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Abstract. In the present paper we introduce and study some generalized Lacu-
nary sequence spaces of Musielak-Orlicz function using infinite matrix over n-normed
spaces. We also make an effort to study some inclusion relations, topological and ge-
ometric properties of these spaces. Finally, we study statistical convergence on these
spaces.
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1 Introduction and Preliminaries

Let w be the set of all real or complex sequences and [, c and ¢y respectively,
be the Banach spaces of bounded, convergent and null sequences x = (z}), normed
by ||z|| = sup |z|, where k € N. Let X and Y be two sequence spaces and A = (a;x)

k

be an infinite matrix of real or complex numbers a;x, where 7,k € N. Then we say
that A defines a matrix mapping from X into Y if for every sequence = = (z;) € X,
the sequence Ax = {A;(z)}, the A-transform of x, is in Y, where

Ai(x) = Zaikznk (i € N). (1)
k=1

The matrix domain X4 of an infinite matrix A in a sequence space X is defined by
Xa={z=(zp): Az € X}. (2)

The approach of constructing a new sequence space by means of the matrix domain
of a particular limitation method has been employed by several authors (see [24]
and references therein).

The notion of difference sequence spaces was introduced by Kizmaz [14], who
studied the difference sequence spaces I (A), ¢(A) and c¢g(A). The notion was
further generalized by Et and Colak [7] by introducing the spaces lo(A™), c¢(A™)
and co(A™). Another type of generalization of the difference sequence spaces is
due to Tripathy and Esi [27], who studied the spaces loo(Ar,), ¢(Ap) and co(Ap,).
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18 K.RAJ, R.ANAND

Tripathy et al. [26] generalized the above notions and unified these as follows:
Let m, n be non-negative integers, then for Z = l,,, ¢ and ¢y, we have sequence
spaces

Z(Alny) ={z = (k) € w: (AG,yzk) € Z},

where A?m)a: = (A?m)xk) = (A?T;)lxk — A?T;)la:k_m) and A((]m)xk =z, for all k € N,

which is equivalent to the following binomial representation

n _ - 1) n .
A(m)fﬂk—Z( 1) ( i >5Ek+mz-

1=0

Let m and n be non-negative integers and v = (v ) be a sequence of non-zero scalars.
Then for Z, a given sequence space, we have

Z(AlGy) = {z = (zk) € w: (Af,,)zk) € Z}, for Z = I, c and o,

-1

where A”mv)xk = (A?mv)a:k — A?&i)mk_m) and A((]mv)a:k = vxy for all k € N, which
is equivai

ent to the following binomial representation:

n
[ n
A?mv)xk = Z(_l)l ( i > Vk—miLhk—mi-
i=0
In this expansion it is important to note that we take vg_,,; = 0 and xp_n; = 0
for non-positive values of k — mi. Dutta [6] showed that these spaces can be made
BK-spaces under the norm

121l = Sup [A ) 2]

For n =1 and v, = 1 for all k£ € N, we get the spaces loo(An,), c(An) and co(Ar,).
If m =1 and v, =1 for all k € N, we get the spaces lo(A"), c(A™) and co(A").
Takingm =n = 1 and vy = 1 for all k € N, we get the spaces [ (A), c(A) and ¢o(A).

Parasar and Choudhary [20], Giingor et al. [12], Colak et al. [4], and others used
Orlicz functions for defining some new sequence spaces.

The concept of 2-normed spaces was initially developed by Géahler [11] in the mid
of 1960’s, while that of n-normed spaces can be seen in Misiak [16]. Since then many
others have studied this concept and obtained various results (see [13]). Let n € N
and X be a linear space over the field R of reals of dimension d, where d > n > 2.

A real valued function ||-,--- ,-|| on X™ satisfying the following four conditions:
1. ||z1, 22, -+ ,zy|| = 0 if and only if z1, 29, - ,z, are linearly dependent in X,
2. ||xy, @, -+ ,xy,|| is invariant under permutation,

3. |laxy,za, -+, xn|| = |a| ||z1,22,- - ,zy]|| for any o € R, and



ON STATISTICAL CONVERGENCE 19

4. ||$+$l7$27"' ,l‘nH < ||$7$27"' 7$n|| +||$I7$27"' ,l‘n“

is called an n-norm on X and the pair (X, ||-,---,-||) is called a n-normed space
over the field R.

Example 1. We may take X = R" being equipped with the n-norm ||x1,z2, - , 2,||E
= the volume of the n-dimensional parallelepiped spanned by the vectors x1, xo,- - , xy,
which may be given explicitly by the formula

|1, 22, -+, zp||E = | det(z45)],

where z; = (41, %9, ,Tip) € R" for each i = 1,2,--- ,n. Let (X,]||-,--- ,-||) be an
n-normed space of dimension d > n > 2 and {aj, a9, - ,a,} be linearly independent
set in X. Then the function ||-,--- ,-||oc on X"~ ! defined by

Hxlax27"' 7‘Tn—1HOO = maX{H‘T171’27”' 7'1'71—17&7;" 1= 1727"' ,TL}
defines an (n — 1)-norm on X with respect to {a1, a9, - ,a,}.

A sequence (zp) in a n-normed space (X, ||-,--- ,-||) is said to converge to some
LeXif

lim ||z — L, 21, ,2p-1|| =0 for every z1, -+ ,z,-1 € X.
k—o0

An Orlicz function M is a function which is continuous, non-decreasing and convex
with M (0) =0, M(x) > 0 for x > 0 and M (z) — oo as x — oo. If the convexity
of an Orlicz function is replaced by subadditivity, we call it a modulus function
introduced by Nakano [19].

Lindenstrauss and Tzafriri [15] used the idea of Orlicz function to define the
following sequence space,

by = {x:(xk) 6w:§3M(%) < o0, for somep>0},
k=1

which is called an Orlicz sequence space. The space £, is a Banach space with the

norm .
l|z]| = inf{p >0 ZM(|$—;|> < 1}.
k=1

A sequence M = (M;) of Orlicz functions is called a Musielak-Orlicz function. A
Musielak-Orlicz function M = (M;) is said to satisfy Ag-condition if there exist
constants a, K > 0 and a sequence ¢ = (¢;)3°; € I} (the positive cone of ') such
that the inequality
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holds for all i € N and v € RT, whenever M;(u) < a. For more details about se-
quence spaces see [2,17,21-23] and references therein.

An increasing sequence of non-negative integers h, = (i, —i,—1) — 00 as r — 00
can be made through lacunary sequence 6 = (i,), r =0,1,2,---, where i5 = 0. The
intervals determined by 6 are denoted by I, = (i,_1,4,] and the ratio i, /i,—1 will
be denoted by ¢,. Freedman [9] defined the space of lacunary strongly convergent
sequences Ny as:

1
Ny = {:17 = (xg) : Tli_%loh— Z |z — L| = 0 for some L}.
" kel,

Let X be a sequence space. Then X is called

(i) Solid (or normal) if (a;z;) € X whenever (z;) € X and for all sequences (o)
of scalars with |o;| < 1, for all i € N;

(ii) Monotone provided X contains the canonical preimages of all its step spaces.
If X is normal, then X is monotone.

Let A = (a;1) be an infinite matrix of complex numbers. Let M = (M;) be a
Musielak-Orlicz function, p = (p;) be a bounded sequence of positive real numbers,
u = (u;) be a sequence of strictly positive real numbers. We define the following
sequence spaces in the present paper:

v[A,u, AT 20, p, My ||, ... ] =

(mv)?

{5 g =3 [uids(

1€y

‘ A?mv) Az’ (x) -

S Di
,21,...,,2”_1“)} =0 for some s,p>0},
p

VO[A7U7 A?mv)’97p7Miv ||'7-'-a ||] =

{a; : TILDQO hi Z [UZM,< ‘w,zl, ...,zn_lu)]pi =0, for some p > O}
" iel,
and
Vool A, u, A?mv),ﬂ,p, M, ||y s ||] =
{x : Suphi Z [u2M2< ‘w,zl, ...,zn_luﬂpi < o0, for some p > 0}.
T e,

The following inequality will be used throughout the paper. If 0 < p; < supp; = H,
K = max(1,27~1), then

i+ b < K {0l b)) 3
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for all i and a;,b; € C. Also, |a|P < max(1, |a|), for all a € C.

The main objective of this paper is to introduce the concept of generalized Lacu-
nary sequence spaces of Museilak-Orlicz function using infinite matrix over n-normed
spaces. We also make an effort to study some topological properties and prove some
inclusion relations between these sequence spaces. Finally, by using these concepts
we study statistical convergence of these spaces.

2 Main Results

Theorem 1. Let M = (M;) be a Musielak-Orlicz function, p = (p;) be a
bounded sequence of positive real numbers, u = (u;) be a sequence of strictly
positive real numbers and A = (a;;) be an infinite matriz of complex numbers.
Then, the spaces V[A,u,A?mv),H,p,Mi,||.,...,.||], VO[A,u,A?mU),H,p,Mi,||.,...,.||]
and Voo [A,u, AT~ 0, p, My, ||.,...,.||]] are linear spaces over the complex field C.

(mv)”

Proof. Let z and y € 1[4, u, A?mv),ﬂ,p, M, ||y ...,.|]|]] and «, 8 € C. Then there exist

positive real numbers p; and ps such that

. 1 A?mv)Az(‘T) Di
Tll)ngoh—r Z [uzMZ( ” ,21,...,,2”_1“)} =0
and
1 Al Ai(y) pi
Tg)%h—rz |:'LLZMZ< T,Zl,...,zn 1H)] =0.
i€l
Define p3 = max(2|«a|p1,2|5|p2). Since [|.,...,.]| is @ n-norm on X and M = (M;) is
non-decreasing and convex function for each i, so by inequality (3), we have
o1 Al Ailox + By) pi
rlingoh_r;: [u2M2< p y 21y ey Zn 1H)}
‘ 1 A?mv)Ai(Oz:E) (mv Ai(By)
< — M (|2 )
> T’lggohr;;[UZMl<‘ 03 y Rly eeey Bn— 1H+H 03 3 ZLy eeey
Dpi
)]
AT Ai(x) ;
(mwv)* 7t H pi
< — _— _
- Krlgloloh ;2pz|:l Z(‘ 1 121y -es 2l )]
Al Ai(y) pi
(mv) ) 7
#0637 o [ (|| 2 )]
Zelr
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Thus, we have ax+0y € vy[A, u, A?mv),ﬁ,p, M;, ||, ..., .||]- Hence, 1y[A,u, A?mv),ﬁ,p,
M, ||-y ..., .]|] is a linear space. Simultaneously, it can be proved that v[A, u, A?mv) ,0,
p, My, ||, ..., ||] and vo[A, u, A?mv),H,p, M, ||., ..., .]|] are linear spaces. O

Theorem 2. Let M = (M;) be a Musielak-Orlicz function, p = (p;) be a bounded

sequence of positive real numbers, u = (u;) be a sequence of strictly positive real num-

bers and A = (a;x) be an infinite matriz of complex numbers. If sup(M;(x))P* < ooV
i

fized x > 0, then v[A, u, A?mv),ﬂ,p, Mi ||y ooy ]l] C VoolA, u, A?mv),H,p, M ||y ey 1)
Proof. Let x € v[A, u, A?mv),ﬁ,p, M, ||.,...,.]|]]- Then there exists some positive py
such that

A?mv)Ai(:E) -8

i o 3wt

1€l

‘ o1 ,2’1,...,zn_1H>}pi —0.

Define p = 2p;. Since (M;) is non-decreasing, convex and by using inequality (3),
we have

S
_ Lngoi; fuaa (A?mw‘l;(zl) —s%jzmzn_lu)]pi
< 0 3 o[ FEE
+ Klggloi; 2; Jwid ( Sl’zl’---azn—lH)}’”
< 5 PR )

1
4 K lim — [uM< S
i g 2 o

i€l

< Q.
Hence, z € voo[A, u, A?mv),ﬂ,p, M;, ||y -y -]|]- This completes the proof. O
Theorem 3. The sequence spaces Vy[A, u, A?mv) 0, p, My ||y ey ]]] and vso[A, u, A?mv),
0,p, My, ||.,...,.||] are solid and so monotone.
Proof. Suppose x € v|[A, u, A?mv),ﬁ,p, M;, ||, ..., .]|]- Then

1 Al Ai() i

sup — Z [uzMZ< ‘ (mv)” , 21, ...,zn_1H>]p < o0, for some p > 0.
r hr P

1€l
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Let oo = («;) be a sequence of scalars such that |a;| < 1 for all ¢ € N. Then, we have

1 A?mv)Ai(am) Pi
Sl;}ph_rz |:UZMZ( D 7217'-'72'71—1“)}
i€l
1 A?mv)Ai(x) Pi
< — i M _— _
> Sl:p hr Z |:UZMZ< ‘ P y 21y eey Zmy IH)]
i€l
< oo,
which leads us to the desired result. O
Theorem 4. Let M" = (M/) and M" = (M) be Musielak-Orlicz functions. Then
lA, u, Al 05, My ey ] Nvo[4, u, Al 05, M., ..., |l € wlA,u, Al
0,p, (M] + M), |-, .., ]]]-
Proof. Suppose that z € 1y[A,u, A(mv 0,p, M/, ||., ..., ]Il N wlA,u, A?mv),ﬂ,p, M,
I, - [l]. Then
S Y Y. HA?mmAi(”f) ik
ISR I
i€l
_ 1 / A?mv)Ai(x) Pi
= tim g3 [oddi (| =z )]
i€l
1 " ?mv)AZ(':U) Di
¢ (| )
1 A?mU)A’l(‘T) Di
< K Jim 73w (| o
< a3 fubt (|| 22 )]
1 ?mv)AZ(x) Di
4+ K lim —Z ,MZ” ‘ , 21 Zn 1H
r—00 il [ ( P )]
— 0 as r — oo.
Thus, = € vy[A,u, A(mv) 0,p, (M!+M/),||.,...,.||]. Hence, the proof is complete. [

Theorem 5. Let M = (M;) and M’ = (M]) be two Musielak-Orlicz functions
satisfying Ao— condition. Then

(1) VO[A,U,A?mv),H,p,Mi’,H.,...,.H] C wlA,u, A?mv),H p, M; o M/, ..., ][]
(i) v[A, u, A?mv),H p, M H Al € v [A,u,A’(“mv),H,p,M,-oMi’,H.,...,.H].
(Z”) VOO[A u, A(mv 9 p7 || ||] g VOO[AvuvA?mUye)p)Mi OM;7||7>||]

Proof. We consider the ﬁrst case only. Rests can be proved in a similar way. Let
x € A, u, Al 00 M, T s J]]- Then

¢7A?mv>f‘“<x>,zl,...,Zn_lw o,
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Let € > 0 and choose § with 0 < § < 1 such that M;(t) < e for 0 <t <.

Let y; = [uzMZ< ‘f,zl, ...,zn_luﬂ. Thus, we can write
1
1 —_ pr— 1 _— pl —_
rh—1>1010h 2 M, rlglgohrz[M(yl +rh—l>loloh DM
7/617" y'LS5 yz>5

Since M = (M;) satisfies Ag— condition, we have

lim h_ Z )P < max{1, M;( }Thm h_ Z (ya)]P. 4)

r—00
Yi<o Yi <6

For y; > §, we use the fact that y; < % < 1+ ¥%. Since M = (M;) is non-decreasing
and convex, it follows that

yiy 1 L 2y;
2Ly < ZM(2) + = (22,
) < SMi2) + 5 ()

Since M = (M;) satisfies Ay— condition and ¥ > 1, there exists K > 0 such that

Mz(yz) < Mi(l +

() < 2KV M@ + 1Y) = kY,

Therefore, we have

T o S < max(t, (82 i LS. )

r r—00
Yi>6 Yi>6

Hence, by equations (4) and (5), we have

Anmv Ai(z) Pi
lim hiz [uZ(M o M) (H(i,zl,...,zn_lHﬂ

r—00 f, *
1€Lly

o1 :
= o > luiMi(y))”

icl,
1
1 _ |Pi
< D Jim o >yl
;<8
+ G lim h_ > il
yi>0

where D = max{1, M;(1 )H} and G= max{l,(KMiT(z))H}.
Hence, 1p[A4, u, A(mv O,p, M/, ||.,.....|I] € wolA u, A}

(mv)

797p7M2 o M{) ||7 >||]
O

Theorem 6. Let 0 < p; < ¢; for all i and (;17:'_) be bounded. Then v[A, u, A?mv),H, q,

Mi7 H7 7”] C V[A,U, A?mv)aeapa Mia H'7"'7 H]
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(mw) Ai(z)—s
P

A’!L
‘ ) Zl 7

Proof. Let z € V[A,u, A?mv),H,q,M,-, |-y ey ][] Write t; = {uzM,(
...,zn_lu)]qz and pu; = fl’—: for all ¢ € N. Then 0 < p; < 1 for every i € N. Take
0 < p < p; for every i € N. Define the sequences (a;) and (b;) as follows:

For t; > 1, let a; = t; and b; = 0 and for ¢; < 1, let a; = 0 and b; = t;. Then clearly
for all i € N, we have t; = a; + b;, t!" = a!" + b/"". Now, it follows that a* < a; <t
and bé‘ < bf . Therefore,

Zelr iEI’r
< hm—Eti—Flim—gbf
7 —00 T—00
Zelr iEI’r

Now for each 1,

IA
=
3B
/N
r
/N

|}—~

Sa
N———

=

| IE—
==
N———
X =

=

gB

N
r
/N
T
N———
T

=

| I
-
\‘H

T
N———
~

=

1€ly i€l
1 Iz
= i (5 300)
i€l
and so ! ! 1 p
. i : T il ,
tim -3t < Jim - 3ok i (3 )
ZEIT' ZEIT- ZEI’P

Hence, z € v[A,u, A?mv),e,p, M| ey -] O
Theorem 7. (i) If 0 < inf p; < p; <1 for alli, then v[A,u, A?mv),O,Mi, [|., - ]|] C
V[A7u7 A?mv)vevpv Mi7 ||7 cey ||]
(i) If 1 < p; < supp; = H < oo, then v[A, u, A?mv),ﬂ,p, M, ||, ] C
v[A, u, A?mv),H,Mi, [y ey -||]-
Proof. (i) Let z € V[A, u, A?mv),H,Mi, |-y vy .]|]. Since 0 < infp; < 1, we get

‘A?mv)Api(x) - S,Zb ) Z"_IHH

1

T

< lim — i M; ey P
< Jim o el ; 21z )]
i€l
and hence x € v[A, u, AT . 0,p, M, |[.,.... [[].
(ii) Let 1 < p; <supp; = H < oo and = € v[4,u, A?mv),H,p, M, ||,y .]|]. Then for
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each 0 < e < 1, there exists a positive integer sy such that

A7 Az’ - i
Tli)nolohir; {uzM,(H (mv) p(m) 3,21, ...,zn_lu)]p < e< 1for all r > sg.
This implies that
AT A (x) — ;

lim hi Z [U2M2< ‘ (mo) (x) S,Zl,...,zn_lH>:|p
e e e, P

| AP Ai(z) — s

< TILIgth—Tg; |:’LLZMZ< ‘ (mv) ’ ,Zl,...,zn_lu)].

Therefore, © € V[A, u, A?mv),H,M,-, [y oees <[] O

3 Statistical Convergence

The notion of statistical convergence was introduced by Fast [8] and Schoen-
berg [25] independently. Over the years and under different names, statistical con-
vergence has been discussed in the theory of Fourier analysis, ergodic theory and
number theory. Later on, it was further investigated from the sequence space point
of view and linked with summability theory by Fridy [10], Connor [3], Mursaleen et
al.[18] and many others. In recent years, generalizations of statistical convergence
have appeared in the study of strong integral summability and the structure of ideals
of bounded continuous functions on locally compact spaces. Statistical convergence
and its generalizations are also connected with subsets of the Stone-Cech compact-
ification of natural numbers. Moreover, statistical convergence is closely related to
the concept of convergence in probability.

A complex number sequence z = (z;) is said to be statistically convergent to the

number [ if for every ¢ > 0, lim —|K(¢)| = 0, where K (¢) denotes the number of
n—oo n
elements in K(e) ={i € N :|z; — 1] > €}.

The set of statistically convergent sequences is denoted by S.

A sequence x = (x;) is said to be S[A,u, AT 0/, ...,.|

|-statistically conver-

(mv)?
gent to s if
1 AT (Ai(x) — s

lim—{iEIT:H (mv)” ,21,...,zn_1H26H:0.

r—00 r p
In this section we introduce S[A4, u, Al 0; Il., ..., .]|]-statistical convergence and give
some relations between S[A, u, A?mv),ﬁ, II., ..., .||]-statistically convergent sequences
and v[A,u, AT 0,p, M;, ||, ..., .||]-convergent sequences.

(mv)



ON STATISTICAL CONVERGENCE 27

Theorem 8. Let M = (M;) be a Musielak-Orlicz function. Then v[A, u, A?mv),e,p,
M, ||y -|l] € S[A,u, A?mv 0|y ey -]]-

Proof. Let x € v[A, u, A?mv) 0,p, M, ||., ..., .]|]. Take e > 0, Z denotes the sum over
1
. . AP yAi(z)—s . .
1 < n with H%,zl, ...,zn_lu > € and Z denotes the sum over ¢ < n with
2
A Ai(z)—s .
H(m“)f,zl, ey Zp— H < €. Then for each z1,...,2,_1, we obtain
Tlingoh—r Z [u2M2< p ,Z1,---,zn_1H>}
Zelr
. 1 r A(mv)Ai($) -8 Pi
- Tll)noloh_,,.zl: _UZMZ< P y @1y ey An—1 >_
1 Al Ai(@) =5 17
+ Tll{loloh_/r%: UZMZ< p y Ry ey An—1 >_
1 A(mv)Ai($) -8 Pi
> — M, ) Zn—
e Tli)nolo hrzl: UZMZ< P y 21y ey Zn—1 >
1 r Di
> lim — M
2 fm h, 21: _UZMZ(E)]
> L h H
> Jim - me ()}, {uidMi ()} |
. 1 . A?fm})AZ(‘,E) - . h
= S <n: vy Zn—1|| 2 iVl )
i e D ) i
{usMi(e)}"].
Hence, z € S[A, u, A?mv),ﬂ, |-y .-y -][]- This completes the proof of the theorem. [
Theorem 9. Let M = (M;) be a bounded Musielak-Orlicz function. Then
S[A, u, A” 0 |-y ]]] C V[A,u,A?mv),H,p,Mi,H.,...,.H].

Proof. Suppose that M = (M;) be bounded. For given € > 0, Z denotes the sum

1
A’(lmv) Ai(z)—s

over 7 < n with H ;

)21, ...,zn_lH > ¢ and Z denotes the sum over ¢ < n
with H_A?mv)f:(x)—s
integer IV such that M; < N for all ¢. Then for each zi, ..., z,_1, we obtain

,21,...,,2”_1H < €. Since M = (M;) is bounded, there exists an

i - 3 [ a1
=t 2 o )
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ot S e[S ]

IN

Jim 7 D [ ("), ()

+ lim hi Z [uiMi(e)pi]

D

< max [{Uz’Nh}, {uiNH}] TILIEO hi {z . HA?mU)Ai(:E) —s

7217"-7Zn—1H > 6}

p
+ max |{uMi(6)"}, {uiMi(6) T}
Hence, z € v[A,u, A?mv),e,p, M, || ey -] O
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