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Aspects of stability for multicriteria quadratic

problems of Boolean programming

Vladimir A.Emelichev, Yury V.Nikulin

Abstract. We consider a multicriteria Boolean programming problem of finding the
Pareto set. Partial criteria are given as quadratic functions, and they are exposed
to independent perturbations. We study quantitative characteristic of stability (sta-
bility radius) of the problem. The lower and upper bounds for the stability radius
are obtained in the situation where solution space and problem parameter space are
endowed with various Hölder’s norms.

Mathematics subject classification: 90C09, 90C29, 90C31.
Keywords and phrases: Boolean programming, quadratic problem, multicriteria
optimization, Pareto set, stability radius, Hölder’s norms.

1 Introduction

An important approach to multicriteria discrete optimization stability problem
is concerned with finding the quantitative bounds that characterize the level of
stability. The so-called stability radius is a key concept that holds information about
an extreme level of problem parameter perturbations leading to a situation where
no new Pareto optima (efficient solutions) appear. Most of the results obtained in
this direction specify stability radius analytical formulae or bounds for multicriteria
problems of Boolean and integer programming with linear [1–7] and minmax (or
maxmin) [8–14] criteria.

In this paper, we analyze stability of multicriteria variant of the well-known
quadratic optimization problem with Boolean variables (see e.g. [15]). We obtain
the lower and upper bounds for stability radius of the problem considered.

2 Problem formulation and basic definitions

Let A = [aijk] ∈ Rn×n×m be a matrix with corresponding cuts Ak ∈ Rn×n, k ∈
Nm = {1, 2, . . . ,m}. Let also X ⊆ En = {0, 1}n, |X| > 1, be a set of feasible
solutions (Boolean vectors) x = (x1, x2, . . . , xn)T . We define a vector criterion

f(x,A) = (f1(x,A1), f2(x,A2), . . . , fm(x,Am)) → min
x∈X

,

with partial criteria being quadratic functions

fk(x,Ak) = xTAkx, k ∈ Nm.
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Denote

X(x,A) = {x′ ∈ X : g(x, x′, A) ≥ 0(m) & g(x, x′, A) 6= 0(m)},

g(x, x′, A) = (g1(x, x
′, A1), g2(x, x

′, A2), . . . , gm(x, x′, Am)),

gk(x, x
′, Ak) = fk(x,Ak) − fk(x

′, Ak) = (x− x′)TAk(x− x′),

0(m) = (0, 0, . . . , 0) ∈ Rm.

Underm-criteria quadratic problem Zm(A) we understand the problem of finding
the Pareto set (the set of efficient solutions)

Pm(A) = {x ∈ X : X(x,A) = ∅}.

The solutions which are not efficient are generally termed inefficient. It is well-known
that generally the Pareto set is growing with m [16, 17].

Ifm = 1, the multicriteria problem is transformed into scalar quadratic program-
ming problem with Boolean variables which has lots of applications. The quadratic
assignment problem and different optimization problems on graphs are represented
in the scheme of the problem [15]. It has many applications in electronics design,
partitioning problem, covering problem, packing problem etc. It also has application
to statistical physics [18]. In [19], it was discussed how a molecular conformation
problem can be formulated as the Boolean quadratic programming problem. In [20],
an application of the problem to cellular radio channel assignment was mentioned.

Unconstrained quadratic Boolean programming problem, as well as their con-
strained counterparts, are generally belonging to the class of NP-hard problems, and
considered as classic problems in combinatorial optimization, see, for example [21],
for the characterization of the polytope of an unconstrained quadratic Boolean pro-
gramming problem.

It has been known for a long time that the Boolean quadratic problem is equiv-
alent to the problem of finding a maximum cut in a graph. In [22] and [23], it was
also shown that a number of graph problems (maximum clique, maximum vertex
packing, maximum independent set, maximum weight independent set) can all be
formulated as scalar Boolean quadratic problem. It has numerous applications in
computer-aided design [24], capital budgeting and financial analysis [25, 26], traffic
message management [27], and machine scheduling [28].

For example, in [26] a classical model of investment portfolio risk evaluation is
formulated where one of the objective represents the risk measured by variance that
leads us to quadratic programming. Contrary to classical Markowitz’s model, our
model operates with binary alternatives only, i.e. instead of investment proportions
we are dealing with Boolean decision alternatives either to invest into a given asset
or not.
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In the solution space Rn, we define an arbitrary Hölder’s norm lp, p ∈ [1,∞],
i.e. under norm of vector a = (a1, a2, . . . , an)T ∈ Rn we understand the number

‖a‖p =















(

∑

j∈Nn

|aj |
p
)1/p

if 1 ≤ p <∞,

max{|aj | : j ∈ Nn} if p = ∞.

Thus, for any matrix Ak ∈ Rn×n, the norm of the matrix is defined as a norm
of vector composed of all the matrix elements.

In the criterion space Rm, we define another Hölder’s norm lq, q ∈ [1,∞], i.e.
under norm of matrix A ∈ Rn×n×m we understand the number

‖A‖pq = ‖(‖A1‖p, ‖A2‖p, . . . , ‖Am‖p)‖q,

It is easy to see that

‖Ak‖p ≤ ‖A‖pq, k ∈ Nm. (1)

Let ζ be either p or q. It is well-known that lζ norm, defined in Rn, induces
conjugated lζ∗ norm in (Rn)∗. For ζ and ζ∗, the following relations hold

1

ζ
+

1

ζ∗
= 1, 1 < ζ <∞.

In addition, if ζ = 1 then ζ∗ = ∞. Obviously, if ζ∗ = 1 then ζ = ∞. Also notice
that ζ and ζ∗ belong to the same range [1,∞]. We also set 1

ζ = 0 if ζ = ∞.

For any two vectors a and b of the same dimension, the following Hölder’s in-
equalities are well-known (see e.g. [29])

|aT b| ≤ ‖a‖ζ‖b‖ζ∗ . (2)

To any vector x = (x1, x2, . . . , xn)T ∈ En we assign a vector x̃ composed of all
the possible products xixj , i.e.

x̃ = (x11, x12, . . . , xn−1n, xnn)T ∈ En2
,

where

xij =

{

1 if xixj = 1,
0 if xixj = 0.

Taking into account Hölder’s inequalities (2), we can see that for any x, x′ ∈ En

and k ∈ Nm the following inequalities hold

|fk(x,Ak)| = |xTAkx| ≤ ‖Ak‖p‖x̃‖p∗ , (3)

|gk(x, x
′, Ak)| ≤ ‖Ak‖p‖x̃− x̃′‖p∗ . (4)
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Using the well-known condition (see [29]) that transforms (3) and (4) into equal-
ities, the validity of the following statements becomes transparent

∀ x, x′ ∈ Rn ∀ δ > 0 ∃ B ∈ Rn×n

(

‖B‖p = δ & |(x− x′)TB(x− x′)| = δ‖x̃− x̃′‖p∗

)

. (5)

In addition it is easy to see that for any vector a = (a1, a2, . . . , an)T ∈ Rn with
condition |aj | = α, j ∈ Nn, and any matrix Ak = [aijk] ∈ Rn×n with condition
|aijk| = α, (i, j) ∈ Nn ×Nn, the following inequalities are valid

‖a‖p = αn
1
p , (6)

‖Ak‖p = αn
2
p . (7)

Given ε > 0, let

Ωpq(ε) =
{

A′ ∈ Rn×n×m : ‖A′‖pq < ε
}

be the set of perturbing matrices A′ with cuts A′
k ∈ Rn×n, k ∈ Nm, and ‖A′‖pq is

the norm of A′ = [a′ijk] ∈ Rn×n×m. Denote

Ξpq =
{

ε > 0 : ∀ A′ ∈ Ωpq(ε)
(

Pm(A+A′) ⊆ Pm(A)
)

}

.

Following [2, 7, 13,14], the number

ρ = ρm(p, q) =







sup Ξpq if Ξpq 6= ∅,

0 if Ξpq = ∅

is called the stability radius of problem Zm(A), m ∈ N, with Hölder’s norms lp
and lq in the spaces Rn and Rm respectively. Thus, the stability radius of problem
Zm(A) defines the extreme level of independent perturbations of the elements of
matrix A in the space Rn×n×m that do not lead to the situation where new Pareto
optimal solutions appear.

It is evident that if Pm(A) = X, the inclusion

Pm(A+A′) ⊆ Pm(A)

holds for any perturbing matrix A′ ∈ Ωpq(ε) with ε > 0. So, the stability radius is
infinite when Pm(A) = X. The problem Zm(A) that satisfies Pm(A) 6= X is called
non-trivial.
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3 Bounds on stability radius

Given p, q ∈ [1,∞], for non-trivial problem Zm(A), m ∈ N, we set

φ = φm(p) = min
x 6∈Pm(A)

max
x′∈Pm(x,A)

min
k∈Nm

gk(x, x
′, Ak)

‖x̃− x̃′‖p∗
,

ψ = ψm(p, q) = min
{

n
2
pm

1
qφm(∞), σm(p)

}

,

where

Pm(x,A) = Pm(A) ∩X(x,A),

σm(p) = min{‖Ak‖p : k ∈ Nm}.

Theorem. Given p, q ∈ [1,∞] and m ∈ N, for the stability radius ρm(p, q) of non-

trivial problem Zm(A), the following lower and upper bounds are valid

φm(p) ≤ ρm(p, q) ≤ ψm(p, q).

Proof. First, we prove that ρ ≥ φ. If φ = 0, then it is self-evident. Let φ > 0, and
let the perturbing matrix A′ ∈ Rn×n×m with cuts A′

k, k ∈ Nm, belong to the set
Ωpq(φ), i.e. ‖A′‖pq < φ. According to (1) and the definition of the number φ, for
any solution x 6∈ Pm(A), there exists x0 ∈ Pm(x,A) such that

gk(x, x
0, Ak)

‖x̃− x̃0‖p∗
≥ φ > ‖A′‖pq ≥ ‖A′

k‖p , k ∈ Nm.

Therefore, by (4), we have

gk(x, x
0, Ak +A′

k) = gk(x, x0, Ak) + gk(x, x
0, A′

k) ≥

gk(x, x
0, Ak) − ‖A′

k‖p‖x̃− x̃0‖p∗ > 0, k ∈ Nm.

Thus, any solution that is not efficient in the problem Zm(A) stays inefficient in the
problem Zm(A + A′). So, we conclude that for any perturbing matrix A′ ∈ Ωpq(φ)
the inclusion holds

Pm(A+A′) ⊆ Pm(A),

and hence ρ ≥ φ.

Further, we prove that

ρ ≤ n
2
pm

1
qφm(∞). (8)

According to the definition of number φm(∞), there exists a solution x0 6∈ Pm(A)
such that for any solution x ∈ Pm(x0, A) we can point out the index s = s(x) ∈ Nm

such that

gs(x
0, x,As) ≤ φm(∞)‖x̃0 − x̃‖1 > 0. (9)
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Setting ε > n
2
pm

1
q φm(∞), we define the elements a0

ijk of any cut A0
k, k ∈ Nm, of

the perturbing matrix A0 according to the formula

a0
ijk =







α if x0
ix

0
j = 0, k ∈ Nm,

−α if x0
ix

0
j = 1, k ∈ Nm,

where
φm(∞) < α <

ε

n
2
pm

1
q

. (10)

Then according to (6) and (7), we get

‖A0
k‖p = αn

2
p , k ∈ Nm,

‖A0‖pq = αn
2
pm

1
q ,

A0 ∈ Ωpq(ε).

In addition, due to the construction of matrix A0
k, for any solution x 6= x0 and any

k ∈ Nm we have

gk(x
0, x,A0

k) = (x0 − x)TA0
k(x

0 − x) =
∑

i∈Nn

∑

j∈Nn

a0
ijk(x

0
i x

0
j − xixj) = −α‖x̃0 − x̃‖1.

(11)
Using (9) and (10), we continue

gs(x
0, x,As +A0

s) = gs(x
0, x,As) + gs(x

0, x,A0
s) ≤ (φm(∞) − α)‖x̃0 − x̃‖1 < 0.

So, we deduce
∀ x ∈ Pm(x0, A)

(

x 6∈ X(x0, A+A0)
)

. (12)

Obviously, in the case X(x0, A+A0) = ∅, the solution x0 is efficient in the perturbed
problem Zm(A+A0), i.e. x0 ∈ Pm(A+A0). Now it is time to recall that x0 6∈ Pm(A).

Further, we should prove X(x0, A+A0) 6= ∅. If so, then due to the outer stability
of the Pareto set ([30], p. 34) there exists a solution x∗ ∈ Pm(x0, A + A0). Let us
show that x∗ 6∈ Pm(A). We prove by contradiction. Suppose that x∗ ∈ Pm(A).
Then by (12), we have

x∗ ∈ Pm(A)\Pm(x0, A).

Then two cases are possible only.
Case 1. f(x∗, A) = f(x0, A). Then for any k ∈ Nm equations (11) imply that

gk(x
0, x∗, Ak +A0

k) = gk(x
0, x∗, Ak) + gk(x

0, x∗, A0
k) = −α‖x̃0 − x̃∗‖1 < 0.

Case 2. There exists an index s such that fs(x
∗, As) > fs(x

0, As). Then using
(11), we get

gs(x
0, x∗, As +A0

s) = gs(x
0, x∗, As) − α‖x̃0 − x̃∗‖1 < 0.
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As a result, in both cases we get a contradiction with x∗ ∈ Pm(x0, A+A0).

Summarizing, we have just shown that for any ε > n
2
pm

1
q φm(∞) we can guaran-

tee the existence of the perturbing matrix A0 ∈ Ωpq(ε) and existence of the solution
(x0 or x∗) such that the solution is not efficient in the problem Zm(A) and efficient
in the perturbed problem Zm(A+A0). Thus the following statement is valid

∀ ε > n
2
pm

1
qφm(∞) ∃ A0 ∈ Ωpq(ε)

(

Pm(A+A0) 6⊆ Pm(A)
)

.

Hence inequality (8) is true.
We are finally left with a need to demonstrate that ρ ≤ σm(p). To do that it is

sufficient to show that for any index k ∈ Nm we should have

ρ ≤ ‖Ak‖p.

Let x0 = (x0
1, x

0
2, . . . , x

0
n)T 6∈ Pm(A), Let fix an arbitrary index s ∈ Nm and denote

γs = ‖As‖p . (13)

Assuming ε > γs, we define a number δ such that

0 < δn
2
p < ε− γs. (14)

Now consider an auxiliary matrix U = U(x0) = [uij] ∈ Rn×n with elements

uij =







δ if x0
ix

0
j = 0,

−δ if x0
ix

0
j = 1.

Using (7), we deduce

‖U‖p = δn
2
p . (15)

Besides that, for any solution x ∈ X\{x0} the following is obvious

(x0 − x)TU(x0 − x) = −δ‖x̃0 − x̃‖1 < 0. (16)

Let A0 ∈ Rn×n×m be a perturbing matrix with cuts A0
k ∈ Rn×n, k ∈ Nm, defined

as follows

A0
k =

{

U −Ak if k = s,

0(n×n) if k 6= s,

where 0(n×n) is (n× n)-matrix with all zero elements. Then according to (13)-(15),
we get

‖A0‖pq = ‖A0
s‖p = ‖U −As‖p ≤ ‖U‖p + ‖As‖p = δn

2
p + γs < ε,

i.e. A0 ∈ Ωpq(ε). In addition, due to (16), we get

gs(x
0, x,A0

s) = (x0 − x)TU(x0 − x) − gs(x
0, x,As) = −δ‖x̃0 − x̃‖1 − gs(x

0, x,As).
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Therefore, for any solution x ∈ X\{x0} we get

gs(x
0, x,As +A0

s) = −δ‖x̃0 − x̃‖1 < 0.

This implies that for any solution x ∈ X\{x0} we have x 6∈ X(x0, A + A0). Since
x0 6∈ X(x0, A+A0), we have X(x0, A+A0) = ∅, i.e.

x0 ∈ Pm(A+A0).

Summarizing, for any ε > γs we can guarantee the existence of the perturbing
matrix A0 ∈ Ωpq(ε) such that the inefficient solution x0 of Zm(A) (x0 6∈ Pm(A)) be-
comes efficient in the perturbed problem Zm(A+A0) (x0 ∈ Pm(A+A0)). Therefore,
the following formula is valid

∀ ε > γs ∃ A0 ∈ Ωpq(ε)
(

Pm(A+A0) 6⊆ Pm(A)
)

.

Hence ρ ≤ γs = ‖As‖p for any s ∈ Nm (recall that s has been chosen arbitrary), i.e.
ρ ≤ σm(p).

Thus, we have shown both ρ ≤ σm(p) and (8), so collecting all together we get
the valid upper bound specified in the Theorem

ρm(p, q) ≤ ψm(p, q).

Finally, we have just shown the correctness of both the lower bound φm(p) ≤
ρm(p, q), and the upper bound ρm(p, q) ≤ ψm(p, q). specified in the Theorem for
non-trivial problem Zm(A), m ∈ N, p, q ∈ [1,∞].

Since the equalities

‖x̃− x̃′‖1 = ‖x̃‖1 + ‖x̃′‖1 − 2(x̃)T x̃′ = ‖x‖2
1 + ‖x′‖2

1 − 2(xTx′)2,

are evident the following corollary is concluded directly from the Theorem, and it
illustrates attainability of the lower and upper bounds for p = q = ∞.

Corollary 1. The stability radius ρm(∞,∞) of non-trivial problem Zm(A), m ∈ N,

is expreseed by the following formula

ρm(∞,∞) = min
x 6∈Pm(A)

max
x′∈Pm(x,A)

min
k∈Nm

(x− x′)TAk(x− x′)

‖x‖2
1 + ‖x′‖2

1 − 2(xTx′)2
.

The next corollary implies that the lower bound for the stability radius specified
in the Theorem is also attainable in the case |Pm(A)| = 1.

Corollary 2. Let problem Zm(A), m ∈ N, have a unigue efficient solution x0. Then

for any p, q ∈ [1,∞] we have

ρm(p, q) = min
x∈X\{x0}

min
k∈Nm

gk(x, x
0, Ak)

‖x̃− x̃0‖p∗
. (17)
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Proof. For the sake of brevity, we denote ξ the right-hand side of (17). Let Pm(A) =
{x0}. Then according to the definition of ξ there exists a solution x∗ 6∈ Pm(A) and
an index s ∈ Nm such that the following equality holds

ξ‖x̃∗ − x̃0‖p∗ = gs(x
∗, x0, As), (18)

with ξ > 0. Setting ε > ξ, we fix a number δ that satisfies the condition

ξ < δ < ε. (19)

Due to (5), there exists a matrix B ∈ Rn×n such that

‖B‖p = δ,

(x∗ − x0)TB(x∗ − x0) = −δ‖x̃∗ − x̃0‖p∗ .

Now we define the cuts A0
k, k ∈ Nm, of the perturbing matrix A0 ∈ Rn×n×m as

follows

A0
k =

{

B if k = s,

0(n×n) if k 6= s,

where 0(n×n) is (n × n)-matrix with all zero elements. Then we get

‖A0‖pq = ‖A0
s‖p = ‖B‖p = δ,

gs(x
∗, x0, A0

s) = −δ‖x̃∗ − x̃0‖p∗ .

Using (18) and (19), we deduce

gs(x
∗, x0, As +A0

s) = gs(x
∗, x0, As) − δ‖x̃∗ − x̃0‖p∗ = (ξ − δ)‖x̃∗ − x̃0‖p∗ < 0.

This implies x0 6∈ X(x∗, A + A0). If X(x∗, A + A0) = ∅, then x∗ ∈ Pm(A + A0).
Otherwise, due to the property of outer stability of the Pareto set (see again [30]),
we can point out a solution x̂ ∈ X(x∗, A+A0) such that x̂ ∈ Pm(A+A0).

Summarizing, for any ε > ξ we can guarantee the existence of the perturbing
matrix A0 ∈ Ωpq(ε) such that there exists a solution x′ ∈ X\{x0} with the condition
x′ ∈ Pm(A + A0) , i.e. Pm(A + A0) 6⊆ Pm(A). This confirms that ρ ≤ ξ. Since the
problem Zm(A) is non-trivial (|Pm(A)| = 1), then due to the Theorem, we get ρ ≥ ξ.
Since at the same time we have both ρ ≤ ξ and ρ ≥ ξ, the formula (17) holds.
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