Acknowledgement. Author thanks Referee for valuable remarks.

References

- BELOUSOV V. D. Foundations of the Theory of Quasigroups and Loops. Moscow, Nauka, 1967 (in Russian).
- [2] BELOUSOV V. D. *Elements of Quasigroup Theory: a Special Course*. Kishinev State University Printing House, Kishinev, 1981 (in Russian).
- BELOUSOV V. D., FLORJA I. A. Quasigroups with the inverse property. Bul. Akad. Ştiinţe RSS Moldoven., (4):3–17, 1966. (in Russian).
- [4] BRUCK R. H. A Survey of Binary Systems. Springer Verlag, New York, third printing, corrected edition, 1971.
- [5] CARDOSO J. M., DA SILVA C. P. On Ward quasigroups. An. Stiint. Univ. "AI. I. Cuza" Iaşi Sect. I a Mat. (N.S.), 24(2):231–233, 1978.
- [6] CHATTERJEA S. K. On Ward quasigroups. Pure Math. Manuscript, (6):31-34, 1987.
- [7] FLORJA I. A. The relation of left-transitive quasigroups with Bol quasigroups. Nets and quasigroups. Mat. Issled., Vyp. 39, 1976, 203–215 (Russian).
- [8] FROBENIUS G. Uber Gruppencharaktere. Sitzungsber. Preuss. Akad. Wiss., 1896, p. 985–1021.
- JOHNSON K. W., VOJTECHOVSKY P. Right division in groups, Dedekind-Frobenius group matrices, and Ward quasigroups. Abh. Math. Sem. Univ. Hamburg, 75:121–136, 2005.
- [10] KARGAPOLOV M. I., MERZLYAKOV M. YU. Foundations of Group Theory. Moscow, Nauka, 1977 (in Russian).
- [11] PFLUGFELDER H. O. Quasigroups and Loops: Introduction. Heldermann Verlag, Berlin, 1990.
- [12] POLONIJO M. A note on Ward quasigroups. An. Stiint. Univ. Al. I. Cuza Iaşi Secţ. I a Mat., 32(2):5–10, 1986.
- [13] SHCHERBACOV V. A. Elements of Quasigroup Theory and Applications. CRC Press, Boca Raton, 2017.
- [14] STEIN SH. K. On the foundations of quasigroups. Trans. Amer. Math. Soc., 85(1):228–256, 1957.
- [15] WARD M. Postulates for the inverse operations in a group. Trans. Amer. Math. Soc., 32(3):520–526, 1930.

N. N. DIDURIK State University "Dimitrie Cantemir" Academiei str. 3/2, MD–2028 Chişinău Moldova E-mail: natnikkr83@mail.ru Received April 11, 2018