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Abstract. This is a survey of subsequent work on two topics derived from funda-
mental publications of V.A. Andrunachievici in the 1950s and 1960s: special radicals
and the result which has come to be known as the Andrunachievici Lemma.
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1 Introduction

A (Kurosh-Amitsur) radical class of rings is a non-empty homomorphically
closed class R such that for all rings A we have

R(A) :=
∑

{I ⊳ A : I ∈ R} ∈ R and R(A/R(A)) = 0.

For many purposes a more convenient characterization of a radical class is as a non-
empty class R satisfying the following conditions.
(i) R is homomorphically closed.
(ii) If I ⊳A and both I and A/I are in R then A ∈ R. (R is closed under extensions.)
(iii) If {Iλ : λ ∈ Λ} is a chain of ideals of a ring A and each Iλ ∈ R, then

⋃
Iλ =∑

Iλ ∈ R.
The ideal R(A) will sometimes be called the radical of A, and ideals, subrings

etc. of A which are in R will sometimes be called radical ideals, radical subrings etc.
when this causes no ambiguity.

A class K of rings, radical or not, is hereditary if whenever I ⊳ A ∈ K we have I
in K.

With each radical class R is associated the class of R - semi-simple rings, those
rings A for which R(A) = 0. In general a non empty class S is a semi-simple class,
i.e. the class of R -semi-simple rings for some radical class R, if and only if it is
hereditary, closed under extensions and closed under subdirect products.

We note in passing that whereas the characterization of radical classes given
above is valid, mutatis mutandis, for groups, non-associative rings and other struc-
tures for which radical theory can be developed, semi-simple classes in some such
contexts need not be hereditary, and indeed there are settings in which they need
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114 B. J. GARDNER

not be describable by closure properties at all: in [2] it is shown that for arbitrary
(not necessarily associative) algebras over a field, intersections of semi-simple classes
need not be semi-simple classes.

For each class C of rings there is a smallest radical class containing C; this is
called the lower radical class defined by C, and we shall denote it by L(C). There
is also a largest radical class whose semi-simple class contains C, called the upper
radical class defined by C; this we shall denote by U(C). In particular, if S is the
class of R -semi-simple rings, then R = U(S).

Our remark above about semi-simple classes and closure properties suggests that
upper radical classes might be problematical in some situations; in fact, in the class
of all non-associative (= not necessarily associative) rings, some classes do not define
upper radical classes; see, e.g., [2].

We shall often abbreviate “radical class” to “radical”. Mostly our terminology
(apart from some notation given in this Introduction) conforms to that of [3], to
which we refer for further information about radical theory. In particular proofs of
claims made above can be found there unless we have given another reference. The
best general reference for radicals of structures other than associative rings is [4].

Although later in the paper we discuss various kinds of non-associative rings
and algebras, in the absence of an explicit indication to the contrary, all rings are
associative. We emphasize that we mean“rings” and not “rings with identity”, the
latter being equipped with an extra fundamental nullary operation.

2 Special radicals

Special radicals, the principal concern of both parts of Andrunachievici’s funda-
mental paper [1], are the upper radicals defined by certain classes of prime rings. A
special class is a non-empty class P of prime rings which is hereditary for non-zero
ideals (we don’t count the one-element ring as a prime ring) and closed under es-
sential extensions. (If I ⊳ A then I is an essential ideal if I ∩ J 6= 0 for all non-zero
ideals J of A; A is then called an essential extension of I). In the original definition
a condition involving annihilators was used, and this was subsequently shown to be
equivalent to closure under essential extensions [5], [6]. (In the latter case the proof
is attributed to E. H. Connell.)

A radical class R is special, if R = U(P) for some special class P of prime rings.
Some of the best known radicals are special: for the prime, Jacobson and Brown-

McCoy radicals we can take P to be the classes of all prime rings, all left (or
right) primitive rings and all simple rings with identity, respectively. The locally
nilpotent and nil radicals are also special. Special radicals can also be characterized
intrinsically.

Theorem 1. (See [1]) A radical class R is special if and only if every R-semi-simple
ring is a subdirect product of prime R-semi-simple rings. Consequently all nilpotent
rings are contained in every special radical class.

In [1] there was an extra condition: that R be hereditary, but it was subsequently
shown by Beidar [7] that this is implied by by the other conditions.
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So special radical classes are hereditary and contain all nilpotent rings. Radical
classes with these properties are said to be supernilpotent (though this terminology
is not universally used). Is the subdirect product representation condition also
redundant? In other words, are there supernilpotent radicals which are not special?
Yes, there are, so that condition is not redundant.

Theorem 2. Supernilpotent radicals need not be special.

The first examples were produced by Ryabukhin.

Example 1. [8] The class T of boolean rings without ideals isomorphic to the two-
element field has an upper radical which is supernilpotent but not special, essentially
because the only prime homomorphic images of rings in T are in U(T ).

Example 2. [9] For every infinite cardinal m the class Mm of rings A with |A| ≤ m

defines a lower radical class L(Mm) such that if R is a hereditary radical class and
B ( R ⊆ L(Mm)then R is supernilpotent but not special because there are R-semi-
simple rings whose only prime homomorphic images are small enough to be in R.
(Here B is the prime radical class, the lower radical class defined by the class of
all nilpotent; also the upper radical class defined by the class of all prime rings.)
In particular the radicals L(Mm) are supernilpotent and non-special. They are
also strongly hereditary in the sense that all subrings of radical rings are themselves
radical. This is because the lower radical defined by a strongly hereditary class is
itself strongly hereditary [10].

Theorem 3. A strongly hereditary supernilpotent radical need not be special.

We mention one more example, or family of examples, due to Beidar and Salavová
[11].

Example 3. Let Rn be the upper radical class defined by the class of semiprime
rings which do not have ideals which are prime rings, and which satisfy the standard
identity of degree 2n but not that of degree 2(n − 1). Let Sn be the corresponding
semi-simple class. Then all the Rn are supernilpotent and non-special. Also Sm ∩
Sn = 0 when m 6= n.

The radicals Rn in Example 3 are pairwise incomparable. A similar collection
of radicals for algebras over a field was found by Ryabukhin [12].

Examples 1-3 are based on semiprime rings which don’t have ideals which are
prime rings of some kind. This might suggest that rings with no ideals at all which
are prime rings might be worth looking at. That very class of rings, under the
name prime essential rings (as they are also characterized by the property that
all their prime ideals are essential ideals) was introduced by Rowen [13], but for
other purposes. Connections between such rings and radical theory were given some
attention by Gardner and Stewart [14], but the definitive result is due to France-
Jackson [15].

Theorem 4. [15] Every supernilpotent radical which properly contains the prime
radical and for which all prime essential rings are semi-simple is non-special.
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The same author constructed infinitely many supernilpotent radicals for which
there are no prime semi-simple rings [16]. Clearly these are not special. Note that
having no prime semi-simple rings is not the same as having all prime rings in the
radical class; the latter condition requires that all rings be radical, as the radical
class must contain all free rings.

Jaegermann and Sands [17] gave an example of a non-special N-radical. An N
radical is a supernilpotent radical which is left hereditary and left strong, i.e. left
ideals of radical rings are radical and the radical of any ring contains all radical left
ideals. Thus we have

Theorem 5. A left hereditary, left strong supernilpotent radical need not be special.

A radical class R is strict if for every ring A, R(A) contains all subrings of A
which are in R. As a contrast to Theorems 3 and 5, it appears not to be known
whether a strict supernilpotent radical must be special.

There are some conditions on a supernilpotent radical which do force it to be
special. Stewart [18] showed that a supernilpotent radical class R with the property
that a ring A is in R if and only if all its one-generator subrings are in R must
be special. The same author [19] showed that a supernilpotent radical whose semi-
simple class S has the property that A ∈ S if and only if all one-generator subrings
are in S must be special, but such radicals are probably very few. A supernilpotent
radical whose semi-simple class is closed under (semi)prime homomorphic images
must be special [20]. This includes the upper radicals defined by semi-simple radical
classes, but these are obviously special, since a semi- simple radical class is the
variety generated by some finite set of finite fields.

Since Snider [21] observed that various classes of radicals are large complete
lattices (or “lattices”: they are not sets) and initiated their investigation, the lattice
of special radicals has attracted much attention. If Ri, i ∈ I are special radicals, we
get our lattice operations by defining

∧
Ri to be

⋂
Ri and

∨
Ri to be the smallest

special radical class containing
⋃

Ri. Such a smallest special radical exists for every
class; a construction is given in [22]. In other cases (all radicals, all supernilpotent
radicals and so on) the operations are defined analogously. Snider showed ([21], pp.
210-211) that although the special radicals form a lattice, it is not a sublattice of
the lattice of all radicals.

It might seem plausible that the upper radical defined by a single simple ring
with identity is a coatom in the lattice of special radicals, but this is not necessarily
so. For example take the field Q of rational numbers. The polynomial ring Q[X] is
a subdirect product of copies of Q and so is semi-simple with respect to U(Q). But
Q ∈ U(Q[X]), so U(Q) ( U(Q[X]). The coatoms were described by Krachilov [23].

Theorem 6. [23] A radical R is a coatom in the lattice of special radicals if and
only if R = U(Mn(F )) , where Mn(F ) is the ring of n × n matrices over a finite
field F , for some n.

The atoms in the lattice of special radicals have proved to be much more elusive,
and have not yet been completely characterized. Before we give an account of what
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is currently known about atoms we should explain some of the terminology which
will be used.

Every class C of rings is contained in a smallest special radical class which we
shall call Ls(C) (or Ls(A) if C has a single member A ). A construction is given
in [22]. Each prime ring A is contained in a smallest special class denoted by πA,
described as follows.

Proposition 1. [24] For a prime ring A, πA consists of all prime rings which have
a non-zero ideal isomorphic to an accessible subring of A.

We also denote the class of all prime rings by π. As well as idempotent simple
rings, three types of rings play roles in the discussion of special atoms.

(i) A ∗-ring [25] is a non-zero semiprime ring A such that A/I ∈ B for every
non-zero ideal I. Such a ring must be prime.

(ii) A PEI-ring [26] is a prime ring A such that A/I ∈ πA for all prime ideals I.
(iii) A ∗∗ -ring [28] is a prime ring A for which each semiprime homomorphic

image is in πA.
Clearly ∗ ⇒ ∗∗ and ∗∗ ⇒ PEI. A ring constructed by Leavitt and van Leeuwen

[29] which is prime and isomorphic to all its non-zero homomorphic images is a ∗∗
-ring and hence a PEI -ring but not a ∗ -ring. No other implications are known.
Note, though, that idempotent simple rings are ∗ -rings.

The first result on special atoms is due to Ryabukhin [9].

Theorem 7. [9] For every idempotent simple ring T , Ls(T ) is an atom in the lattice
of special radicals.

Further examples were provided by Korolczuk [25].

Theorem 8. [25] If A is a ∗-ring then Ls(A) is an atom in the lattice of special
radicals. There are ∗-rings B such there are no simple rings T for which Ls(B) =
Ls(T ).

For a prime ring A, π\πA is a special class, informally a rather large one, so its
upper radical is a ”rather small” special radical, and a plausible candidate for an
atom.

Proposition 2. For every prime ring A we have U(π\πA) ⊆ Ls(A).

Proof. If 0 6= R ∈ U(π\πA) and I is a prime ideal of R, then R/I /∈ π\πA, i.e.
R/I ∈ πA. Hence R/I has a non-zero ideal K/I isomorphic to an accessible subring
of A and therefore in Ls(A). Thus (by Theorem 4 and Proposition 5 of [22]) R ∈
Ls(Ls(A)) = Ls(A).

Proposition 3. For a prime ring A, Ls(A) = U(π\πA) if and only if A is a PEI-
ring.

Proof. We show that Ls(A) ⊆ U(π\πA) if and only if A is PEI. Since U(π\πA) is
special, this is equivalent to showing that A ∈ U(π\πA) if and only if A is PEI. If
A ∈ U(π\πA) and J is a prime ideal of A, then A/J must be in πA and hence A is
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PEI. Conversely, if A is PEI, suppose A /∈ U(π\πA). Then as π\πA is hereditary
for non-zero ideals, A has a homomorphic image B ∈ π\πA. But since B is prime it
must be in πA. From this contradiction we conclude that A ∈ U(π\πA).

Proposition 4. If A is a prime ring and Ls(A) is an atom, then Ls(A) = U(π\πA)
or U(π\πA) = B.

Proof. By Proposition 2 U(π\πA) ⊆ Ls(A), so it must be either Ls(A) or B.

Corollary 1. If A is prime and Ls(A) is an atom in the lattice of special radicals,
then either Ls(A) = U(π\πA) or A is a subdirect product of rings in π\πA.

Proof. If Ls(A) 6= U(π\πA) then U(π\πA) = B, so A, like every semiprime ring, is
a subdirect product of rings in π\πA. Conversely, if A is such a subdirect product,
then A is U(π\πA)-semi-simple, so U(π\πA) 6= Ls(A).

These results lead, though not immediately, to the following theorem, whose
proof can be put together straightforwardly from the cited results of France-Jackson
and Liang Zhian.

Theorem 9. (Liang Zhian [26], Theorem 4, France-Jackson [27], Theorem 2) If
A is a PEI-ring then Ls(A) is an atom in the lattice of special radicals. Every
special atom has the form Ls(B) for a prime ring B such that either B is PEI or
U(π\πB) = B.

France-Jackson and Groenewald [28] proved that Ls(A) is a special atom for
every ∗∗-ring, but ∗∗-rings have PEI.

Although subsequent work has raised possibilities, no examples of special atoms
have yet come to light beyond those described in Theorems 7 and 8. The only known
example of a PEI-ring which is not a ∗-ring (it is also a ∗∗-ring) is the ring of [29]
mentioned above, call it V . Then V is isomorphic to all its non-zero homomorphic
images and is prime. The proper ideals of V form a chain

0 = H0 ⊆ H1 ⊆ H2 ⊆ · · · ⊆ Hn ⊆ Hn+1 ⊆ . . . ,

where H1 is (idempotent) simple and Hn+l/Hn
∼= H1 for each n. Since H1 ∈ Ls(V )

and Ls(V ) is an atom, we have Ls(V ) = Ls(H1). Another paper of France-Jackson
[30] contains an example of a pure essential ring (so not a ∗-ring) which generates
a special atom. This ring is a semigroup ring ring Z2[D] over the two-element field
Z2. But Z2 is a homomorphic image of Z2[D], so Ls(Z2[D]) = Ls(Z2).

In a rather imprecise sense, the smaller a special class, the larger the special
radical (namely, its upper radical) it defines. For a prime ring A, πA is a minimal
special class, since πB = πA for every B ∈ πA, but only when A is a finite idempotent
simple ring is U(πA) a coatom, as we saw in Theorem 6; in other cases there are
plenty of subdirect products of rings in πA that can aggregate to form special classes
defining special radicals bigger than U(πA). There are two ways in which πA can
be “as small as possible”. One is where πA consists of all essential extensions of A,
so that A is simple and πA is the class of subdirectly irreducible rings with hearts
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isomorphic to A. The other, which we shall now consider, is where πA consists of
the non-zero ideals of A (so that A has no proper essential extensions, i.e. A has an
identity).

We are able to characterize these rings only under an extra hypothesis. In [31] it
is claimed that this characterization applies without the extra hypothesis, but there
is an error in the proof and we don’t know whether this hypothesis is needed or not.
Here then is our theorem.

Theorem 10. Let A be a prime ring such that every isomorphism between ideals of
A extends to an automorphism of A. Then πA is the set of non-zero ideals of A if
and only if

(i) A is a simple ring of characteristic 0 with identity, or
(ii) pA = 0 for some prime p and A is either a simple ring with identity or a

certain ring which is not an algebra over any field but Zp and has only one proper
ideal, or

(iii) A is additively torsion-free and reduced and a principal ideal domain such
that every proper homomorphic image is isomorphic to some Zn.

Proof. Let A be a prime ring such that πA is the set of non-zero ideals of A. If I is
a non-zero ideal of A , then the standard unital extension I ∗Z has a homomorphic
image I∗ such that I is (isomorphic to) an essential ideal of I∗. Hence I∗ is isomorphic
to an accessible subring of A. But I∗ has an identity and A is prime, so I∗ ∼= A.
Thus A has an identity. Also I∗ is generated by I∪{1}, so A is generated by J∪{1},
where J ⊳ A and J ∼= I. By our assumption, there is an automorphism f of A such
that f(I) = J . But then A = f(A) = f({j + n1 : j ∈ J, n ∈ Z}) = {f(j) + n1 : j ∈
J, n ∈ Z}, so A is generated by I ∪ {1}. If now K ⊳ I then clearly K ⊳ A. It now
follows that all accessible subrings of A are ideals and A is generated by I ∪ {1} for
every non-zero ideal I.

The rest of the proof more or less follows the second part of the proof offered for
the theorem in [31] (which seems to be correct: we show that our rings are injectives
in a certain category and invoke Theorems 2.5 and 2.13 of [33] and Theorem of [34]
for their structure.

The rings in (iii) of Theorem 10 form an interesting class. If A is such a ring
then for every prime p, either pA = A or A is a p-pure subring of the ring of p-adic
integers ([34], Theorem). Since pA 6= A for at least one p, it follows that |A| ≤ 2ℵ0 .
Also every non-zero element of A is an integer multiple of a unit. The rings in (iii)
are also the integral domains, other than fields, in which all accessible subrings are
ideals: see Theorems 3.1 and 3.2 of [32].

For rings which are algebras over fields other than the Zp we don’t need the as-
sumption concerning isomorphic ideals. Note that this includes torsion-free divisible
rings.

Proposition 5. Let A be a prime ring which is an algebra over a field K other than
the fields Zp. If πA is the set of non-zero ideals of A then A is a simple ring with
identity.
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Proof. (i) If K has prime characteristic p, then pA = 0. If I is a non-zero ideal of A
without an identity, we can adjoin the identity of Zp to get the ring I ∗ Zp and this
has a homomorphic image I∗p in which (up to isomorphism) I is an essential ideal.
Hence I∗p ∈ πA and thus it is isomorphic to an accessible subring of A. Since A is
prime and I∗p has an identity, we have A ∼= I∗p. This means that A has an identity
and A is generated by J ∪ {1} for some ideal J which is isomorphic to I. But then
A/J ∼= Zp, while as A has an identity, all its ideals are K-algebra ideals, so Zp is a
K-algebra. This is impossible, so there is no non-zero ideal without an identity. It
follows that A is a simple ring with identity.

(ii) If K has characteristic 0 we argue similarly, using I ∗Z instead of I ∗Zp ( Z
can’t be a K-algebra).

Thus although for torsion-free reduced rings our result is only valid modulo the
assumption about isomorphic ideals, we now know a fair bit about when πA is the
set of non-zero ideals, since the requirement of primeness places some restrictions
on the additive group of a ring.

Proposition 6. If A is a prime ring then either pA = 0 for a unique prime p or A
is torsion-free.

For a proof see, e.g. [35], Theorem 4.1.1, p. 36. Note that a torsion-free prime
ring need not be either additively divisible or reduced; e.g. consider the subring
Z+XQ[X] of the polynomial ring Q[X] over the rationals. However such a “blended”
ring cannot generate a special class consisting of ideals.

Proposition 7. Let A be a torsion-free prime ring such that πA is the set of non-zero
ideals of A. Then additively A is either divisible or reduced.

Proof. Let A be a prime ring such that πA is the set of non-zero ideals and D(A) 6= 0,
where D is the radical class of all divisible rings. Let D(A) ∗Q be the ring obtained
by the adjunction to D(A) of the identity of Q. An argument by now familiar shows
that D(A)∗Q has a homomorphic image D(A)∗Q which has an identity and is in πA,
whence A ∼= D(A)∗Q ∈ D. We have shown that if A is not reduced it is divisible.

It is not known whether there are any prime rings (necessarily torsion-free and
reduced additively) which don’t satisfy the requirement on isomorphic ideals in The-
orem 10, yet whose non-zero ideals (or accessible subrings) form a special class. Here
is an example of a prime ring which is quite similar to the rings of Theorem 10 (iii) –
in particular it satisfies the ideal isomorphism condition – but whose non-zero ideals
do not form a special class.

Example 4. The ring G(3), the localization of the Gaussian integers G at the prime
3, is additively torsion-free and reduced and is a principal ideal domain. Its proper
ideals are the principal ideals (3n) generated by the powers of 3. If f : (3m) → (3n)
is an isomorphism, then

3mf(3m) = f(3m3m) = f(3m)f(3m),
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so, as f(3m) 6= 0 ,we have 3m = f(3m) ∈ (3n), whence m ≥ n. But similarly
3n = f−1(3n) ∈ (3m), so n ≥ m. Thus f is the identity map, the restriction of the
identity automorphism of G(3). But (e.g.) in G(3), if k · 1 + ℓi ≡ 0(mod3) then 3|k
and 3|ℓ. It follows that G(3)/3G(3), additively a group of exponent 3, is not cyclic;
in particular it is not isomorphic to any Zn, so the ideals of G(3) don’t form a special
class.

There have been investigations of atoms in various other lattices of radicals (see,
e.g., [36]). We shall not discuss these beyond noting some connections between
supernilpotent atoms and special atoms. Every class C of rings is contained in a
smallest supernilpotent radical class, namely Lh(C) = L(Ĉ ∪ B), where Ĉ is the
hereditary closure of C. For a class C which is hereditary and closed under prime
homomorphic images, the smallest special radical class Ls(C) containing it is

{A : every prime homomorphic image of A has a non-zero ideal in C}

[22]. In particular, for a ring A we have

Lh(A) = L(B ∪ {R : R is an accessible subring of A}) and

Ls(A) = {R : every prime homomorphic image of R has a non-zero ideal which is a
prime homomorphic image of an accessible subring of A}.

With these two characterizations before us, this is a convenient point at which
to give a result which shows why all special atoms have the form Ls(A) for a prime
ring A as well as illuminating aspects of some of the results given so far. A ring
is antisimple if it has no homomorphic image which is subdirectly irreducible with
idempotent heart. The class Bϕ of antisimple rings is a special radical class. All of
this too originated in [1].

Theorem 11. (1) Let R be an atom in the lattice of special radicals. Then R =
Ls(A) for some prime ring A.

(2) Let A be a prime ring for which Ls(A) is an atom in the lattice of special
radicals. The following conditions are equivalent.

(i) Ls(A) = Ls(T ) for some idempotent simple ring T .
(ii) A has an idempotent simple ideal.
(iii) A /∈ Bϕ.
All of these statements are true if “supernilpotent” replaces “special” and Lh()

replaces Ls() throughout.

Proof. (1) If R is a special atom, then R 6= B so there is a ring R ∈ R with
R/B(R) 6= 0. Then R/B(R) has a prime homomorphic image A. We then have

B 6= Ls(A) ⊆ Ls(R/B(R)) ⊆ Ls(R) ⊆ R,

whence, as R is an atom, we have Ls(A) = R.
(2) (i) ⇒ (ii). If Ls(A) = Ls(T ), where T is idempotent and simple, then

A ∈ Ls(T ) so by our characterization, A has an ideal isomorphic to T .
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(ii) ⇒ (i). If A has a simple ideal V , then V ∈ Ls(A), so Ls(V ) ⊆ Ls(A). But
the latter is an atom, so the two radicals are equal.

(ii) ⇒ (iii). If A has an idempotent simple ideal V , let J be an ideal of A
such that J ∩ V = 0 and J is maximal for this property. Then A/J is subdirectly
irreducible with heart (isomorphic to) V.

(iii) ⇒ (i). Let A/I be subdirectly irreducible with idempotent heart H. Then
as Ls(A) is an atom, we have Ls(A) = Ls(A/I) = Ls(H).

Corollary 2. Let R be an atom in the lattice of special radicals. Then R is not
defined by a simple ring if and only if B ( R ⊆ Bϕ, so R is defined by a simple ring
if and only if R ∩ Bϕ = B.

Remark 1. It follows from Theorem 11 that if B is a ring with a non-zero ideal I ∈ B
such that B/I is a prime ring, then Ls(B) = Ls(B/I) and Lh(B) = Lh(B/I), so
it’s easy to manufacture examples of non-∗-rings and so on which define special or
supernilpotent atoms, cf. [37].

There is a connection between the two types of atoms.

Theorem 12. (Puczy lowski and Roszkowska [36], Propositiom 12) Let A be a prime
ring. If Lh(A) is an atom in the lattice of supernilpotent radicals, then Ls(A) is an
atom in the lattice of special radicals.

Theorem 12 has a partial converse.

Proposition 8. (Puczy lowski and Roszkowska [36], Proposition 13) Let A be a
prime ring such that Ls(A) is an atom in the lattice of special radicals. If R(A) = A
or 0 for every supernilpotent radical R, then Lh(A) is an atom in the lattice of
supernilpotent radicals.

In [36] it was asked whether there is a non-∗-ring which generates a special
radical. An example of such a ring is given in [30]: a certain semigroup ring over Z2

which is boolean and prime essential. But (cf. the proof of Theorem 11) such rings
are plentiful, and the interesting question is whether there is a prime ring which
is not a ∗-ring but generates a special atom. The example in [30] is also pertinent
to the question of the validity of the full converse to Theorem 12. Certainly that
ring generates a special atom but not a supernilpotent atom, but for all types of
radicals (including the special and supernilpotent ones) the ring generates the same
radical as Z2. The full converse of Theorem 12 would assert that all prime rings
generating special atoms also generate supernilpotent atoms. By Proposition 8 any
counterexample would have to be a prime non-∗-ring.

It should not be supposed that under the conditions of Theorem 12 Ls(A) =
Lh(A). These two rings can in fact never be equal. We prove something a bit more
general.

Theorem 13. Let C be a class of rings such that for some cardinal number k we
have |A| < k for each A ∈ C. Then Lh(C) = Ls(C) if and only if C ⊆ B.



SPECIAL RADICALS AND THE LEMMA 123

Proof. We can assume that C is homomorphically closed and hereditary. If C ⊆ B
then trivially Lh(C) = B = Ls(C).

If C * B then C contains a non-zero semiprime ring A. Let E be a linearly
ordered set with a smallest element but no largest element, such that |[x, y]| = k for
all intervals [x, y] in E ( x < y). Now E becomes a semigroup (semilattice) when
we define zw = max{z,w} for all z,w ∈ E. For the semigroup ring A[E] we have
the following.

(i) A[E] is semiprime.
(ii) Every ideal has cardinality k.
(iii) Every prime homomorphic image is isomorphic to a prime homomorphic

image of A.
For all this, as well as a demonstration that a suitable E exists, see [8], Lemmas

8 and 9; also [14], Lemma 1.
From (iii) we see that A[E] ∈ Ls(C), while from (i) and (ii) A[E] has no non-zero

accessible ideal in B or in C, so A[E] is Lh(C)-semi-simple.

Corollary 3. For a ring A, we have Lh(A) = Ls(A) if and only if A ∈ B.

Corollary 4. ([24], Corollary 3.4.1) No atom in the lattice of supernilpotent radicals
is special.

The conclusion of Theorem 13 need not be true for a class of rings of unbounded
cardinality.

Example 5. Let C2 be the class of commutative rings. Then

L(C2) = {R : R/B(R) ∈ C2}

by Collary 3.7 of [38]. If R ∈ Ls(C2) then R/B(R) ∈ Ls(C2) so every prime homo-
morphic image of R/B(R) has a non-zero ideal in C2.

But in general, if I is a non-zero commutative ideal of a prime ring A, then for
all a, b ∈ A, i, j ∈ I we have
i(ab − ba)j = iabj − ibaj = ia · bj − i · baj = bj · ia − baj · i = b · jia − ba · ji =
b(j · ai) − baji = b(ai · j) − baji = baij − baij = 0.
Hence I(ab − ba)I = 0 for all a, b ∈ A. But A is prime and I 6= 0, so I(ab − ba) = 0
and then for the same reason ab − ba = 0 for all a, b, i.e. A is commutative.

Thus, returning to our argument, each prime homomorphic image of the
semiprime ring R/B(R) is commutative, so R/B(R) is in C2. This proves that
Ls(C2) ⊆ L(C2). But for every class X we have

L(X ) ⊆ Lh(X ) ⊆ Ls(X ),

so
L(C2) = Lh(C2) = Ls(C2).

Remark 2. It is part of folklore that if A is a prime ring and I a non-zero ideal
satisfying any polynomial identity, then A satisfies that identity. See, e.g. [39] p.
309. There doesn’t appear to be any printed proof of this result, but in any case the
simple proof for commutativity seems worth presenting.
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In his detailed examination of examples of special classes in [1], Andrunachievici
considered classes of idempotent simple rings, showing, in §5 of Part II that a class
M of simple rings is special if and only if each of its members has an identity. Thus
M consists of rings with identity if and only if

(i) U(M) is hereditary and
(ii) all U(M)-semi-simple rings are subdirect products of rings in M.
It was natural then to ask what requirements (i) and (ii) individually impose

on M, and both questions were answered by Leavitt [40]. He showed that (ii)
holds if and only if each ring in M has an identity. (This was some years before
Beidar [7] showed that the hereditary property follows from the other properties in
the characterization of special radicals from [1].) He also showed that for each prime
p there exist idempotent simple rings of characteristic p without identity which can
belong to a class M satisfying (i) if and only if the corresponding field Zp is also
in M. Incidentally, the mysterious ”certain rings ...” of Theorem 10 (ii) are the
standard Zp-unital extensions of these non-unital simple rings of Leavitt.

If R is a radical class containing no non-zero nilpotent rings, then all rings in
R are idempotent. If furthermore R is hereditary, all ideals of all rings in R are
idempotent. Under these conditions R is said to be subidempotent. Subidempotent
radicals are in a sense “opposite” to supernilpotent radicals (which contain all nilpo-
tent rings). In §3 of Part I of [1], Andrunachievici defined a Galois correspondence
between supernilpotent radicals and subidempotent radicals, associating with each
radical R of either kind a radical R′, namely the upper radical defined by the class
of subdirectly irreducible rings with hearts in R. Thus if R is supernilpotent, then
so is R′′ and the latter is the upper radical defined by the subdirectly irreducible
rings with R-semi-simple hearts. In fact R′′ is special, and the class of subdirectly
irreducibles with R-semi-simple hearts is a special class. In general an upper radical
defined by a special class of subdirectly irreducibles is called a dual special radical.

In [20] we introduced a type of special radical intermediate between special rad-
icals in general and dual special radicals.

Let R be a supernilpotent radical with semi-simple class S. A ring B ∈ S is S-
subdirectly irreducible if B 6= 0 and

⋂
{I⊳B : I 6= 0&B/I ∈ S} 6= 0. A supernilpotent

radical class R with semi-simple class S is called extraspecial if each ring in S is a
subdirect product of S-subdirectly irreducible rings. The S-subdirectly irreducible
rings are precisely the essential extensions of rings in S whose proper homomorphic
images are in R. E.g. when R = B they are the essential extensions of ∗-rings.

Theorem 14. ([20], 1.11 Theorem and 1.16 Theorem) Let R be a supernilpotent
radical with semi-simple class S such that if {Iλ : λ ∈ Λ} is a chain of ideals of a
ring A with each A/Iλ ∈ S then A/

⋃
λ∈Λ Iλ ∈ S. Then R is extraspecial and S is a

quasivariety.

The semi-simple class of an extraspecial radical need not be a quasivariety: e.g.
dual special radicals don’t generally have that property. Sometimes they do, though.
Semi- simple radical classes are the varieties generated by finite sets of finite fields
[41] and such a class consists of all subdirect products of the fields it contains. The
case of the class (variety) of boolean rings was discussed from this point of view in
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§7 of Part II of [1], so the first example of a semi-simple radical class is also due to
Andrunachievici.

Theorem 15. ([20], 1.21 Proposition and 2.7 Proposition) For any supernilpotent
radical R with semi-simple class S, the S- subdirectly irreducible rings form a special
class. Hence if R is extraspecial, it is special. Moreover, in this case the class of
S-subdirectly irreducible rings is the smallest special class with R as its upper radical.

Remark 3. It is not known whether a special radical must be extraspecial if there is
a smallest special class defining it as its upper radical.

Some rings considered earlier provide a family of extraspecial radicals.

Example 6. Let A be a prime ring of one of the types described in Theorem 10
(so that πA consists of all non-zero ideals of A). Then U(πA) is extraspecial. To see
this, observe that the rings in (iii) have only torsion proper homomorphic images,
and these are in U(πA), while if A is such a ring and I ⊳ J ⊳ A, then I ⊳ A, so
J/I, as an ideal of A/I, is a torsion ring and hence is in U(πA). In the non-simple
characteristic p examples, πA has just two members, a simple ring and an essential
extension of this. In this and the remaining cases (where A is simple) the radical
concerned is a dual special radical. Thus in all cases πA consists of SA-subdirectly
irreducible rings, where SA is the semi-simple class of U(πA).

If we take note of Theorem 15 it is clear that

dual special ⇒ extraspecial ⇒ special.

Neither implication is reversible. The generalized nil radical Ng is extraspecial,
as its semi-simple class, the class of rings with no non-zero nilpotent elements, is the
quasivariety defined by

x2 = 0 ⇒ x = 0.

It is not dual special, however, since for instance the ring Z(2) = { 2m
2n+1 : m,n ∈ Z} is

not a subdirect product of subdirectly irreducible rings without nilpotent elements.
The only example so far exhibited of a special radical which is not extraspecial

is due to Beidar [42]. From Theorem 15 we see that a special radical which is
the upper radical defined by two disjoint special classes cannot be extraspecial.
Beidar provided an example of such a radical. Let C denote the field of complex
numbers, C[X1,X2, . . . ,Xn, . . . ] the polynomial rings in countably many commuting
indeterminates. Let A = C[X1,X2, . . . ,Xn, . . . ] and B = A/I, where I is the ideal
generated by X2

1 + X2
2 − 1. We have

Theorem 16. (Beidar [42]) The rings A and B generate disjoint special classes
with the same upper radical. This radical is therefore special but not extraspecial.

It is not known which, if any, of the ”standard”’ radicals are extraspecial. France-
Jackson [43] has shown that the lattice of special radicals is atomic if and only if the
prime radical is extraspecial. It is well known that the Jacobson radical is the upper
radical defined by either of the distinct special classes of left primitive and right
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primitive rings. Sands has posed the interesting question: is the Jacobson radical
the upper radical defined by the rings which are both left and right primitive? This
question has an affirmative answer if the Jacobson radical is extraspecial.

Every special radical is the upper radical defined by at least one special class,
e.g. the class of all semi-simple prime rings. Generally if we have a special class K
we can find others with the same upper radical. If, say, Z and all the fields Zp are
in K we can discard Z and take the special class generated by what’s left. In the
other direction there may be a prime ring A which, while not in K, is a subdirect
product of rings which are. The special class generated by K ∪ {A} will then have
the same upper radical as K. Some special radicals are, however, determined by a
unique special class, which must be the class of all semi-simple prime rings.

Theorem 17. (Vodyanyuk [44], Proposition 1, France-Jackson [45], Theorem 2) A
special radical is the upper radical defined by a unique special class if and only if all
prime R-semi-simple rings are finite (and therefore finite fields or full matrix rings
over such).

Vodyanyuk goes on to characterize the corresponding radicals of algebras over
an arbitrary commutative ring with identity.

Versions of special radicals have been introduced and studied for several other
structures. The following list of pertinent references should be reasonably complete,
but apologies in advance to anyone who’s been left out!

Lattice-ordered rings: Shatalova, [46], [47]; Steinberg [48]; Shavgulidze [49], [50].
Rings with involution: Salavová [51], [52]; Booth and Groenewald [53]; Booth

[54].
Graded rings: Balaba [55]. There is an extensive literature dealing with individ-

ual special radicals of graded rings.
Paragraded rings: Ilić-Georgijević and Vuković [56]. For paragraded structures

see Krasner [57].
Operator groups: Ryabukhin [58]; Buys and Gerber [59]; Booth and Groenewald

[60].
Nearrings: Kaarli [61]; Booth and Groenewald [62]; Birkenmeier, Heatherly and

Lee [63]; Groenewald [64]. The situation with nearrings is complicated by the pres-
ence of several competing notions of “prime”. Also some results are proved for
arbitrary nearrings, some for zero-symmetric ones.

We saw above that a class of simple rings is a special class if and only if it consists
of rings with identity. Re-phrasing this, we can say that the following conditions are
equivalent for a class M of simple rings.

(i) U(M) is hereditary and every U(M)-semi-simple ring is a subdirect product
of rings in M.

(ii) Every ring in M has an identity.
It follows from results of Suliński [65] that this equivalence persists for alternative

rings. It also holds for right alternative rings ([66], Theorem 5.9) but not for power-
associative rings ([66], Example 5.10). Suliński [65] asks whether (i) holds for Lie
rings when M consists of complete simple rings, but it was shown by Andrunachievici
and Ryabukhin [67] that it is not so.
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3 The Lemma

The result which has come to be known as the Andrunachievici Lemma occurs
in [1] (Part I, Lemma 4, p. 102). We promote it to a theorem for the occasion.

Theorem 18. Let A be a ring, I ⊳ J ⊳ A, and let I∗ be the ideal of A generated by
I. Then (I∗)3 ⊆ I.

We give the short proof here so that we can later point to it to illustrate some
of the problems that arise when attempts are made to generalize the result to other
contexts.

Proof. We have
I∗ = I + AI + IA + AIA

and I∗ ⊳ J , so

(I∗)3 ⊆ JI∗J = JIJ + JA · IJ + JI · AJ + JA · I · AJ ⊆ JIJ ⊆ I.

Note that in non-associative rings the description of I∗ is generally much more
complicated, involving infinitely many terms.Note also that this proof we implicitly
use both left and right distributivity of multiplication over addition; this will be
pertinent to our later comments on nearrings.

This simple result is very useful in radical theory and in ring theory. For instance
it provides simple proofs that

(i) if I ⊳ J ⊳ A and J/I is semiprime, then I ⊳ A;
(ii) if I is a minimal ideal then I is a(n idempotent) simple ring or I2 = 0. In

particular (ii) applies to hearts of subdirectly irreducible rings.
Not surprisingly, then, the possibility of generalizing The Lemma to other struc-

tures than (associative) rings has been extensively pursued. The question to ask in
such contexts is “What is I∗/I like?” (We shall maintain the notation of Theorem
2.1, with ⊳ taking its appropriate meaning.)

Some contrast is provided by groups. In many ways the categories of groups and
rings are alike, but in the case of groups, the question “What is I∗/I like?” has the
answer “Nothing in particular.”: every group can be an I∗/I.

Proposition 9. Let G be any group, C2 a cyclic group of order 2. Then in the
wreath product G ≀ C2 we have, up to isomorphism,

G ⊳ G × G ⊳ G ≀ C2

and G∗ = G × G, so G∗/G ∼= G.

This also shows that there is no non-trivial group H such that

A ⊳ B ⊳ C&B/A ∼= H ⇒ A ⊳ C.
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While we’re dealing with groups, let us note also that a minimal normal subgroup
need not be simple or abelian (as the ring case might lead one to suspect): consider
the MacLain group (see [4], pp. 30-36, for example.)

We next consider another “associative” structure for which the possibility of
an Andrunachievici Lemma has been explored. The Lemma can be formulated for
zero-symmetric nearrings exactly as for rings, but is not always valid.

We refer to [68] for details concerning nearrings. We note that nearrings satisfy
only one of the distributive laws, and which one to assume is a matter of taste and
convenience. We shall not be doing many nearring calculations, but we’ll assume
left distributivity. We shall only consider zero-symmetric nearrings.

If a nearring is distributive, i.e. if it satisfies both distributive laws, then for
I ⊳ J ⊳ A we have (I∗/I)3 = 0, and the proof is essentially identical to the ring one.

Kaarli [69] gave an example of a finite nearring for which The Lemma fails. This
ring also has a minimal ideal U which is not simple and for which U2 6= 0. The
problem of describing minimal ideals in nearrings seems to be difficult. Some further
information is given in [70], [71] and [72].

Birkenmeier, Heatherly and Lee [73] studied a sort of localized version of The
Lemma. They called an ideal J of A an A-ideal if for each I ⊳ J we have (I∗/I)n =
0 for some n. Then A itself is said to be an A-nearring if all its ideals are A-
ideals. Thus as noted above, distributive nearrings are A-nearrings. This can be
strengthened considerably.

A nearring A is distributively generated (briefly d.g.) if it has a multiplicative
subsemigroup S which generates A additively and satisfies the condition

(s + t)a = sa + ta (as well as s(a + b) = sa + sb)

for all s, t ∈ S and a, b ∈ A.

Theorem 19. ([73], Corollary 3.9) Every d.g. nearring A is an A-nearring. More-
over, if I ⊳ J ⊳ A, then (I∗)4 ⊆ I.

In [73] a more general result is obtained using a generalization of the d.g. con-
dition. It is also shown that nearrings satisfying certain identities, are A-nearrings
([73], Proposition 4.1). There is also some information about minimal ideals:

Theorem 20. ([73], Proposition 5.3) If I is a minimal ideal of a nearring A and
I2 6= 0 and if further I is an A-ideal, then I is subdirectly irreducible and is either
simple or Brown-McCoy radical. In particular if A is an A-nearring, this conclusion
applies to all minimal ideals.

Now we’ll look at two easy extensions of The Lemma to rings with an extra
operation.

For rings with involution̂(in which ideals are replaced bŷ-invariant ideals), we
have

Proposition 10. ([51], Lemma 2.12) If I is a ̂ -invariant ideal of J and J is a
̂ -invariant ideal of A let I∗ be the -̂invariant ideal of A generated by I. Then
(I∗/I)3 = 0.
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For lattice-ordered rings (ℓ-rings) we denote by < S > the ℓ-ideal generated by
a subset S. We have the following variant of The Lemma.

Proposition 11. ([46], Lemma 2) If I is an ℓ-ideal of J and J is an ℓ-ideal of A,
let I∗ be the ordinary ring ideal of A generated by I. Then < (I∗)3 >⊆ I.

Call an ℓ-ideal I ℓ-idempotent if < I2 >= I. Then every ℓ-idempotent minimal
ℓ-ideal is ℓ-simple. ([46], Remark 2, Note, p. 1086).

The story becomes much more complicated when we turn our attention to non-
associative rings. The first case we consider will be that of alternative rings. We
shall continue to use the notation I ⊳ J ⊳ A and I∗ as before.

In a sense alternative rings provide a fairly benign environment for radical theory.
We can informally describe the situation by saying that “radical theory results for
associative rings tend to hold also for alternative rings, but their proofs are much
longer and/or messier”. So it proves to be with The Lemma. Hentzel and Slater [74]
showed that for alternative rings we have

⋂
n∈Z+(I∗)n · I∗ ⊆ I, with no restriction

on torsion. This was somewhat improved by Pchelintsev [75] who showed that

(I∗)4·5
6
⊆ I, but only for algebras over a commutative ring containing 1

6 . Thus
rings have to be effectively 6-torsion-free, and in particular for algebras over a field
characteristics 2 and 3 are not covered. The latest result is due to Hentzel [76], who
reduced the index but still had to place a restriction on torsion.

Theorem 21. ([76], Theorem 9) In any alternative ring A with I ⊳J ⊳A, I∗ satisfies
the condition

x ∈ (I∗)4 ⇒ (∃n ∈ Z+)(3nx ∈ I).

Corollary 5. For alternative algebras over a ring containing 1
3 , we have (I∗)4 ⊆ I

when I ⊳ J ⊳ A.

This needs to be further explored; in particular we need to know what I∗/I is
like in alternative rings over a field of characteristic 3. Characteristic 2 causes no
problems though.

We get the hoped-for result on minimal ideals, and the theorem of Hentzel and
Slater [74] cited above is good enough to give us a short proof.

Theorem 22. In any alternative ring A, if K is a minimal ideal then K2 = 0 or
K is simple.

Proof. Since A is alternative we have K2 ⊳ A, so K2 = 0 or K. If K2 = K and
0 6= I ⊳ K, let I∗ denote the ideal of A generated by I as usual. Then 0 6= I∗ ⊆ K,
so by the minimality of K we have I∗ = K. Also (K/I)n = K/I for each n. But
now by the Theorem in [74] we have

0 =
⋂

n∈Z+

(I∗/I)n · (I∗/I) =
⋂

n∈Z+

(K/I)n · (K/I) = (K/I)2 = K/I,

so I = K and therefore K is simple.
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It is instructive to examine the proof in [77] (pp. 169-170), due to Zhevlakov,
that minimal ideals of alternative rings are simple or zerorings. This makes no use
of anything like an Andrunachievici Lemma and is quite complicated.

For (linear) Jordan algebras over a commutative unital ring containing 1
2 , Slin’ko

[78] proved a theorem which somewhat resembles The Lemma.

Theorem 23. ([78], Theorem 1) Let A be a Jordan algebra over a ring containing
1
2 . If I ⊳ J ⊳ A and J/I has no non-zero nilpotent ideals, then I ⊳ A.

This is enough to prove

Theorem 24. ([78], Theorem 2) For Jordan algebras over a ring containing 1
2 ,

every radical class (hereditary or not) which contains all nilpotent algebras has a
hereditary semi-simple class.

Medvedev [79] showed that if A is a finitely generated Jordan algebra over a ring
containing 1

2 and I ⊳ J ⊳ A then I∗/I is nilpotent, but constructed an example of a
non-finitely generated algebra A with corresponding I, J for which I∗/I is not even
solvable (and I2 = 0).

Thus there is no Andrunachievici Lemma for Jordan algebras. There are more
technical related results in [80] and [81].

We saw above that Slin’ko’s Andrunachievicesque result (Theorem 23) shows
that semi-simple classes of Jordan algebras are hereditary if all nilpotent algebras
are radical. Subsequently Nikitin [82] has shown that the condition on nilpotent
algebras is unnecessary.

Theorem 25. ([82], Theorem 3) All semi-simple classes of Jordan algebras over a
ring containing 1

2 are hereditary.

Despite the absence of an Andrunachievici Lemma, the problem of characterizing
minimal ideals of Jordan algebras has been solved. We have the following result of
Skosyrskii [83], also proved (differently) by Medvedev [79].

Theorem 26. ([83], Corollary 3.1,[79], unnumbered theorem.) If I is a minimal
ideal of a Jordan algebra, then I is simple or I2 = 0.

In the more general setting of quadratic Jordan algebras (without divisibility
requirements) minimal ideals have also been described; see [84], 2.4 Corollary,[85],
3.1 Theorem.

In an arbitrary universal class of (not necessarily associative) rings it is not pos-
sible to say very much about the hearts of subdirectly irreducible rings; in particular
they need not be simple or zerorings. If K is the heart of a subdirectly irreducible
ring B, and if K2 ⊳ B, then as K2 ⊆ K we can say that K2 = 0 or K. But K2

may not be an ideal. This (among other pathological properties) is illustrated by
the following example.

Example 7. Let A be a Z2-algebra with basis {u, v,w} and multiplication given by
the following table.
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· u v w
u 0 w v
v w 0 w
w v w 0

Then A is subdirectly irreducible, its heart is H =< v,w >, the subspace spanned
by {v,w} and H2 =< v >. Now A has the following properties.

• H2 6= 0 and H is not simple; in fact

• H2 6= H.

• H ⊳ A but H2 ⋪ A.

We have seen several examples of universal classes where the first of these prop-
erties is impossible. In associative and alternative rings the third is impossible. For
Jordan algebras the square of an ideal need not be an ideal (though the cube must
be) but the second property is not possible for linear Jordan algebras (Theorem 26).

In [86] a variety W of (not necessarily associative) rings used as a universal class
is called an Andrunachievici variety of index n if for I ⊳ J ⊳ A in W we have (in our
standard notation) (I∗/I)(n) = 0 and n (independent of I, J,A) is the smallest such
integer. Note that the factor ring I∗/I is required to be solvable, rather than nilpo-
tent; the two properties are equivalent for associative rings but not for alternative
rings.

A variety W is called an s-variety if for every ideal M of every ring R in W,
the power M s is also an ideal, and s is the smallest such integer. Here M s is the
set of finite sums of s-fold products of elements of M with arbitrary bracketings.
Associative and alternative rings form 2-varieties, as do Lie rings and (−1, 1)-rings,
those right-alternative rings satisfying the identity

(a, b, c) + (b, c, a) + (c, a, b) = 0,

where (a, b, c) is the associator: (ab)c−a(bc) etc. Linear Jordan algebras over a ring
containing 1

2 form a 3-variety.

Theorem 27. In a universal class which is an Andrunachievici variety of index n
and an s-variety, let A have a minimal ideal J . Then Js = 0 or J is (idempotent
and) simple.

Proof. Since Js ⊳ A and Js ⊆ J , we have Js = 0 or J . In the latter case we have

J ⊇ JJ ⊇ Js = J,

so J2 = J . If now 0 6= I ⊳ J then I∗ (the ideal of A generated by I as usual) is
contained in J and therefore I∗ = J . But then

J/I = (J/I)2 = (J/I)(2) = (J/I)(3) = · · · = (J/I)(n) = (I∗/I)(n) = 0,

so I = J and J is simple.
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The Lemma is not generally used to prove that semi-simple classes are hereditary,
as we have the (ADS) condition, but its variant in an Andrunachievici variety has
been so used.

Theorem 28. ([86] Theorem 3.2, Theorem 3.4 and Theorem 3.7) If a universal
class W is an Andrunachievici variety and R is a radical class in W which contains
all zerorings, then the semi-simple class of R is hereditary, but if R contains no
zerorings (except 0), its semi-simple class need not be hereditary. If W is both an
Andrunachievici variety and an s-variety for some s, then all radical classes in W
which contain all zerorings or none have hereditary semi-simp0le classes.

Corollary 6. In a universal class of algebras over a field which is both an An-
drunachievici variety and an s-variety for some s, all semi-simple classes are hered-
itary.

Radical theory in Andrunachievici varieties which are s-varieties was further
studied by Ánh, Loi and Wiegandt [87].

The usual way of proving that semi-simple classes of associative rings are hered-
itary is by the use of the (ADS) condition:

If J ⊳ A then R(J) ⊳ A for all radicals R.

(See [3], p. 40.) This condition holds also for alternative rings and groups.
It might be amusing, therefore, to deduce (ADS) from The Lemma, and this we

shall now do. In the sequel, A+ denotes the additive group of a ring A, and S0

denotes the zeroring on an abelian group G; all rings are associative from now on
except for a few brief mentions where we explicitly refer to rings of other kinds. We
first state a result which plays a crucial role in our proof.

Proposition 12. ([3], Lemma 3.19, p.17, [4], 5.6 Corollary, p. 84.) If A is a
nilpotent ring and R is a radical class, then A ∈ R if and only if (A+)0 ∈ R.

The proof of this result in [4] is valid for non-associative rings also.
We note a “special case” of (ADS) which is valid in all universal classes and the

use of which does not jeopardize our proof. If R is a radical class, A a zeroring and
J ⊳ A, then R(J) ⊳ A since all subrings of A are ideals. From this one deduces that
the class of zerorings in a semi-simple class is always hereditary. This fact is used
in the proof of Proposition 12.

Theorem 29. The Andrunachievici Lemma implies (ADS).

Proof. Let R be a radical class. For I ⊳ A we have R(I) ⊳ I ⊳ A. To streamline
notation, let M = R(I). As before we let M∗ be the ideal of A generated by M , so
that (M∗/M)3 = 0. Now

M∗ = M + AM + MA + AMA,

so
(M∗/M)+ = ((M + AM + MA + AMA)/M)+
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= ((M + AM)/M)+ + ((M + MA)/M)+ + ((M + AMA)/M)+.

For a ∈ A, define fa : M/M2 → (((M +AM)/M) by setting fa(m+M2) = am+M
for each m ∈ M . If m + M2 = n + M2, i.e. m − n ∈ M2, then

a(m − n) ∈ AM2 = (AM)M ⊆ M∗M ⊆ IM ⊆ M,

so am + M = an + M and hence fa is well defined. Clearly fa preserves addition.
For all m,k ∈ M and a, b ∈ A we have am · bk = amb · k ∈ M∗M ⊆ M , so
(M + AM)/M is a zeroring and hence fa is a ring homomorphism, since M/M2 is
a zeroring. Adding all the fa we get a surjective group homomorphism, and hence
a surjective ring homomorphism

∑

a∈A

fa : M/M2 → (M + AM)/M. (1)

Similarly there is a surjective ring homomorphism

M/M2 → (M + MA)/M. (2)

Now for each a, b ∈ A define

gab : (M/M3)+0 → ((M + AMA)/M)+0

by the rule

gab(m + M3) = amb + M for all m in M .

If m + M3 = n + M3, then

a(m − n)b ∈ AM3A = AM · M · MA ⊆ M∗MM∗ ⊆ M

and hence amb + M = anb + M and gab is well defined. As gab is clearly a group
homomorphism and we are dealing with zerorings, it is a ring homomorphism, and
as in the other cases we can sum the gab to get a surjective ring homomorphism

∑

a,b∈A

gab : (M/M3)+0 → ((M + AMA)/M)+0. (3)

Now M/M3 ∈ R (as M ∈ R) and hence by Proposition 12, so is (M/M3)+0.
Also M/M2 ∈ R. But then (1), (2) and (3) imply that

(M∗/M)+0 = ((M + AM)/M)+0 + ((M + MA)/M)+0 + ((M + AMA)/M)+0 ∈ R.

As (M∗/M)3 = 0 (The Lemma!), Proposition 12 says that M∗/M ∈ R. But M =
R(I) ∈ R, so M∗ ∈ R. Since M∗ ⊆ I we have M∗ ⊳ I, whence M∗ ⊆ R(I) = M.
Thus

R(I) = M = M∗ ⊳ A

and this is (ADS).
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