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On the solvability of a class of boundary value

problems for systems of the integral equations

with power nonlinearity on the whole axis
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Abstract. We investigate a class of boundary value problems for systems of con-
volution type integral equations on the whole axis with power nonlinearity. These
problems have a direct application in the p-adic theory of open-closed strings. We
prove the existence of odd rolling solutions to the problems. We also establish the
integral asymptotic for the constructed solutions. The results are illustrated by ex-
amples of the equations under consideration.
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1 Introduction

We consider the following system of singular nonlinear integral equations on the
whole axis

Fm
i (x) = (µi(x) − 1)Fn

i (x) +
N∑

j=1

+∞∫

−∞

Kij(x− t)Fj(t) dt, x ∈ R, i = 1, 2, . . . , N (1)

for real-valued measurable and odd function F (x) = (F1(x), F2(x), . . . , FN (x))T

(T is transpose sign), assuming that

m, n are odd numbers and m > 2n; (2)

µi(0) = +∞; µi(x) ≥ 1, x ∈ R; lim
x→+∞

µi(x) = 1, i = 1, 2, . . . , N, (3)

µi(−x) = µi(x), x ∈ R
+ ≡ (0,+∞); µi − 1 ∈ L1(R

+) ∩ L2(R
+); (4)

Kij(x) > 0, Kij(−x) = Kij(x), x ∈ R; Kij(x) ↓ for x on [0, +∞), (5)

Kij ∈ L1(R) ∩CM (R), i, j = 1, 2, . . . , N, (6)

aij ≡
+∞∫

−∞

Kij(t) dt, A = (aij)
N×N
i,j=1 , r(A) = 1, (7)

υij ≡
+∞∫

−∞

|x|Kij(x) dx < +∞, i, j = 1, 2, . . . , N, (8)
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where CM (R) is the space of continuous and essentially bounded functions on R,
r(A) is the spectral radius of matrix A.

These equations are arising in studying system of interacting open, closed and
open-closed strings. It should be noted that string theory is of considerable interest
not only for p-adic mathematical physics, but also in other fields of natural science,
for example, in cosmology. A significant number of articles (see [1]–[7]) are devoted
to the study of the concrete one-dimensional case (N = 1) of (1). In particular case
(see [6]–[7]) they describe the dynamics (rolling) of tachyon strings with a non-zero
interaction constant λ when

m = p2, n =
p(p− 1)

2
− 1 and m, n, p are odd numbers, (9)

K(x) =
1√
π
e−x2

, µ(x) = λ2 p− 1

2p

(
Φp−1(x) − 1

)
+ 1, x ∈ R, λ ∈ [0, 1), (10)

where

Φ(−0) = +∞, Φ(−x) = −Φ(x), x > 0,

Φ(±∞) = ∓1, Φp−1 − 1 ∈ L1(R
+) ∩ L2(R

+).
(11)

The problem of the existence of nontrivial solutions of the one-dimensional equation
(1) under the conditions (9)–(11) and λ = 0 was investigated in the paper [7] of
V. S.Vladimirov. In [8]–[10] of one of the authors, a one-dimensional equation when
λ ≡ 1 with a more general kernel is also investigated. The solutions of the boundary
value problems for this case are assumed to be real continuous functions on the
whole axis, which are different from the trivial solutions (vacua) ±1, 0.

For the particular case of the system (1) in the paper [11] one boundary value
problem is considered and the existence of a nonnegative (nontrivial) nondecreasing
bounded and continuous solution of this problem is proved.

In this paper by using the results of [11] we investigate the properties of systems
(1) with power nonlinearity, construct an iterative method for their solution and
prove the convergence of iterations. We show that a class of boundary value problems
for these systems of equations on the whole axis have the odd rolling solutions. At
the end of the paper we present some examples.

2 On the solvability of one auxiliary system of nonlinear integral

equations on the positive semi-axis

At first we consider one auxiliary system with the same kernels

ψm
i (x) =

N∑

j=1

∞∫

0

(Kij(x− t) −Kij(x+ t)) ψj(t) dt, x ∈ [0, +∞),

i = 1, 2, . . . , N

(12)

with respect to continuous function ψ(x) = (ψ1(x), ψ2(x), . . . , ψN (x))T on [0, +∞).
It is easy to see that ψi(0) = 0, i = 1, 2, . . . , N . Below we show that this system

has a nonnegative nontrivial nondecreasing and bounded solution on [0, +∞).
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The existence of a nonnegative nondecreasing bounded and continuous

solution of system (12). We apply the Perron theorem to the matrix A, defined
by formula (7). There exists a vector η = (η1, η2, . . . , ηN )T with positive components
(ηi > 0) such that

N∑

j=1

aijηj = ηi, i = 1, 2, . . . , N. (13)

Denote
η∗i ≡ ηi

min
1≤i≤N

ηi

≥ 1, i = 1, 2, . . . , N. (14)

Choosing as the initial approximation

ψ
(0)
i (x) ≡ η∗i , x ∈ R

+, i = 1, 2, . . . , N, (15)

we introduce the following successive approximations for equation (12)

(
ψ

(k+1)
i (x)

)m

=

N∑

j=1

∞∫

0

(Kij(x− t) −Kij(x+ t))ψ
(k)
j (t) dt,

k = 0, 1, 2, . . . , x ∈ R
+, i = 1, 2, . . . , N.

(16)

First by induction we show that the iterative functions are monotone on R
+.

ψ
(k)
i (x) ↑ by x on R

+, k = 0, 1, 2, . . . , i = 1, 2, . . . , N. (17)

Let x1, x2 ∈ R
+ be arbitrary numbers and x1 < x2. The assertion for k = 0 is

obviously true (see (15)). Assuming ψ
(k)
i (x1) ≤ ψ

(k)
i (x2) for certain k ∈ N and

taking into account (5) in (16), we have

(
ψ

(k+1)
i (x1)

)m

=
N∑

j=1




x1∫

−∞

Kij(t)ψ
(k)
j (x1 − t) dt −

∞∫

0

Kij(x1 + t)ψ
(k)
j (t) dt


 ≤

≤
N∑

j=1




x2∫

−∞

Kij(t)ψ
(k)
j (x2 − t) dt −

∞∫

0

Kij(x2 + t)ψ
(k)
j (t) dt


 =

(
ψ

(k+1)
i (x2)

)m

.

Since m (m ≥ 3) is an odd number and the function y = xm is continuous and
increasing on R, from the obtained inequality for k+1 (17) follows, and consequently,
for any natural k.

Now we turn to the proof of the convergence of iterations (15), (16). To do this,
we first prove the monotonicity of iterations with respect to k.

ψ
(k)
i (x) ↓ with respect to k, x ∈ R

+, i = 1, 2, . . . , N. (18)

The properties of kernels ensure the fulfillment of the following inequalities

Kij(x− t) ≥ Kij(x+ t), x, t ∈ R
+, i, j = 1, 2, . . . , N. (19)
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Taking into consideration (15), (19), (7), (13) and (14) from (16) for k = 0 we have

(
ψ

(1)
i (x)

)m

≤
N∑

j=1

∞∫

0

Kij(x− t)ψ
(0)
j (t) dt ≤

N∑

j=1

η∗j

+∞∫

−∞

Kij(t)dt =

=

N∑

j=1

aijη
∗
j = η∗i ≤ (η∗i )

m =
(
ψ

(0)
i (x)

)m

, x ∈ R
+, i = 1, 2, . . . , N.

Again using the monotonicity property of the function y = xm on R, from the

obtained inequality it follows ψ
(1)
i (x) ≤ ψ

(0)
i (x) ≡ η∗i , x ∈ R

+, i = 1, 2, . . . , N. Let

the inequalities ψ
(k)
i (x) ≤ ψ

(k−1)
i (x) hold for certain k ∈ N. Then from (16) we have

ψ
(k+1)
i (x) ≤ ψ

(k)
i (x), i = 1, 2, . . . , N, x ∈ R

+. Consequently, the monotonicity of
the iterations for any k = 0, 1, 2, . . . is proved.

Using the results of the work [11] we prove that iterations (16) are bounded
below. According to [11] the following system of equations

aiϕ
3
i (x) + (1 − ai)ϕi(x) =

N∑
j=1

∞∫
0

(Kij(x− t) −Kij(x+ t))ϕj(t) dt,

x ∈ [0, +∞), i = 1, 2, . . . , N

(20)

for any ai ∈ (0, 1] has a nonnegative (nontrivial) nondecreasing bounded and con-
tinuous solution ϕ(x) = (ϕ1(x), ϕ2(x), . . . , ϕN (x))T and

ϕi(0) = 0; 0 ≤ ϕi(x) ≤ η∗i x ∈ R
+, i = 1, 2, . . . , N. (21)

Let ϕ̃(x) = (ϕ̃1(x), ϕ̃2(x), . . . , ϕ̃N (x))T be the solution of system (20) for ai = 1,
i = 1, 2, . . . , N .

Now we show that the following two-sided inequalities hold:

ϕ̃i(x) ≤ ψ
(k)
i (x) ≤ η∗i , k = 0, 1, 2, . . . , x ∈ R

+, i = 1, 2, . . . , N. (22)

We prove the left-hand side of inequality of (22). It is easy to verify from (15) and

(21) that the initial iteration is bounded ψ
(0)
i (x) ≡ η∗i ≥ ϕ̃i(x). Let the ψ

(k)
i (x) ≥

ϕ̃i(x), i = 1, 2, . . . , N , be valid for certain k ∈ N. From (16) and (20) we have

(
ψ

(k+1)
i (x)

)m

≥
N∑

j=1

∞∫

0

(Kij(x− t) −Kij(x+ t)) ϕ̃
(k)
j (t) dt = ϕ̃3

i (x), x ∈ R
+.

Since ψ
(k)
i (0) = 0 and in accordance to (17), all functions ψ

(k)
i (x) are monotone on

R
+, therefore

ψ
(k)
i (x) > 0, x ∈ R

+, k = 1, 2, . . . , i = 1, 2, . . . , N.
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So, from the above obtained inequalities
(
ψ

(k)
i (x)

)m

≥ ϕ̃3
i (x) for odd number m ≥ 3

it follows that
ψ

(k)
i (x) ≥ ϕ̃i(x), x ∈ R

+, i = 1, 2, . . . N.

Similarly, the right-hand side of inequality (22) is proved.
According to (15) and (16) from continuity of functions {Kij}N×N

i,j=1 and xm on R

it follows
ψ

(k)
i ∈ C(R+), k = 0, 1, 2, . . . , i = 1, 2, . . . , N. (23)

Thus, we conclude that for every fixed i ∈ {1, 2, . . . , N} the sequence of functions{
ψ

(k)
i (x)

}∞

k=0
has a pointwise limit as k → ∞

lim
k→∞

ψ
(k)
i (x) = ψi(x), i = 1, 2, . . . , N. (24)

According to the Levi theorem [12] function ψ(x) satisfies system (12). Moreover,
due to (22), (17), (23) it follows that the following assertions hold

ϕ̃i(x) ≤ ψi(x) ≤ η∗i , x ∈ R
+, i = 1, 2, . . . , N, (25)

ψi(x) ↑ by x on R
+, i = 1, 2, . . . , N, (26)

ψi ∈ C(R+), i = 1, 2, . . . , N. (27)

Consequently, taking into account (24), (26), (27) and Dini’s theorem ([12]) we can

state that the sequence of continuous functions {ψ(k)
i (x)}∞k=0 uniformly converges to

continuous function ψi(x) in each compact from R
+.

The limit of the solution of the system (12) at infinity. From (25)–(27)
it follows that there exits

lim
x→+∞

ψi(x) ≡ λi < +∞, i = 1, 2, . . . , N. (28)

Using the continuity of the functions {ψi(t)}N
i=1, the known limit relation for the

convolution operation ([13])

lim
x→+∞

∞∫

0

Kij(x− t)ψj(t)dt = λj

+∞∫

−∞

Kij(t)dt = aijλj ,

and also

0 ≤
∣∣∣∣∣

∞∫

0

Kij(x+ t)ψj(t) dt

∣∣∣∣∣ ≤ sup
t≥0

|ψj(t)|
∞∫

x

Kij(τ) dτ → 0,

⇒ lim
x→+∞

∞∫

0

Kij(x+ t)ψj(t)dt = 0
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in (12) we get that

λm
i =

N∑

j=1

aijλj , i = 1, 2, . . . , N. (29)

For the system of nonlinear algebraic equations (29) we construct the following
successive approximations

(
λ

(k+1)
i

)m

=
N∑

j=1
aijλ

(k)
j ,

λ
(0)
i = η∗i , k = 0, 1, 2, . . . , i = 1, 2, . . . , N.

(30)

As before, by induction it is not difficult to verify the validity of the following facts

λ
(k)
i ↓ with respect to k; λ

(k)
i ≥ η∗i

max
1≤i≤N

η∗i
, k = 0, 1, 2, . . . , i = 1, 2, . . . , N.

Consequently, the sequence {λ(k)
i }∞k=0 has a limit as k → ∞ :

lim
k→+∞

λ
(k)
i = λi i = 1, 2, . . . , N,

and the numbers λi satisfy the system (29) and two-sided inequalities

η∗i
max

1≤i≤N
η∗i

≤ λi ≤ η∗i , i = 1, 2, . . . , N.

Thus, the following lemma is true.

Lemma 1. If for a matrix A = (aij)
N×N
i,j=1 with positive elements and with a spectral

radius r(A) = 1 the following inequality holds

min
1≤i,j≤N

aij

max
1≤i,j≤N

aij

>
1

m−1
√
m
, (31)

then for all odd numbers m > 2 the system (29) has in the class

Λ ≡
{
λ = (λ1, λ2, . . . , λN )T :

η∗i
max

1≤i≤N
η∗i

≤ λi ≤ η∗i , i = 1, 2, . . . , N
}

(32)

the unique solution being the limit of successive approximations (30).

Proof. From (13), (14) and (31) it follows

æ ≡
min

1≤i≤N
η∗i

max
1≤i≤N

η∗i
=

min
1≤i≤N

N∑
j=1

aijη
∗
j

max
1≤i≤N

N∑
j=1

aijη
∗
j

≥
min

1≤i,j≤N
aij

max
1≤i,j≤N

aij

>
1

m−1
√
m
. (33)
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Then, assuming that the system (30) has in the class Λ two solutions λ and λ̃, we
have

(λi − λ̃i)(λ
m−1
i + λm−2

i λ̃i + . . .+ λi λ̃
m−2
i + λ̃m−1

i ) =

N∑

j=1

aij(λj − λ̃j).

Since λ, λ̃ ∈ Λ, by (13), (14) it immediately follows that

|λi − λ̃i| ·m


 η∗i

max
1≤i≤N

η∗i




m−1

≤
N∑

j=1

aij|λj − λ̃j | ≤ η∗i · max
1≤j≤n

|λj − λ̃j |
η∗j

.

In the notation introduced on the left side of (33), we get

mæm−1 |λi − λ̃i|
η∗i

≤ max
1≤j≤N

|λj − λ̃j|
η∗j

, ∀i = 1, 2, . . . , N.

From the previous inequality it follows that

(
mæm−1 − 1

)
max

1≤j≤N

|λj − λ̃j |
η∗j

≤ 0. (34)

Since æm−1 > 1
m

(see (33)), then from (34) we get λi = λ̃i, i = 1, 2, . . . , N.

Thus, if the condition (31) is fulfilled, the solution ψ(x) of the system (12) has
in the class Λ ( see (32)) a unique limit λ = (λ1, λ2, . . . , λN )T . Consequently, the
below theorem is valid.

Theorem 1. Suppose kernels {Kij}N×N
i,j=1 possess the properties (5)–(7). Then for

any odd number m > 2 the system (12) has a nonnegative (non-trivial) continuous

nondecreasing and bounded solution on [0, +∞) and the estimates (25) are valid.

Moreover, if kernels satisfy the additional condition (31), then in the class Λ,

defined by formula (32), the solution of the boundary problem (12), (28) is unique.

Asymptotic behavior of the solution of the system (12). Below we show
that the solution of the system has one more important property:

λi − ψi ∈ L1(R
+), i = 1, 2, . . . , N. (35)

We consider for the boundary value problem (12) and (28) the following successive
approximations

(
ψ

(k+1)
i (x)

)m

=
N∑

j=1

∞∫
0

(Kij(x− t) −Kij(x+ t))ψ
(k)
j (t) dt,

ψ
(0)
i (x) ≡ λi, k = 0, 1, 2, . . . , x ∈ R

+, i = 1, 2, . . . , N.

(36)
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Obviously, for these iterations for any i ∈ {1, 2, . . . , N} the assertions are valid

ψ
(k)
i (x) ↓ with respect to k, x ∈ R

+; (37)

ϕ̃i(x) ≤ ψ
(k)
i (x) ≤ λi, k = 0, 1, 2, . . . , x ∈ R

+; (38)

ψ
(k)
i (x) ↑ by x on, R, k = 0, 1, 2, . . . ; (39)

ψ
(k)
i ∈ C(R+), k = 0, 1, 2, . . . (40)

By induction on k we prove the validity of the inclusions (35). Indeed, for k = 0
they are obvious. Suppose that (35) hold for certain k ∈ N. Then according to (29),
(36) and (7) we have

λm
i −

(
ψ

(k+1)
i (x)

)m

=

=
(
λi − ψ

(k+1)
i (x)

) [
λm−1

i + λm−2
i ψ

(k+1)
i (x) + . . .

. . . + λi

(
ψ

(k+1)
i (x)

)m−2
+

(
ψ

(k+1)
i (x)

)m−1
]

=

=

N∑

j=1

aijλj −
N∑

j=1

∞∫

0

Kij(x− t)ψ
(k)
j (t)dt+

N∑

j=1

∞∫

0

Kij(x+ t)ψ
(k)
j (t)dt =

=
N∑

j=1

∞∫

0

Kij(x− t)(λj −ψ(k)
j (t))dt+

N∑

j=1

λj

∞∫

x

Kij(t)dt+
N∑

j=1

∞∫

0

Kij(x+ t)ψ
(k)
j (t)dt.

Using the estimates of (38) and taking into account that the functions ϕ̃i, as a
solution of the system (20), are nonnegative nondecreasing bounded and continuous,
for any i ∈ {1, 2, . . . , N} we obtain

(
λi − ψ

(k+1)
i (x)

) (
λm−1

i + λm−2
i ϕ̃i(x)

)
≤

≤
N∑

j=1

∞∫

0

Kij(x− t)(λj − ψ
(k+1)
j (t))dt + 2

N∑

j=1

λj

∞∫

x

Kij(t)dt

or

λm
i

(
1 +

ϕ̃i(x)

λi

)
λi − ψ

(k+1)
i (x)

λi

≤

≤
N∑

j=1

∞∫

0

Kij(x− t)(λj − ψ
(k)
j (t))dt + 2

N∑

j=1

λj

∞∫

x

Kij(t)dt, x ∈ R
+.

(41)

Using Fubini’s theorem ([12]) to kernels with the property (8) it is easy to check

∞∫

x

Kij(t)dt ∈ L1(R
+), i, j = 1, 2, . . . , N. (42)
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Taking into account the inclusion (42), the condition (6) and the inductive assump-

tion in (41) we conclude that λi − ψ
(k+1)
i ∈ L1(R

+), i, j = 1, 2, . . . , N. Then,
integrating both sides of (41) in x from 0 to +∞ and taking into account (5)–(8),
we have

λm
i

∞∫

0

(
1 +

ϕ̃i(x)

λi

)
λi − ψ

(k+1)
i (x)

λi

dx ≤

≤
N∑

j=1

∞∫

0

∞∫

0

Kij(x− t)
(
λj − ψ

(k+1)
j (t)

)
dt dx+ 2

N∑

j=1

λj

∞∫

0

∞∫

x

Kij(t) dt dx ≤

≤
N∑

j=1

∞∫

0

(
λj − ψ

(k+1)
j (t)

) t∫

−∞

Kij(u) du dt +
N∑

j=1

λjυij . (43)

Taking into account the property (7) of the even kernel and the formula (29), we
estimate the first sum on the right-hand side of the last inequality (43)

N∑

j=1

∞∫

0

(
λj − ψ

(k+1)
j (t)

) t∫

−∞

Kij(u) du dt ≤

≤
N∑

j=1

1∫

0

(
λj − ψ

(k+1)
j (t)

) t∫

−∞

Kij(u) du dt +
N∑

j=1

aij

∞∫

1

(
λj − ψ

(k+1)
j (t)

)
dt ≤

≤ max
1≤j≤N

1∫

0

λj − ψ
(k+1)
j (t)

λj

dt ·
N∑

j=1

λj

1∫

−∞

Kij(u)du+

+ max
1≤j≤N

∞∫

1

λj − ψ
(k+1)
j (t)

λj

dt ·
N∑

j=1

aijλj ≤ λm
i · max

1≤j≤N

∞∫

1

λj − ψ
(k+1)
j (t)

λj

dt +

+ max
1≤j≤N

1∫

0

λj − ψ
(k+1)
j (t)

λj

dt ·




N∑

j=1

aijλj −
N∑

j=1

λj

∞∫

1

Kij(u)du


 =

= λm
i max

1≤j≤N

1∫

0

λj − ψ
(k+1)
j (t)

λj

dt ·


1 − 1

λm
i

N∑

j=1

λj

∞∫

1

Kij(u)du


 +

+ λm
i max

1≤j≤N

∞∫

1

λj − ψ
(k+1)
j (t)

λj

dt.

Substituting this inequality into (43), dividing both sides by λm
i , then transform-

ing its left-hand side according to the properties of the function ϕ̃i(x), we get the
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following estimate

1∫

0

λi − ψ
(k+1)
i (x)

λi

dx+

(
1 +

ϕ̃i(1)

λi

) ∞∫

1

λi − ψ
(k+1)
i (x)

λi

dx ≤

≤


1 − min

1≤i≤N

1

λm
i

N∑

j=1

λj

∞∫

1

Kij(u)du


 · max

1≤j≤N

1∫

0

λj − ψ
(k+1)
j (t)

λj

dt+

+ max
1≤j≤N

∞∫

1

λj − ψ
(k+1)
j (t)

λj

dt+ max
1≤i≤N

1

λm
i

N∑

j=1

λjυij , i = 1, 2, . . . , N.

For ai, bi ≥ 0, i = 1, 2, . . . , N , we have the easily verifiable identity max
1≤i≤N

(ai+bi) =

max
1≤i≤N

ai + max
1≤i≤N

bi. Applying this identity to the left-hand side of the last inequality

and denoting

C1 = min
1≤i≤N

1

λm
i

N∑

j=1

λj

∞∫

1

Kij(u)du > 0, C2 = min
1≤i≤N

ϕ̃i(1)

λi

> 0,

C =

max
1≤i≤N

1
λm

i

N∑
j=1

λj υij

min {C1, C2}
,

we obtain the uniform estimate

max
1≤i≤N

∞∫

0

λi − ψ
(k+1)
i (x)

λi

dx ≤ C, ∀k = 0, 1, 2, . . . . (44)

By (39), (40), (44) according to the Levi theorem, pointwise convergence of succes-

sive approximations (36) it follows that lim
k→∞

ψ
(k)
i (x) = ψi(x), i = 1, 2, . . . , N and

limit function ψ(x) = (ψ1(x), ψ2(x), . . . , ψN (x))T satisfies system (12). Furthermore,
the inclusions λi − ψi ∈ L1 (R+) and the inequalities

max
1≤i≤N

∞∫

0

λi − ψi(x)

λi

dx ≤ C, i = 1, 2, . . . , N (45)

hold. Thus, we have proved the following assertion.

Lemma 2. Under the conditions of theorem 1 if the kernels also possess the property

(8), then the function, representing the difference between the solution of the system

(12) and its limit, is summable

λi − ψi ∈ L1(R
+), i = 1, 2, . . . , N, (46)

and integral estimates (45) hold.
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3 Auxiliary boundary value problem for the system (1)

Let us return to the system (1) of singular integral equations. The solution
of the original system will be obtained by an odd extension of the solution of the
corresponding system on the positive axis. Thus we consider the following auxiliary
boundary value problem

fm
i (x) = (µi(x) − 1) fn

i (x)+
N∑

j=1

∞∫

0

(Kij(x− t) −Kij(x+ t)) fj(t) dt, x ∈ R
+ (47)

for continues on R
+ function f(x) = (f1(x), f2(x), . . . , fN (x))T . To the system of

equations (47) we add the boundary conditions

lim
x→+∞

fi(x) = λi, i = 1, 2, . . . , N, (48)

where λi is defined by (28).
We introduce the successive approximations for the system of equations (47)

(
f

(s+1)
i (x)

)m

= (µi(x) − 1)
(
f

(s)
i (x)

)n

+

+

N∑

j=1

∞∫

0

(Kij(x− t) −Kij(x+ t)) f
(s)
j (t) dt,

f
(0)
i (x) = ψi(x), s = 0, 1, 2, . . . , x ∈ R

+, i = 1, 2, . . . , N,

(49)

where ψ(x) = (ψ1(x), ψ2(x), . . . , ψN (x))T is the solution of system (12).

Monotonicity of iterations (49) with respect s. Taking into account (3),
(4), (19) and (12) in (49) we have

(
f

(1)
i (x)

)m

≥
N∑

j=1

∞∫

0

(Kij(x− t) −Kij(x+ t)) ψj(t) dt = ψm
i (x),

x ∈ R
+, i = 1, 2, . . . , N.

(50)

As noted above, for odd m the function xm is continuous and monotonically increas-

ing on R. Then from (50) it follows that f
(1)
i (x) ≥ ψi(x) = f

(0)
i (x). Then, taking

into account (3) and assuming that f
(s)
i (x) ≥ f

(s−1)
i (x), i = 1, 2, . . . , N, x ∈ R

+ at
some s ∈ N in (49), we get

(
f

(s+1)
i (x)

)m

≥ (µi(x) − 1)
(
f

(s−1)
i (x)

)n

+

+

N∑

j=1

∞∫

0

(Kij(x− t) −Kij(x+ t)) f
(s−1)
j (t) dt =

(
f

(s)
i (x)

)m

,

whence f
(s+1)
i (x) ≥ f

(s)
i (x), ∀i = 1, 2, . . . , N, x ∈ R

+. So, the functional sequence

{f (s)
i (x)}∞s=0 is monotone in s and ψi(x) ≤ f

(s)
i (x), x ∈ R

+, ∀i = 1, 2, . . . , N.
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The boundedness of iterations (49). Note that from (4) and (6) it follows

Mi :=

∞∫

0

(µi(t) − 1) dt · sup
x∈R

N∑

j=1

Kij(x) < +∞, i = 1, 2, . . . , N. (51)

Denoting

M = max{M1, M2, . . . , MN}, λ∗ = max{λ1, λ2, . . . , λN}, (52)

we prove that for any s ∈ {0, 1, 2, . . . } the inequalities hold

f
(s)
i (x) ≤ (λ∗ +M)

1
m−1 µ

1
n

i (x), x ∈ R
+, i = 1, 2, . . . , N. (53)

In case s = 0 inequality (53) holds by (49), (28), (52) and condition (3). Suppose
that (53) holds for certain s ∈ N. By (2), (3), (19), (51), (52) and the induction
hypothesis in (49) we obtain

(
f

(s+1)
i (x)

)m

≤ (µi(x) − 1) (λ∗ +M)
n

m−1 µi(x)+

+ (λ∗ +M)
1

m−1

N∑

j=1

∞∫

0

(Kij(x− t) −Kij(x+ t)) µ
1
n

j (t) dt ≤

≤ (λ∗ +M)
1

m−1

N∑

j=1

∞∫

0

Kij(x− t)µj(t) dt + (µi(x) − 1) (λ∗ +M)
n

m−1 µi(x) ≤

≤ (λ∗ +M)
1

m−1




N∑

j=1

∞∫

0

Kij(x− t) (µj(t) − 1) dt+
N∑

j=1

∞∫

0

Kij(x− t) dt


 +

+ (λ∗ +M)
n

m−1 (µi(x) − 1)µi(x) ≤ (λ∗ +M)
m

m−1 +(λ∗ +M)
m

m−1 (µi(x) − 1) µi(x) ≤
≤ (λ∗ +M)

m
m−1

(
µi(x) + µ2

i (x) − µi(x)
)
≤ (λ∗ +M)

m
m−1 µ

m
n

i (x).

It follows the validity of (53) for s+ 1, and hence, for any s ∈ {0, 1, 2, . . . }.
Further, by induction on s it is easy to verify that all functions of the sequence

{f (s)
i (x)}∞s=0 (i = 1, 2, . . . , N) are measurable by x on R

+.
Based on the above properties of iterations (49) (monotonicity and boundedness

with respect to s) we conclude that the sequence {f (s)
i (x)}∞s=0 converges pointwise

as s → +∞ : lim
s→+∞

f
(s)
i (x) = fi(x), x ∈ R

+. According to (3)–(7) and the Levi

theorem the limit function f(x) = (f1(x), f2(x), . . . , fN (x))T satisfies the equation
(47). Then, by (53) there are two-sided estimates:

ψi(x) ≤ fi(x) ≤ (λ∗ +M)
1

m−1 µ
1
n

i (x), x ∈ R
+, i = 1, 2, . . . , N. (54)

Thus, the following lemma is proved.

Lemma 3. Assuming the conditions (2)–(7) hold the system of equations (47) has

a non-trivial measurable solution f(x) = (f1(x), f2(x), . . . , fN (x))T on the positive

semi-axis satisfying the two-sided estimate (54).



66 KH.A.KHACHATRYAN, S.M. ANDRIYAN, A.A. SISAKYAN

4 Integral asymptotic of constructed solution

With the further presentation, the following fact will be useful to us. The func-
tion f−ψ representing difference between solutions of systems of nonlinear integral
equations (12) and (47) is summable.

First note that fi ∈ Lloc
1 (R+), ∀i = 1, 2, . . . , N. Indeed, for any 0 < r < +∞, if

x ∈ (0, r), from (54) we have

0 ≤ ψi(x) ≤ fi(x) ≤ (λ∗ +M)
1

m−1

(
µ

1
n

i (x) − 1

)
+ (λ∗ +M)

1
m−1 ≤

≤ (λ∗ +M)
1

m−1 (µi(x) − 1) + (λ∗ +M)
1

m−1 , i = 1, 2, . . . , N.

From this and (3), (4) it follows fi ∈ L1(0, r), ∀r ∈ R
+, hence fi ∈ Lloc

1 (R+).
Since ψi ∈ C([0, +∞)), then ψi ∈ L1(0, r) for any r ∈ R

+ and i ∈ {1, 2, . . . , N}.
So, fi − ψi ∈ Lloc

1 (R+), from where it follows that

f − ψ ∈ Lloc
1 (R+)×Lloc

1 (R+)× . . .×Lloc
1 (R+)︸ ︷︷ ︸

N

.

From the properties (26), (27) of function ψ, as the solution of boundary problem
(12) and (28), the existence of numbers ri > 0, i ∈ {1, 2, . . . , N} follows, such that

ψi(ri) = m−1

√
ci

m
, ci ≡ m−1

√
m

N∑

j=1

aij , ∀i = 1, 2, . . . , N. (55)

Then there exists the value r0 = max {r1, r2, . . . , rN}, at witch the inequalities hold
at the same time

ψi(r0) ≥ m−1

√
ci

m
, ∀i = 1, 2, . . . , N. (56)

Below we show that fi − ψi ∈ L(r0,+∞). To do this, first by induction on s we
prove

f
(s)
i − ψi ∈ L(r0,+∞), s = 0, 1, 2, . . . , i = 1, 2, . . . , N. (57)

In the case s = 0 the inclusion (57) is obviously satisfied. Suppose that (57) holds
for certain s ∈ N. Then, in view of the monotonicity of iterations (49) with respect
to s, (12), (53), for any i ∈ {1, 2, . . . , N} we get

mψm−1
i (x)

(
f

(s+1)
i (x) − ψi(x)

)
≤

(
f

(s+1)
i (x)

)m

− ψm
i (x) =

= (µi(x) − 1)
(
f

(s)
i (x)

)n

+

N∑

j=1

∞∫

0

(Kij(x− t) −Kij(x+ t))
(
f

(s)
j (t) − ψj(t)

)
dt ≤

≤ (λ∗ +M)
n

m−1 µi(x) (µi(x) − 1)+

N∑

j=1

∞∫

0

(Kij(x− t) −Kij(x+ t))
(
f

(s)
j (t) − ψj(t)

)
dt.
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If x ∈ [r0,+∞), then from the received inequality in view of the monotonicity of the
function ψ (see (26)), for any i ∈ {1, 2, . . . , N}, we have

0 ≤ mψm−1
i (r0)

(
f

(s+1)
i (x) − ψi(x)

)
≤ (λ∗ +M)

n
m−1

(
µ2

i (x) − µi(x)
)
+

+

N∑

j=1

∞∫

0

(Kij(x− t) −Kij(x+ t))
(
f

(s)
j (t) − ψj(t)

)
dt.

Then by (56) and the monotonicity of the sequence {f (s)
i (x)}∞s=0 on s we obtain

0 ≤ ci

(
f

(s+1)
i (x) − ψi(x)

)
≤ (λ∗ +M)

n
m−1

(
(µi(x) − 1)2 + (µi(x) − 1)

)
+

+

N∑

j=1

∞∫

0

(Kij(x− t) −Kij(x+ t))
(
f

(s+1)
j (t) − ψj(t)

)
dt.

(58)

Using the conditions (4), (6), we get

f
(s)
i − ψi(x) ∈ L(r0,+∞), s = 0, 1, 2, . . . , i = 1, 2, . . . , N.

Then integrating both sides of the inequality (58) with respect to x from r0 to +∞,

for any i ∈ {1, 2, . . . , N} we obtain

ci

∞∫

r0

(
f

(s+1)
i (x) − ψi(x)

)
dx ≤

≤ (λ∗ +M)
n

m−1




∞∫

r0

(µi(x) − 1)2 dx+

∞∫

r0

(µi(x) − 1) dx


 + Ii =

= (λ∗ +M)
n

m−1

(
‖µi − 1‖2

L2(r0,+∞) + ‖µi − 1‖L1(r0,+∞)

)
+ Ii,

(59)

where is denoted

Ii ≡
N∑

j=1

∞∫

r0

∞∫

0

(Kij(x− t) −Kij(x+ t))
(
f

(s+1)
j (t) − ψj(t)

)
dt dx. (60)

By (53), (3), (7), (8) for Ii we obtain the following chain of inequalities

Ii ≤
N∑

j=1

(λ∗ +M)
1

m−1

∞∫

r0

r0∫

0

Kij(x− t)µ
1
n

j (t) dt dx+

+

N∑

j=1

∞∫

r0

∞∫

r0

Kij(x− t)
(
f

(s+1)
j (t) − ψj(t)

)
dt dx ≤
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≤ (λ∗ +M)
1

m−1

N∑

j=1




∞∫

r0

r0∫

0

Kij(x− t) (µj(t) − 1) dt dx+

∞∫

r0

r0∫

0

Kij(x− t)dt dx


 +

+
N∑

j=1

∞∫

r0

(
f

(s+1)
j (t) − ψj(t)

) t∫

−∞

Kij(u)dudt ≤

≤ (λ∗ +M)
1

m−1

N∑

j=1




∞∫

0

(µj(t) − 1) dt

+∞∫

−∞

Kij(u)du+

∞∫

r0

x∫

x−r0

Kij(u)du dx


 +

+

N∑

j=1

aij

∞∫

r0

(
f

(s+1)
j (t) − ψj(t)

)
dt ≤

≤ (λ∗ +M)
1

m−1

N∑

j=1


aij

∞∫

0

(µj(t) − 1) dt+

∞∫

0

uKij(u) du


 +

+
N∑

j=1

aij

∞∫

r0

(
f

(s+1)
j (t) − ψj(t)

)
dt ≤

≤ (λ∗ +M)
1

m−1

N∑

j=1

(
aij‖µj − 1‖L1(R+) + υij

)
+

N∑

j=1

aij

∞∫

r0

(
f

(s+1)
j (t) − ψj(t)

)
dt.

We substitute these inequalities for Ii into (59). Then summing over i from 1 to N ,
taking into account the notation ci, defined by formula (55), we get

0 ≤ m−1
√
m

N∑

i=1

N∑

j=1

aij

∞∫

r0

(
f

(s+1)
i (x) − ψi(x)

)
dx ≤ (λ∗ +M)

n
m−1

N∑

i=1

‖µi−1‖2
L2(r0,+∞)+

+ (λ∗ +M)
n

m−1

N∑

i=1

‖µi−1‖L1(r0,+∞)+(λ∗ +M)
1

m−1

N∑

i=1

N∑

j=1

(
aij‖µj − 1‖L1(R+) + υij

)
+

+

N∑

i=1

N∑

j=1

aij

∞∫

r0

(
f

(s+1)
j (t) − ψj(t)

)
dt, s = 0, 1, 2 . . . ,

or

m−1
√
m ·N

(
min

1≤i,j≤n
aij

) N∑

i=1

∞∫

r0

(
f

(s+1)
i (x) − ψi(x)

)
dx ≤

≤ (λ∗ +M)
n

m−1

N∑

i=1

‖µi − 1‖2
L2(r0,+∞) + (λ∗ +M)

n
m−1

N∑

i=1

‖µi − 1‖L1(r0,+∞) +
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+ (λ∗ +M)
1

m−1

N∑

i=1

N∑

j=1

(
aij‖µj − 1‖L1(R+) + υij

)
+

+N

(
max

1≤i,j≤n
aij

) N∑

j=1

∞∫

r0

(
f

(s+1)
j (t) − ψj(t)

)
dt, s = 0, 1, 2 . . . .

Whence, by the additional condition (31) for the matrix A = (aij)
N×N
i,j=1 , we get the

uniform estimate

N∑

i=1

∞∫

r0

(
f

(s+1)
i (x) − ψi(x)

)
dx ≤

≤ C̃ (λ∗ +M)
n

m−1

N∑

i=1

(
‖µi − 1‖2

L2(r0,+∞) + ‖µi − 1‖L1(r0,+∞)

)
+

+ C̃ (λ∗ +M)
1

m−1

N∑

i=1

N∑

j=1

(
aij‖µj − 1‖L1(R+) + υij

)
, ∀s = 0, 1, 2 . . . ,

here denoted

C̃ ≡ 1

N

(
m−1
√
m · min

1≤i,j≤n
aij − max

1≤i,j≤n
aij

) > 0.

Passing to limit as s→ ∞ with applying the Levi theorem, we have

N∑

i=1

∞∫

r0

(fi(x) − ψi(x)) dx ≤

≤ C̃ (λ∗ +M)
n

m−1

N∑

i=1

(
‖µi − 1‖2

L2(r0,+∞) + ‖µi − 1‖L1(r0,+∞)

)
+

+ C̃ (λ∗ +M)
1

m−1

N∑

i=1

N∑

j=1

(
aij‖µj − 1‖L1(R+) + υij

)
, ∀s = 0, 1, 2 . . . .

Since fi(x) − ψi(x) ≥ 0, x ∈ R
+, then fi − ψi ∈ L(r0,+∞). On the other hand,

fi − ψi ∈ Lloc
1 (R+), consequently, fi − ψi ∈ L1(R

+), i = 1, 2, . . . , N.
So, we have proved the following result.

Lemma 4. Under the conditions of Lemma 3 and (31), for the solution f(x) of the

system (47), constructed through the iterations (49), the inclusion hold

f − ψ ∈ L×N
1 (R+) ≡ L1(R

+)×L1(R
+)× . . .×L1(R

+)︸ ︷︷ ︸
N

,

where ψ(x) is solution of boundary problem (12) and (28) with the properties (35).

Corollary. From Lemma 4 and inclusion (35) it easy follows that λ−f ∈ L×N
1 (R+).
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5 Properties of the solution of the system (47). Limit and odd

continuation on the negative semi-axis

First we show that for the constructed solution f(x), the limit relation (48) holds,
from which the basic result of the present paper will follow.

Thus, we prove that

lim
x→+∞

(fi(x) − ψi(x)) = 0, i = 1, 2, . . . , N. (61)

Using the two-sided estimate (54), from (12) and (47) at x ∈ R
+ we have

0 ≤ fm
i (x) − ψm

i (x) ≤ (λ∗ +M)
n

m−1 µi(x) (µi(x) − 1) +

+

N∑

j=1

∞∫

0

Kij(x− t)
fj(t) − ψj(t)

µj(t)
dt +

N∑

j=1

∞∫

0

Kij(x− t)
µj(t) − 1

µj(t)
(fj(t) − ψj(t)) dt ≤

≤ (λ∗ +M)
n

m−1 µi(x) (µi(x) − 1) +

N∑

j=1

∞∫

0

Kij(x− t)
fj(t) − ψj(t)

µj(t)
dt+

+ (λ∗ +M)
1

m−1

N∑

j=1

∞∫

0

Kij(x− t)
µj(t) − 1

µ
n−1

n

j (t)
dt ≤ (λ∗ +M)

n
m−1 µi(x) (µi(x) − 1)+

+
N∑

j=1




∞∫

0

Kij(x− t)
fj(t) − ψj(t)

µj(t)
dt+ (λ∗ +M)

1
n−1

∞∫

0

Kij(x− t) (µj(t) − 1) dt


 .

So, for all i ∈ {1, 2, . . . , N} we have

0 ≤ fm
i (x) − ψm

i (x) ≤ (λ∗ +M)
n

m−1 µi(x) (µi(x) − 1) +

+
N∑

j=1




∞∫

0

Kij(x− t)
fj(t) − ψj(t)

µj(t)
dt + (λ∗ +M)

1
n−1

∞∫

0

Kij(x− t) (µj(t) − 1) dt


 .

(62)

Note that
fj − ψj

µj

∈ L1(R
+) ∩ L∞(R+), j = 1, 2, . . . , N, (63)

because

0 ≤ fj(t) − ψj(t)

µj(t)
≤ (λ∗ +M)

1
m−1

1

µ
n−1

n

j (t)
≤ (λ∗ +M)

1
m−1 < +∞

and

0 ≤ fj(t) − ψj(t)

µj(t)
≤ fj(t) − ψj(t)
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(inclusion fj − ψj ∈ L1(R
+) holds by Lemma 4).

But, on the other hand, Kij ∈ L1(R) ∩ CM (R), i, j = 1, 2, . . . , N (see (6)).
Therefore, according to (63) and Lemma 5 from the paper [14], we have

lim
x→+∞

∞∫

0

Kij(x− t)
fj(t) − ψj(t)

µj(t)
dt = 0, ∀i, j = 1, 2, . . . , N. (64)

On the basis of the above mentioned limit relation for the convolution operation we
have

lim
x→+∞

∞∫

0

Kij(x− t) (µj(t) − 1) dt = lim
x→+∞

(µj(x) − 1)

+∞∫

−∞

Kij(u)du = 0. (65)

Then by (64), (65) and (3) from (62) we obtain

lim
x→+∞

(fm
i (x) − ψm

i (x)) = 0,

from which the validity of the statement (61) follows.
Further, since lim

x→+∞
ψi(x) = λi (see (28)) then by the obvious inequality

0 ≤ |fi(x) − λi| ≤ |fi(x) − ψi(x)| + |ψi(x) − λi|

we get lim
x→+∞

f(x) = λ.

So, based on the obtained results we can assert.

Theorem 2. Under conditions (2)–(8), (31) the odd extension of a nontrivial mea-

surable solution f(x) of boundary problem (47) and (48) on (−∞, 0):

F (x) =

{
f(x) if x ≥ 0,

−f(−x) if x < 0
(66)

satisfies the system (1) almost everywhere on R and the boundary conditions

lim
x→±∞

Fi(x) = ±λi, i = 1, 2, . . . , N.

Moreover, this solution possess the properties

I. fi(x) ≤ Fi(x) ≤ (λ∗ +M)
1

m−1 µ
1
n

i (x) for x > 0, i = 1, 2, . . . , N,

− (λ∗ +M)
1

m−1 µ
1
n

i (x) ≤ Fi(x) ≤ fi(−x) for x < 0, i = 1, 2, . . . , N,
where λ∗ = max{λ1, λ2, . . . , λN},

II. λi − Fi ∈ L1(R
+), λi + Fi ∈ L1(R

−), i = 1, 2, . . . , N.

Proof. The proof of the theorem is implemented by direct checking with using
Lemma 3 and Lemma 4.



72 KH.A.KHACHATRYAN, S.M. ANDRIYAN, A.A. SISAKYAN

Remark. It is easy to see that

Fi(±0) ≡ lim
x→±0

Fi(x) = ±∞, i = 1, 2, . . . , N.

Indeed, taking into account that µi(x) ≥ 1, x ∈ R
+, Kij(x) > 0, x ∈ R, and

fi(x) ≥ Fi(x) > 0, x ∈ R
+ (i, j = 1, 2, . . . , N), from system (47) we get

fm
i (x) ≥ (µi(x) − 1) fn

i (x), x ∈ R
+,

which implies

fi(x) ≥ (µi(x) − 1)
1

m−n , x ∈ R
+, i = 1, 2, . . . , N. (67)

On the other hand, according to (54) we have

fi(x) ≤ (λ∗ +M)
1

m−1 µ
1
n

i (x), x ∈ R
+, i = 1, 2, . . . , N. (68)

Hence, from (67) and (68) taking into account µi(0) = +∞, we get fi(+0) = +∞.

Then, bearing in mind (66), we obtain Fi(±0) = ±∞.

At the end of the paper we give some examples of functions {µi}N
i=1 and

{Kij}N×N
i,j=1 , satisfying conditions (3), (4) and (5)–(8)

• µi(x) = 1 + bi

|x|αi
e−x2

, αi ∈
(
0, 1

2

)
, bi > 0, x ∈ R

+;

• µi(x) = 1 + γi

|x|
1
4
· 1

1+x2 , γi > 0, x ∈ R
+;

• Kij(x) =
aij√
4πσ

e−
x2

4σ , , x ∈ R, σ > 0, A = (aij)
N×N
i,j=1 , r(A) = 1;

• Kij(x) =
b∫
a

e−|x|sGij(s) ds, x ∈ R;

where a > 0, b ≥ +∞, Gij(s) > 0, s ∈ [a, b], Gij ∈ L1(a, b),

aij = 2

b∫

a

Gij(s)

s
ds <∞, A = (aij)

N×N
i,j=1 , r(A) = 1.
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