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Quotient Structure and Chain Conditions

on Quasi Modules

Sandip Jana, Supriyo Mazumder

Abstract. Quasi module is an axiomatisation of the hyperspace structure based
on a module. We initiated this structure in our paper [2]. It is a generalisation of
the module structure in the sense that every module can be embedded into a quasi
module and every quasi module contains a module. The structure of quasi module
is a conglomeration of a commutative semigroup with an external ring multiplication
and a compatible partial order. In the entire structure partial order has an intrinsic
effect and plays a key role in any development of the theory of quasi modules. In
the present paper we have discussed the quotient structure of a quasi module by
introducing a congruence suitably. Also we introduce the concept of chain conditions
on quasi modules and prove some theorems related to chain conditions.

Mathematics subject classification: 08A99, 13C99, 06F99.

Keywords and phrases: Module, quasi module, Noetherian quasi module, Artinian
quasi module.

1 Introduction

Quasi module is an axiomatisation of the hyperspace structure based on a mod-
ule. We proposed this structure in our paper [2], while we were studying the family
C (M) of all nonempty compact subsets of a Hausdorff topological module M over
some topological unitary ring R. This family, commonly known as hyperspace, is
closed under usual addition of two sets and the ring multiplication of a set defined
by : A+B := {a+ b : a ∈ A, b ∈ B} and rA := {ra : a ∈ A}, for any A,B ∈ C (M)
and r ∈ R. Moreover, in the semigroup C (M) singletons are the only invertible
elements, {θ} acting as the identity (θ being the identity in M). Considering these
singletons as the minimal elements of C (M) with respect to the usual set-inclusion
as partial order, we can identify the collection

{
{m} : m ∈ M

}
of all minimal ele-

ments of C (M) with the moduleM through the isomorphism {m} 7−→ m (m ∈M).
Again for any two r, s ∈ R and A,B ∈ C (M) we have (r + s)A ⊆ rA + sA and
rA ⊆ rB, whenever A ⊆ B. We have axiomatised these properties of the hyperspace
C (M) and introduced the concept of quasi module whose definition is as follows :

Definition 1.1 (see [2]). Let (X,≤) be a partially ordered set, ‘+’ be a binary
operation on X [called addition] and ‘·’: R × X −→ X be another composition
[called ring multiplication, R being a unitary ring]. If the operations and partial order
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satisfy the following axioms then (X,+, ·,≤) is called a quasi module (in short qmod)
over R.

A1 : (X,+) is a commutative semigroup with identity θ.

A2 : x ≤ y (x, y ∈ X)⇒ x+ z ≤ y + z, r · x ≤ r · y, ∀ z ∈ X,∀ r ∈ R.

A3 : (i) r · (x+ y) = r · x+ r · y,

(ii) r · (s · x) = (rs) · x,

(iii) (r + s) · x ≤ r · x+ s · x,

(iv) 1 · x = x, ‘1’ being the multiplicative identity of R,

(v) 0 · x = θ and r · θ = θ,

∀x, y ∈ X, ∀ r, s ∈ R.

A4 : x+ (−1) · x = θ if and only if x ∈ X0 :=
{
z ∈ X : y � z,∀ y ∈ X r {z}

}
.

A5 : For each x ∈ X,∃ y ∈ X0 such that y ≤ x.

The elements of the set X0 are the minimal elements of X with respect to the
partial order of X. We call these elements of X0 as ‘one order ’ elements of X. In [2]
we have shown that this X0 becomes a module over the same unitary ring R. This
fact shows that every quasi module contains a module; also in the same paper we
have shown through the example 1.3, given below for clarity, that every module can
be embedded into a quasi module. In the present paper we have constructed another
example which also explains the fact. We cite below two examples which will be
needed later.

Example 1.2 (see [2]). Let Z be the ring of integers and Z+ := {n ∈ Z : n ≥ 0}.
Then under the usual addition, Z+ is a commutative semigroup with the identity 0.
Also it is a partially ordered set with respect to the usual order (≤) of integers. If
we define the ring multiplication ‘·’ : Z × Z+ −→ Z+ by (m,n) 7−→ |m|n, then it is
a routine work to verify that (Z+,+, ·,≤) is a quasi module over Z. Here the set of
all one order elements is given by [Z+]0 = {0}.

Example 1.3 (see [2]). LetM be a module over a unitary ringR. Let M̃ :=M
⋃
{ω}

(ω /∈M). Define ‘+’, ‘·’ and the partial order ‘≤p’ as follows :
(i) The operation ‘+’ between any two elements of M is same as in the module M
and x+ ω := ω and ω + x := ω, ∀x ∈ M̃ .
(ii) The operation ‘·’ when applied on R × M is same as in the module M and
r · ω := ω, if r(6= 0) ∈ R and 0 · ω := θ, θ being the identity element in M .
(iii) x ≤p ω, ∀x ∈M and x ≤p x, ∀x ∈ M̃ .

Then
(
M̃,+, ·,≤p

)
is a quasi module over R. Here the set of all one order

elements is M . In other words, M can be embedded into M̃ , x 7→ x being the
embedding.

In this example if we consider M = C, the vector space of all complex numbers
as a module over itself then the extended complex plane C∞ := C ∪ {∞} becomes
a quasi module over C, provided we define 0 · ∞ = 0 and z < ∞, ∀ z ∈ C; here the
set of all one order elements is C.
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In the present paper we have introduced the concept of chain conditions on quasi
modules and discuss some of their properties. Before doing this in the last section,
we have developed the theory of congruence and quotient structure on quasi module.

2 Prerequisites

We start this section with an example explaining the fact that every module can
be embedded into a quasi module which is different from the previous example 1.3.

Example 2.1. Let M be a module over the unitary ring Z of integers. Let X :=
Z+×M . We define addition on X component-wise and ring multiplication on X by(
n, (m,a)

)
7−→ (|n|m,na), ∀n ∈ Z and ∀ (m,a) ∈ X. We define a partial order ‘�’

on X as follows : (n, a) � (m, b) if and only if n ≤ m and a = b. We now show that
X with aforesaid operations and partial order is a quasi module over Z.
A1 : Clearly, X is a commutative semigroup with identity (0, θ), θ being the additive
identity of M .
A2 : Let (n, a) � (m, b)

(
(n, a), (m, b) ∈ X

)
⇒ n ≤ m and a = b. Then for any

(p, c) ∈ X we have n+ p ≤ m+ p and a+ c = b+ c ⇒ (n+ p, a+ c) � (m+ p, b+ c)
⇒ (n, a) + (p, c) � (m, b) + (p, c).

Again for any q ∈ Z we have |q|n ≤ |q|m and qa = qb ⇒ (|q|n, qa) � (|q|m, qb)
⇒ q · (n, a) � q · (m, b).
A3 : Let (p, a), (q, b) ∈ X and n,m ∈ Z. Then
(i) n

(
(p, a)+(q, b)

)
= n(p+q, a+b) =

(
|n|(p+q), n(a+b)

)
= (|n|p+ |n|q, na+nb) =

(|n|p, na) + (|n|q, nb) = n(p, a) + n(q, b).
(ii) n

(
m(p, a)

)
= n(|m|p,ma) = (|nm|p, nma) = nm(p, a).

(iii) (n+m)(p, a) =
(
|n+m|p, (n+m)a

)
� (|n|p, na)+(|m|p,ma) = n(p, a)+m(p, a).

(iv) 1(p, a) = (p, a).
(v) 0(p, a) = (0, θ) and n(0, θ) = (0, θ), for any n ∈ Z and any (p, a) ∈ X.
A4 : Let X0 be the set of all minimal elements of X. Then X0 =

{
(0, r) : r ∈ M

}
.

Now, (n, r)− (n, r) = (0, θ)⇔ (2n, θ) = (0, θ)⇔ n = 0⇔ (n, r) ∈ X0.
A5 : For any (n, a) ∈ X, ∃ (0, a) ∈ X0 such that (0, a) � (n, a).

Thus X is a quasi module over Z with respect to the aforesaid operations and
partial order. Here the set of all one order elements X0 can be identified with M
through the map (0, x) 7→ x (x ∈M).

Looking at the operations and partial order on Z+ ×M and also the arguments
used to prove this as a quasi module, we can construct another ‘bigger’ quasi module
viz., the Cartesian product [0,∞)×M :=

{
(r, x) : r ∈ [0,∞), x ∈M

}
over the ring of

integers Z, which also clarifies the embedding of the moduleM into a quasi module.
One more fact is clear from this discussion that every module can be embedded into
a variety of quasi modules.

Example 2.2. IfM is a module over the ring C of complex numbers then [0,∞)×M
becomes a quasi module over C, the operations and partial order being same as in
the above example 2.1. If M is a module over the ring of real numbers R, then also
[0,∞) ×M becomes a quasi module over R.
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Definition 2.3 (see [2]). A subset Y of a qmod X is said to be a sub quasi module
(subqmod in short) if Y itself is a quasi module with all the compositions of X being
restricted to Y .

Note 2.4 (see [2]). A subset Y of a qmod X over a unitary ring R is a sub quasi
module iff Y satisfies the following :
(i) rx+ sy ∈ Y, ∀ r, s ∈ R and ∀x, y ∈ Y .
(ii) Y0 ⊆ X0

⋂
Y , where Y0 :=

{
z ∈ Y : y � z,∀ y ∈ Y r {z}

}
.

(iii) ∀ y ∈ Y , ∃ y0 ∈ Y0 such that y0 ≤ y.

If Y is a subqmod of X then actually Y0 = X0∩Y , since for any Y ⊆ X we have
X0 ∩ Y ⊆ Y0.

Definition 2.5 (see [2]). A mapping f : X −→ Y (X,Y being two quasi modules
over a unitary ring R) is called an order-morphism if
(i) f(x+ y) = f(x) + f(y), ∀x, y ∈ X
(ii) f(rx) = rf(x), ∀ r ∈ R, ∀x ∈ X
(iii) x ≤ y (x, y ∈ X)⇒ f(x) ≤ f(y)
(iv) p ≤ q

(
p, q ∈ f(X)

)
⇒ f−1(p) ⊆↓ f−1(q) and f−1(q) ⊆↑ f−1(p), where

↑ A := {x ∈ X : x ≥ a for some a ∈ A} and ↓ A := {x ∈ X : x ≤ a for some a ∈ A}
for any A ⊆ X.

A surjective (injective, bĳective) order-morphism is called an order-epimorphism
(order-monomorphism, order-isomorphism respectively).

If f : X −→ Y be an order-morphism and θ, θ′ be the identity elements of X,Y
respectively then f(θ) = f(0.θ) = 0.f(θ) = θ′. It is also clear that f(X0) ⊆ Y0 and
hence X0 ⊆ f

−1(Y0). If X0 = f−1(Y0) we call such f as “normal” order-morphism.
Clearly each order-monomorphism is normal.

Proposition 2.6 (see [2]). If f : X −→ Y (X,Y being two quasi modules over a
unitary ring R) be an order-morphism then f(M) := {f(m) : m ∈M} is a subqmod
of Y , for any subqmod M of X.

Proposition 2.7. If f : X −→ Y (X,Y be two qmods over R) be a normal order-
morphism then f−1(N) := {x ∈ X : f(x) ∈ N} is a subqmod of X, for any subqmod
N of f(X) [By above Proposition 2.6, f(X) is a subqmod of Y ].

Proof. Let x1, x2 ∈ f
−1(N) and r, s ∈ R. Then f(x1), f(x2) ∈ N ⇒ rf(x1) +

sf(x2) ∈ N ⇒ f(rx1 + sx2) ∈ N ⇒ rx1 + sx2 ∈ f
−1(N).

To show that [f−1(N)]0 ⊆ X0

⋂
f−1(N), let t ∈ [f−1(N)]0 ⊆ f

−1(N). We claim
that f(t) ∈ N0. In fact, for any t′ ∈ N with t′ ≤ f(t) we have f−1f(t) ⊆↑ f−1(t′)[
note that t′, f(t) ∈ N ⊆ f(X)

]
⇒ t ≥ p, for some p ∈ f−1(t′) ⊆ f−1(N). So

t ∈ [f−1(N)]0 ⇒ t = p ⇒ f(t) = f(p) = t′ ⇒ f(t) ∈ N0 ⇒ t ∈ f
−1(N0). Thus

[f−1(N)]0 ⊆ f
−1(N0). Again f−1(N0) = f−1

(
N ∩ [f(X)]0

)
= f−1(N ∩ f(X) ∩

Y0) = f−1(N ∩ Y0) = f−1(N) ∩ f−1(Y0) = f−1(N) ∩ X0

[
∵ X0 = f−1(Y0), for f

is normal
]
. Also we know that f−1(N) ∩ X0 ⊆ [f−1(N)]0. Thus it follows that

[f−1(N)]0 = f−1(N0) = f−1(N) ∩X0.
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Now let x ∈ f−1(N). Then f(x) ∈ N . So ∃ p ∈ N0 such that p ≤ f(x).
Now p ∈ N0 ⊆ f(X) ⇒ f−1f(x) ⊆↑ f−1(p) ⇒ ∃ q ∈ f−1(p) such that x ≥ q.
Since [f−1(N)]0 = f−1(N0) we have, q ∈ f−1(p) ⊆ [f−1(N)]0. Thus it follows that
f−1(N) is a subqmod of X.

The normality condition of the order-morphism f in the above proposition is not
necessary, as the following example shows.

Example 2.8. Let {Xα : α ∈ Λ} be an arbitrary family of qmods over a common
unitary ring R and X :=

∏

α∈Λ

Xα be the Cartesian product which becomes a qmod

over R with respect to the following operations and partial order (see Section 4
of [2]):
For x = (xα), y = (yα) ∈ X and r ∈ R we define (i) x + y := (xα + yα), (ii)
rx := (rxα), (iii) x ≤ y if xα ≤ yα, ∀α ∈ Λ. Also the β-th projection map
p
β

: X −→ Xβ is an order-epimorphism, for each β ∈ Λ. However, each projection

map can never be normal. In fact, p−1

β

(
[Xβ ]0

)
=
∏

α∈Λ

Yα, where Yα = Xα, for α 6= β

and Yβ = [Xβ ]0. But X0 =
∏

α∈Λ

[Xα]0. Thus p−1

β

(
[Xβ ]0

)
6= X0.

We now show that for any subqmod Z of Xβ
(

= p
β
(X)
)
, p−1

β
(Z) must be a

subqmod of X. In fact, it is a routine verification that p−1

β
(Z) is closed under

addition and ring multiplication. Again,

[
p−1

β
(Z)
]
0

=

[ ∏

α∈Λ

Yα

]

0

, where Yα =

{
Xα, if α 6= β

Z, if α = β

=
∏

α∈Λ

[Yα]0

=X0

⋂
p−1

β
(Z), since Z ∩ [Xβ ]0 = Z0.

Also x = (xα) ∈ p
−1
β

(Z) ⇒ xβ ∈ Z and xα ∈ Xα, for any α 6= β ⇒ ∃ tα ∈ [Xα]0, for

α 6= β and tβ ∈ Z0 such that xα ≥ tα, ∀α ∈ Λ ⇒ x ≥ t, where t = (tα) ∈
[
p−1

β
(Z)
]
0
.

Thus it follows that p−1

β
(Z) is a subqmod of X, for each β ∈ Λ, although p

β
is not

normal.

Definition 2.9 (see [3]). Let {Ai}i∈Z be a sequence of qmods over a common
unitary ring and

{
fi ∈ (Ai+1)Ai : i ∈ Z

}
be a sequence of order-morphisms. Then

by a sequence of qmods and order-morphisms we shall mean the diagram

· · · −→ Ai
fi
−→ Ai+1

fi+1
−−−→ Ai+2 −→ · · ·

This sequence is said to be exact if
(fi × fi)(Ai ×Ai)

⋃
∆(Ai+1) = ker fi+1, ∀ i, where ∆(Ai+1) :=

{
(b, b) : b ∈ Ai+1

}
.

Result 2.10 (see [3]). (i) f : A −→ B is an order-monomorphism if and only if the

sequence 0
i
−→ A

f
−→ B is exact.
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(ii) f : A −→ B is an order-epimorphism if and only if A
f
−→ B

0
−→ 0 is an exact

sequence. [Here 0 denotes the trivial qmod containing the additive identity only, i
is the inclusion map and 0 is the zero map.]

3 Congruence and Quotient on quasi module

In this section we shall introduce the concept of congruence and quotient on
quasi module.

Definition 3.1. Let E be an equivalence relation on a qmod X over a unitary ring
R. Then E is said to be a congruence on X if it satisfies the following :

(i) (a, b) ∈ E =⇒ (x+ a, x+ b) ∈ E, ∀x ∈ X

(ii) (a, b) ∈ E =⇒ (ra, rb) ∈ E, ∀ r ∈ R

(iii) x ≤ y ≤ z & (x, z) ∈ E =⇒ (x, y) ∈ E [and hence (y, z) ∈ E]

(iv) a ≤ x ≤ b & (x, y) ∈ E =⇒ ∃ c, d ∈ X such that c ≤ y ≤ d and

(a, c) ∈ E, (b, d) ∈ E.

Any congruence E on a qmod X (over a unitary ring R) produces the quotient
set X/E :=

{
[x] : x ∈ X

}
, where [x] denotes the equivalence class containing x (with

respect to E), i.e
[x] :=

{
y ∈ X : (x, y) ∈ E

}
.

We show that X/E becomes a qmod over R with respect to the following operations
and partial order.

(i) [x] + [y] := [x+ y], ∀ [x], [y] ∈ X/E

(ii) r[x] := [rx], ∀ [x] ∈ X/E,∀ r ∈ R

(iii) [x] 4 [y]⇐⇒ for any x′ ∈ [x], ∃ y′ ∈ [y] such that x′ ≤ y′ and

for any y′′ ∈ [y], ∃x′′ ∈ [x] such that x′′ ≤ y′′.

Thus [x] 4 [y] in X/E ⇐⇒ [x] ⊆↓ [y] and [y] ⊆↑ [x], where for the set-inclusion
relation, [x] is considered as a subset of X.

Theorem 3.2. X/E is a quasi module over R with respect to the aforesaid oper-
ations and partial order, for any quasi module X over R and any congruence E
on X.

Proof. First we have to check whether the aforesaid operations are well-defined and
the order ‘4’ is truly a partial order. For this let (x, x′), (y, y′) ∈ E ⇒ (x + y, x′ +
y), (x′ + y, x′ + y′) ∈ E ⇒ (x+ y, x′ + y′) ∈ E ⇒ [x + y] = [x′ + y′]. Also (x, x′) ∈
E ⇒ (αx,αx′) ∈ E ⇒ [αx] = [αx′]. Thus the operations are well-defined.

Clearly the order ‘4’ on X/E is reflexive and transitive. To check that it is anti-
symmetric, let [x] 4 [y] and [y] 4 [x] ⇒ for any x′ ∈ [x],∃ y′ ∈ [y] such that x′ ≤ y′
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and for this y′ ∈ [y],∃x′′ ∈ [x] such that y′ ≤ x′′ ⇒ x′ ≤ y′ ≤ x′′ ⇒ (x′, y′) ∈ E
[
by

axiom (iii) of the definition of congruence 3.1
]
⇒ [x] = [x′] = [y′] = [y].

A1 : Obviously (X/E,+) is a commutative semigroup with identity [θ], θ being the
identity in X.
A2 : Let [x] 4 [y]. Then for x, ∃ y′ ∈ [y] such that x ≤ y′ (by definition of ‘≤’
in X/E) ⇒ x + z ≤ y′ + z, for any z ∈ X. So by axiom (iv) of the definition of
congruence 3.1, for any z′ ∈ [x+ z], ∃ y′′ ∈ [y′+ z] such that z′ ≤ y′′. Now note that
(y′, y) ∈ E ⇒ (y′+ z, y+ z) ∈ E and hence [y′+ z] = [y+ z]. Conversely, [x] 4 [y]⇒
for y,∃x′ ∈ [x] such that x′ ≤ y (by definition of ‘≤’ in X/E) ⇒ x′ + z ≤ y + z, for
any z ∈ X. So by axiom (iv) of the definition of congruence 3.1, for any z′′ ∈ [y+z],
∃x′′ ∈ [x′ + z] such that x′′ ≤ z′′. Now note that (x′, x) ∈ E ⇒ (x′ + z, x + z) ∈ E
and hence [x′ + z] = [x+ z]. Thus we have [x+ z] 4 [y + z]⇒ [x] + [z] 4 [y] + [z],
∀ [z] ∈ X/E.

Now let [x] 4 [y] and r ∈ R. We show that [rx] 4 [ry]. For x,∃ y′ ∈ [y] such
that x ≤ y′ ⇒ rx ≤ ry′. Then for any x′ ∈ [rx],∃ y′′ ∈ [ry′] such that x′ ≤ y′′

[
by

axiom (iv) of the definition of congruence 3.1
]
. Now (y, y′) ∈ E ⇒ (ry, ry′) ∈ E ⇒

[ry] = [ry′].
Conversely, [x] 4 [y] ⇒ for y,∃x′ ∈ [x] such that x′ ≤ y ⇒ rx′ ≤ ry. So for
any y′′′ ∈ [ry],∃x′′ ∈ [rx′] such that x′′ ≤ y′′′

[
by axiom (iv) of the definition of

congruence 3.1
]
. Again (x, x′) ∈ E ⇒ (rx, rx′) ∈ E ⇒ [rx] = [rx′]. Thus we have

r[x] = [rx] 4 [ry] = r[y], for any r ∈ R.
A3 : Let [x], [y] ∈ X/E and r, s ∈ R. Then

(i) r([x] + [y]) = [r(x+ y)] = [rx+ ry] = r[x] + r[y].

(ii) r(s[x]) = [(rs)x] = (rs)[x].

(iii) (r + s)[x] = [(r + s)x]. We have to show that [(r + s)x] 4 [rx] + [sx]. For
this we first show that [u] 4 [v], whenever u ≤ v (u, v ∈ X). For each u′ ∈ [u], we
have by axiom (iv) of the definition of congruence 3.1, some v′ ∈ [v] (∵ u ≤ v) such
that u′ ≤ v′. Also by same axiom, for each v′′ ∈ [v], ∃u′′ ∈ [u] such that u′′ ≤ v′′.
This justifies that [u] 4 [v], whenever u ≤ v. Thus (r+s)x ≤ rx+sx⇒ [(r+s)x] 4

[rx+ sx] = r[x] + s[x].

Axioms (iv) and (v) are immediate.
A4 : [x]− [x] = [θ]⇔ [x−x] = [θ]⇔ (x−x, θ) ∈ E. Let Y :=

{
[x] : (x−x, θ) ∈ E

}
.

We claim that Y = [X/E]0. First of all, [p] ∈ Y , ∀ p ∈ X0. Let [x] ∈ Y and [y] 4 [x]
⇒ for x, ∃ y′ ∈ [y] such that y′ ≤ x⇒ y′−x ≤ x−x⇒ [y′−x] 4 [x−x] = [θ]⇒ for θ,
∃ z ∈ [y′−x] such that z ≤ θ ⇒ z = θ ⇒ [y′−x] = [z] = [θ]⇒ [y′−x]+[x] = [θ]+[x]
⇒ [y′] + [−x+x] = [x] ⇒ [y′] + [θ] = [x] ⇒ [y] = [x]

(
∵ (y, y′) ∈ E

)
⇒ [x] ∈ [X/E]0.

Conversely, if [x] ∈ [X/E]0 then for any p ∈ X0 with p ≤ x we must have [p] = [x]
⇒ (p, x) ∈ E ⇒ (p − p, x − x) ∈ E ⇒ (θ, x − x) ∈ E ⇒ [x] ∈ Y . Thus we have
[X/E]0 =

{
[x] ∈ X/E : (x− x, θ) ∈ E

}
and hence [x]− [x] = [θ] ⇔ [x] ∈ [X/E]0.

A5 : As X is a qmod so for each x ∈ X,∃ p ∈ X0 such that p ≤ x⇒ [p] 4 [x], where
[p] ∈ [X/E]0.

Therefore (X/E,+, .,4) is a qmod over R.

Definition 3.3. Let E be a congruence on a qmod X. Then a subqmod Y of X is
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called E-compatible if (x, y) ∈ E and x ∈ Y implies y ∈ Y .

Thus Y is E-compatible iff Y =
⋃

y∈Y

[y], where [y] := {x ∈ X : (x, y) ∈ E}.

Theorem 3.4. Let E be a congruence on a qmod X (over a unitary ring R) and
Y be an E-compatible subqmod of X. Then Y/E :=

{
[y] : y ∈ Y

}
is a subqmod of

X/E.

Proof. Let [x], [y] ∈ Y/E and r, s ∈ R. Then x, y ∈ Y ⇒ rx+sy ∈ Y ⇒ r[x]+s[y] =
[rx+ sy] ∈ Y/E, since Y is E-compatible.

To show that [Y/E]0 ⊆ [X/E]0
⋂

(Y/E) it is enough to note that [Y/E]0 ={
[y] ∈ Y/E : (y − y, θ) ∈ E

}
whose justification follows the same line of proof of

[X/E]0 =
{
[x] ∈ X/E : (x − x, θ) ∈ E

}
as done above. It is also easy to note that

[p] ∈ [Y/E]0, ∀ p ∈ Y0.

For any [y] ∈ Y/E, ∃ p ∈ Y0 such that p ≤ y ⇒ [p] 4 [y], where [p] ∈ [Y/E]0.
Thus in view of 2.4 we can say that Y/E is a subqmod of X/E.

We now consider the canonical map π : X −→ X/E defined by π(x) := [x],
∀x ∈ X. Then (i) π(x+ y) = [x+ y] = [x] + [y] = π(x) + π(y), ∀x, y ∈ X
(ii) π(rx) = [rx] = r[x] = rπ(x), for any r ∈ R, ∀x ∈ X
(iii) x ≤ y (x, y ∈ X) =⇒ π(x) = [x] 4 [y] = π(y)

[
justified during the proof of X/E

to be qmod
]

(iv) π(x) 4 π(y) in X/E =⇒ [x] 4 [y] in X/E =⇒ [x] ⊆↓ [y] and [y] ⊆↑ [x]
which implies π−1π(x) ⊆↓ π−1π(y) and π−1π(y) ⊆↑ π−1π(x), since π−1π(x) = [x],
∀x ∈ X.

Thus it follows that π : X −→ X/E becomes an order-epimorphism, since clearly
it is surjective. Also π will be normal iff π−1

(
[X/E]0

)
= X0 iff

⋃{
[x] : (x− x, θ) ∈

E
}

= X0. Thus we have the following equivalent statements.

Result 3.5. The canonical map π : X −→ X/E is normal iff any one of the
following holds.
(i) (x− x, θ) ∈ E ⇐⇒ x− x = θ
(ii) (x− x, θ) ∈ E ⇐⇒ x ∈ X0

(iii) (x, y) ∈ E with y ∈ X0 =⇒ x ∈ X0

(iv)
⋃

p∈X0

[p] = X0.

It is thus reasonable to call a congruence E on a qmod X to be ‘normal’ if any
one of the above four assertions is satisfied by E.

4 Chain Conditions

In this section we introduce the concept of chain conditions on quasi modules
and define Noetherian and Artinian quasi modules. Also we discuss various ways of
construction of Noetherian and Artinian quasi modules.



QUOTIENT STRUCTURE AND CHAIN CONDITIONS ON QMODS 11

Definition 4.1. Let X be a qmod over a unitary ring R. Then X is said to be
Noetherian if for every ascending chain Y1 ⊆ Y2 ⊆ Y3 ⊆ · · · of subqmods of X,
∃n ∈ N such that Yk = Yn, ∀ k ≥ n.
X is said to satisfy maximum chain condition if every nonempty collection of

subqmods of X has a maximal element with respect to the usual set-inclusion as
partial order in the collection of all subqmods of X.

Example 4.2. (i) The qmod (Z+,+, .,≤) over the unitary ring Z, explained in
Example 1.2, is Noetherian, since any subqmod of this qmod is of the form nZ+, for
n ∈ N and hence for any increasing sequence of subqmods, there are only finitely
many subqmods between the first term and Z+.

(ii) The qmod Z+ ×M for any module M over Z, explained in Example 2.1,
is Noetherian iff M is Noetherian, since any subqmod of Z+ ×M is of the form
nZ+ ×N , for some submodule N of M and any n ∈ N.

Theorem 4.3. Let X be a qmod over a unitary ring R. Then the following condi-
tions are equivalent :
(i) X is Noetherian.
(ii) X satisfies maximum chain condition.

Proof. (i) ⇒ (ii) : Let X be Noetherian and F be a nonempty collection of subq-
mods of X. To prove that F contains a maximal element let us first consider an
arbitrary chain Y1 ⊆ Y2 ⊆ Y3 ⊆ · · · in F . X being Noetherian, there is an n ∈ N
such that Yk = Yn, ∀ k ≥ n. This shows that Yn is an upper bound of the above
chain. Then by Zorn’s lemma, F has a maximal element. Consequently, X satisfies
maximum chain condition.
(ii) ⇒ (i) : Let Y1 ⊆ Y2 ⊆ Y3 ⊆ · · · be an ascending chain of subqmods of X. Then
by condition (ii), the collection T := {Yi : i ∈ N} has a maximal element Y0 (say).
Since Y0 ∈ T and Y0 is maximal, it follows that Yi = Y0 for all i ≥ p for some p ∈ N.
This shows that X is Noetherian.

Definition 4.4. Let X be a qmod over a unitary ring R. Then X is said to be
Artinian if for every descending chain Y1 ⊇ Y2 ⊇ Y3 ⊇ · · · of subqmods of X,
∃n ∈ N such that Yk = Yn, ∀ k ≥ n.
X is said to satisfy minimum chain condition if every nonempty collection of

subqmods of X has a minimal element with respect to the usual set-inclusion as
partial order in the collection of all subqmods of X.

Example 4.5. (i) The qmod (C∞,+, ·,≤p), explained in example 1.3, over the
unitary ring C is Artinian, since it has no proper subqmod. It thus follows that
(C∞,+, ·,≤p) is Noetherian also.

(ii) The qmod (Z+,+, .,≤) in example 1.2 is not Artinian, since Z+ ⊃ 2Z+ ⊃
4Z+ ⊃ 8Z+ ⊃ · · · is a descending chain of subqmods of Z+ which can never be
stationary after a finite stage.

(iii) The qmod [0,∞)×M , explained in example 2.2, is Artinian iffM is Artinian,
since any subqmod of [0,∞)×M is of the form [0,∞)×N , for some submodule N
of M .
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Theorem 4.6. Let X be a qmod over a unitary ring R. Then the following condi-
tions are equivalent :
(i) X is Artinian.
(ii) X satisfies minimum chain condition.

Proof. (i) ⇒ (ii) : Let F be a nonempty collection of subqmods of X and Y1 ∈ F .
If Y1 is not minimal in F there is Y2 ∈ F such that Y1 ⊇ Y2. If Y2 is not minimal
in F then there is Y3 ∈ F such that Y2 ⊇ Y3. Continuing in this way we get a
descending chain Y1 ⊇ Y2 ⊇ Y3 ⊇ · · · of subqmods of X. So X being Artinian,
∃n ∈ N such that Yk = Yn, ∀ k ≥ n. This shows that Yn is a minimal element of F .
(ii) ⇒ (i) : Let Y1 ⊇ Y2 ⊇ Y3 ⊇ · · · be a descending chain of subqmods of X. Then
by condition (ii), the collection T := {Yi : i ∈ N} has a minimal element Y0 (say).
Since Y0 ∈ T and Y0 is minimal, it follows that Yi = Y0 for all i ≥ p for some p ∈ N.
This shows that X is Artinian.

We now discuss how exact sequences influence on Noetherian and Artinian
qmods.

Theorem 4.7. Let X,X ′,X ′′ be three quasi modules over a unitary ring R and

0→ X ′
α
−→ X

β
−→ X ′′ → 0 be an exact sequence. Then X is Noetherian if both X ′,X ′′

are so. Also if X is Noetherian then X ′ must be so.

Proof. Let X ′ and X ′′ be Noetherian. We are to show X is Noetherian. For this
let X1 ⊆ X2 ⊆ X3 ⊆ · · · be an ascending chain of subqmods of X. Then β(X1) ⊆
β(X2) ⊆ β(X3) ⊆ · · · forms an ascending chain of subqmods of X ′′ [by Proposition
2.6]. So X ′′ being Noetherian, ∃ p ∈ N such that β(Xi) = β(Xp),∀ i ≥ p. If
Xi = Xp, ∀ i ≥ p we are done. If not, we need some more arguments. In fact,
the given sequence being exact we have ker β = ∆(X) ∪ (α × α)(X ′ × X ′). This
ensures that for distinct x, y ∈ X, β(x) = β(y) if and only if both x, y ∈ α(X ′).
Thus for any i ≥ p for which Xi 6= Xp, we must have Xi ⊆ α(X ′). So X1 ⊆ X2 ⊆
X3 ⊆ · · · being an increasing chain we can say that Xi ⊆ α(X ′), ∀ i ∈ N. Therefore
α−1(X1) ⊆ α−1(X2) ⊆ α−1(X3) ⊆ · · · forms an ascending chain of subqmods in X ′

[by Proposition 2.7, since α being injective is normal]. So X ′ being Noetherian we
can find some q (≥ p) such that α−1(Xi) = α−1(Xq), ∀ i ≥ q ⇒ Xi = αα−1(Xi) =
αα−1(Xq) = Xq, ∀ i ≥ q [∵ each Xi ⊆ α(X ′)]. Thus X becomes Noetherian.

To show that X ′ is Noetherian whenever X is Noetherian, let X ′1 ⊆ X
′
2 ⊆

X ′3 ⊆ · · · be an ascending chain of subqmods of X ′. Then by Proposition 2.6,
α(X ′1) ⊆ α(X ′2) ⊆ α(X ′3) ⊆ · · · forms an ascending chain of subqmods in X. So X
being Noetherian, ∃ q ∈ N such that α(X ′k) = α(X ′q), ∀ k ≥ q ⇒ X

′
k = α−1α(X ′k) =

α−1α(X ′q) = X ′q, ∀ k ≥ q
[
since α is injective, by result 2.10(i)

]
. This justifies that

X ′ is Noetherian.

In the above exact sequence if X is Noetherian then X ′′ need not be so. However
we have the following theorem.

Theorem 4.8. If f : X → Y is a normal order-morphism, X,Y being two qmods
over a unitary ring R, then f(X) is Noetherian whenever X is so.
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Proof. Let X ′′1 ⊆ X
′′
2 ⊆ X

′′
3 ⊆ · · · be an ascending chain of subqmods of f(X). Then

by Proposition 2.7, f−1(X ′′1 ) ⊆ f−1(X ′′2 ) ⊆ f−1(X ′′3 ) ⊆ · · · forms an ascending chain
of subqmods in X, since f is normal. So X being Noetherian, ∃ p ∈ N such that
f−1(X ′′k ) = f−1(X ′′p ), ∀ k ≥ p ⇒ X

′′
k = ff−1(X ′′k ) = ff−1(X ′′p ) = X ′′p , ∀ k ≥ p

[
since

X ′′k ⊆ f(X), ∀ k
]
. This justifies that f(X) is Noetherian.

In the exact sequence 0 → X ′
α
−→ X

β
−→ X ′′ → 0, if X is Noetherian then X ′′

need not be Noetherian, since β cannot be normal. For, the sequence being exact
we have kerβ = ∆(X) ∪ (α × α)(X ′ × X ′) which implies that β sends exactly the
entire α(X ′) to 0. This fact is contrary to the normality condition X0 = β−1([X ′′]0),
since α(X ′) contains lots of non-one order elements and [α(X ′)]0 = X0 ∩ α(X ′), as
α(X ′) is a subqmod of X.

Theorem 4.9. Let X,X ′,X ′′ be three quasi modules over a unitary ring R and

0 → X ′
α
−→ X

β
−→ X ′′ → 0 be an exact sequence. Then X is Artinian if both X ′,X ′′

are so. Also if X is Artinian then X ′ must be so.

Proof. To prove thatX is Artinian whenever bothX ′,X ′′ are so letX1 ⊇ X2 ⊇ X3 ⊇
· · · be a descending chain of subqmods of X. Then β(X1) ⊇ β(X2) ⊇ β(X3) ⊇ · · ·
forms a descending chain of subqmods of X ′′ [by Proposition 2.6]. So X ′′ being
Artinian, ∃ p ∈ N such that β(Xi) = β(Xp),∀ i ≥ p. If Xi = Xp, ∀ i ≥ p we are
nothing to prove. If Xj 6= Xp for some j ≥ p then β(Xj) = β(Xp) implies both
Xj ,Xp ⊆ α(X ′)

[
since ker β = ∆(X) ∪ (α × α)(X ′ ×X ′)

]
⇒ Xi ⊆ α(X ′), ∀ i ≥ p,

since {Xi}i is a descending chain. Therefore by Proposition 2.7 we can say that
α−1(Xp) ⊇ α

−1(Xp+1) ⊇ α−1(Xp+2) ⊇ · · · forms a descending chain of subqmods
in X ′. So X ′ being Artinian we have a q ≥ p such that α−1(Xi) = α−1(Xq), ∀ i ≥ q
⇒ Xi = αα−1(Xi) = αα−1(Xq) = Xq, ∀ i ≥ q

[
∵ for each i ≥ q, Xi ⊆ α(X ′)

]
. Thus

X becomes Artinian.
If X is Artinian then the fact that X ′ will be Artinian can be proved in the same

line of proof as in the above Theorem 4.7; the only change that should be made is
to consider an arbitrary descending chain instead of ascending one.

We also have an analogue of Theorem 4.8 for Artinian qmod whose proof is
similar with only replacing every ascending chain by a descending one.

Theorem 4.10. If f : X → Y is a normal order-morphism, X,Y being two qmods
over a unitary ring R, then f(X) is Artinian whenever X is so.

The property that “a qmod is Noetherian or Artinian is a hereditary property”
is shown below.

Theorem 4.11. Let X be a qmod over a unitary ring R and Y be subqmod of X.
Then Y is Noetherian (Artinian) whenever X is Noetherian (Artinian).

Proof. Y being a subqmod of X, the inclusion map i : Y → X is an order-

monomorphism. So 0 → Y
i
−→ X becomes an exact sequence (by result 2.10).

Then by Theorem 4.7 we can say that Y is Noetherian whenever X is so (we have
to use Theorem 4.9 to show the Artinian case).



14 SANDIP JANA, SUPRIYO MAZUMDER

We now discuss Noetherian and Artinian qmods in the context of quotient struc-
ture on qmod.

Theorem 4.12. If X is a Noetherian qmod over a unitary ring R and E is a normal
congruence on X then X/E is also a Noetherian qmod over the same unitary ring.

Proof. This theorem follows from Theorem 4.8, since E being normal the canonical
map π : X −→ X/E is a normal order-epimorphism (by result 3.5).

The argument used to prove the above theorem shows that its analogue for
Artinian qmod also holds.

Theorem 4.13. If X is an Artinian qmod over a unitary ring R and E is a normal
congruence on X then X/E is also an Artinian qmod over the same unitary ring.

Proof. It follows from Theorem 4.10 using the canonical map π : X −→ X/E which
is a normal order-epimorphism, E being a normal congruence.

We conclude this section with the findings regarding the effect of Cartesian prod-
uct on Noetherian and Artinian qmods.

Theorem 4.14. Let {Xj : j = 1, . . . , n} be a finite family of qmods over a common
unitary ring R and X := X1 ×X2 × · · · ×Xn be their Cartesian product. Then X
is Noetherian iff each Xj is Noetherian.

Proof. Let each Xj be Noetherian and Y1 ⊆ Y2 ⊆ Y3 ⊆ · · · be an ascending chain
of subqmods of X. Then for each j ∈ {1, 2, . . . , n}, pj(Y1) ⊆ pj(Y2) ⊆ pj(Y3) ⊆ · · ·
becomes an ascending chain of subqmods of pj(X) = Xj , by Proposition 2.6. So Xj
being Noetherian, ∃ rj ∈ N such that pj(Yi) = pj(Yrj), ∀ i ≥ rj , ∀ j = 1, . . . , n.
Now let r := max{rj : j = 1, . . . , n} ∈ N. Then pj(Yi) = pj(Yr), ∀ i ≥ r, ∀ j. We
claim that Yi = Yr, ∀ i ≥ r. Since {Yi : i ∈ N} is an ascending chain, it is enough
to show that Yi ⊆ Yr, ∀ i ≥ r. For this let x = (xj) ∈ Yi, whenever i ≥ r ⇒
pj(x) = xj ∈ pj(Yi) = pj(Yr), ∀ i ≥ r, ∀ j ⇒ x = (xj) ∈ Yr ⇒ Yi ⊆ Yr, ∀ i ≥ r. Thus
it follows that X is Noetherian.

Conversely, let X be Noetherian and Z1 ⊆ Z2 ⊆ Z3 ⊆ · · · be an ascending
chain of subqmods in Xj , where j ∈ {1, 2, . . . , n}. Then p−1

j (Z1) ⊆ p−1
j (Z2) ⊆

p−1
j (Z3) ⊆ · · · forms an ascending chain of subqmods in X, by example 2.8. So X

being Noetherian, ∃m ∈ N such that p−1
j (Zi) = p−1

j (Zm), ∀ i ≥ m ⇒ pjp
−1
j (Zi) =

pjp
−1
j (Zm), ∀ i ≥ m ⇒ Zi = Zm, ∀ i ≥ m [∵ pj is surjective]. Arbitrariness of j

proves the assertion.

Theorem 4.15. Let {Xj : j = 1, . . . , n} be a finite family of qmods over a common
unitary ring R and X := X1 ×X2 × · · · ×Xn be their Cartesian product. Then X
is Artinian iff each Xj is Artinian.

Proof. The proof of this theorem follows in a similar manner as that of the above
Theorem 4.14. Here we just have to consider a descending chain of subqmods instead
of ascending one.
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The above theorems fail in general if we consider infinite product of qmods, as
the following example shows.

Example 4.16. (i) We have shown in example 4.2 that (Z+,+) is a Noetherian
qmod over Z. If we consider its infinite product X := (Z+)ℵ0 it will not be Noethe-
rian, since Z+ × {0} × {0} · · · ⊆ Z+ × Z+ × {0} · · · ⊆ Z+ × Z+ × Z+ × {0} · · · ⊆ · · ·
is an increasing sequence of subqmods in X which can never be stationary after a
finite stage.

(ii) The countably infinite product X := (C∞)ℵ0 of the Artinian qmod C∞
(explained in example 4.5) is not Artinian, since C×C∞×C∞ · · · ⊇ C×C×C∞×
C∞ · · · ⊇ C × C× C× C∞ · · · ⊇ · · · is a descending chain of subqmods of X which
can not be stationary after a finite stage.

These examples are instructive to get the following theorem.

Theorem 4.17. Let F := {Xn : n ∈ N} be a countable family of Noetherian
(Artinian) qmods over a unitary ring R. Then the product X :=

∏
n∈NXn cannot

be Noetherian (Artinian).

Proof. If F is a family of Noetherian qmods then X1× [X2]0× [X3]0 · · · ⊆ X1×X2×
[X3]0 · · · ⊆ X1×X2×X3× [X4]0 · · · ⊆ · · · is an increasing sequence of subqmods in
X which can never be stationary after a finite stage.

If F is a family of Artinian qmods then considering the descending chain of
subqmods [X1]0×X2×X3 · · · ⊇ [X1]0×[X2]0×X3 · · · ⊇ [X1]0×[X2]0×[X3]0×X4 · · · ⊇
· · · we can see that it is non-terminating to a fixed subqmod of X and hence justifies
our assertion.

In view of Theorems 4.14, 4.15 and 4.17 we can make the following conclusion.

Theorem 4.18. Let {Xα : α ∈ Λ} be an arbitrary family of Noetherian (Artinian)
qmods over a unitary ring R. Then the product

∏

α∈Λ

Xα is Noetherian (Artinian) iff

the index set Λ is finite.

References

[1] Blyth T. S. Module theory: an approach to linear algebra. Oxford University Press, USA,
1977.

[2] Jana S., Mazumder S. An associated structure of a Module. Revista de la Academia Canaria
de Ciencias, 2013, XXV, 9–22.



16 SANDIP JANA, SUPRIYO MAZUMDER

[3] Mazumder S., Jana S. Exact Sequence on Quasi Module. Southeast Asian Bulletin of
Mathematics, 2017, 41, 525–533.

Sandip Jana , Supriyo Mazumder

Department of Pure Mathematics
University of Calcutta
35, Ballygunge Circular Road
Kolkata-700019, India

E-mail: sjpm12@gmail.com; supriyo88@gmail.com

Received January 03, 2017


