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Closure operators in modules and adjoint functors, II

A. I. Kashu

Abstract. In this work we study the relations between the closure operators of two
module categories connected by two adjoint contravariant functors. The present arti-
cle is a continuation of the paper [1] (Part I), where the same question is investigated
in the case of two adjoint covariant functors.

An arbitrary bimodule RUS defines a pair of adjoint contravariant functors H1 =
HomR(-, U) : R-Mod → Mod-S and H2 = HomS(-, U) : Mod-S → R-Mod with two
associated natural transformations Φ : R-Mod → H2H1 and Ψ : Mod-S → H1H2. In
this situation we study the connections between the closure operators of the categories
R-Mod and Mod-S.

Mathematics subject classification: 16D90, 16S90, 16A40.

Keywords and phrases: category of modules, closure operator, adjoint functors,
contravariant functor.

1 Introduction

The present paper is a continuation of the article [1] (Part I), where the closure
operators of two module categories are investigated in the case of two adjoint covari-
ant functors. In [1] two mappings are constructed between the closure operators of
module categories R-Mod and S-Mod, proving some important properties of these
mappings.

Using the similar methods, now we will study the relations between the closure
operators of two module categories in the case of two adjoint contravariant functors.
The purpose is to expose some possibilities of transition from the closure operators
of one module category to the closure operators of another one and to establish some
properties of these mappings.

To specify the investigated situation, we fix an arbitrary (R,S)-bimodule RUS,
which defines the following pair of adjoint contravariant functors:

R-Mod
H1=HomR(-,U) //

Mod-S.
H2=HomS(-,U)

oo

Adjointness means that for every pair of modules X ∈ R-Mod and Y ∈ Mod-S
the natural isomorphism is defined:

HomR

(

X,HomS(Y,U)
) ∼=
−−→ HomS

(

Y,HomR(X,U)
)

.

The functors (H1,H2) are accompanied by two natural transformations:
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102 A. I. KASHU

Φ : R-Mod → H2H1, Ψ : Mod-S → H1H2,

which satisfy the following relations:

H1(ΦX) · ΨH1(X) = 1H1(X), H2(ΨY ) · ΦH2(Y ) = 1H2(Y )

for every X ∈ R-Mod and Y ∈ Mod-S.

These relations uniquely define the considered situation. Moreover, every pair
of adjoint contravariant functors between two module categories can be represented
in such form (up to a functorial isomorphism). We remark that this situation was
earlier considered (for example, in [2] and [3]) with the aim to study the relations
between the preradicals of corresponding module categories.

We recall that a closure operator of R-Mod is a function C which associates to
every pair N ⊆ M , where N ∈ L(M), a submodule of M, denoted by CM(N), which
satisfies the conditions:

(c1) N ⊆ CM(N) (extension);

(c2) If N1, N2 ∈ L(M) and N1 ⊆ N2, then CM(N1) ⊆ CM(N2) (monotony);

(c3) For every R-morphism f : M → M ′ and N ∈ L(M) we have:
f
(

CM(N)
)

⊆ CM′

(

f(N)
)

(continuity),

where M ∈ R-Mod and L(M) is the lattice of submodules of M ([1, 4, 5]).

The condition (c3) is convenient to extend by C a morphism between the sub-
modules f : N → f(N), where N ⊆ M and f(N) ⊆ M ′, to the morphism between
the C-closures of these submodules ( f )′ : CM(N) → CM′

(

f(N)
)

, which is also a re-
striction of f : M → M ′. Such procedure is often used in the proofs of the following
propositions.

We denote by CO(R) and CO(S) the classes of closure operators of the categories
R-Mod and Mod-S, respectively.

Now we mention an important fact which distinguishes the case of functors
(H1,H2) from the studied in [1] case (H,T ). For the pair (H1,H2) the situa-
tion is completely symmetric, the functors H1 and H2 are of the same type and
they have the similar properties. Therefore the mappings which ensure the transi-
tion from CO(R) to CO(S), and inversely, must be completely similar. We will use
this fact in the further account, studying only the transition CO(R) CO(S), since
the inverse passage can be defined exactly in the same manner, so it possesses the
analogous properties.

2 The mapping (−)∗ : CO(R) → CO(S)

Throughout this work we will study the indicated above situation: a pair
(H1,H2) of adjoint contravariant functors, defined by the bimodule RUS, with the
associated natural transformations Φ and Ψ. Now we will define a mapping from
CO(R) to CO(S) by the following rule.
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Let C ∈ CO(R) and n : N
⊆

−−→ Y be an arbitrary inclusion of Mod-S. We
apply the functor H2 and using the operator C of R-Mod we obtain the following
decomposition of the morphism H2(n):

H2(Y )
H2(n) //

H2(n)
��

κn
C

**U
U

U
U

U
U

U
U

U
H2(N)

Im H2(n)
jn
C

⊆

// CH2(N)

(

Im H2(n)
)

,

⊆ in
C

OO

i.e. H2(n) = inC · jn
C · H2(n), where H2(n) is the restriction of H2(n) to its image,

jn
C and inC are the inclusions, and κn

C = jn
C · H2(n). Applying the functor H1 and

supplementing the diagram by Ψ, we have in Mod-S the following situation:

N
n

⊆

//

ΨN

��

Y

ΨY

��
H1H2(N)

H1(in
C

)

��

H1H2(n) // H1H2(Y )

H1

[

CH2(N)

(

Im H2(n)
)]H1(jn

C
)
//

H1
(κ

n
C
)

55j
j

j
j

j
j

j
j

H1

(

Im H2(n)
)

.

H1

(

H2(n)
)

OO

Definition. For every closure operator C ∈ CO(R) and for every inclusion

n : N
⊆

−−→ Y of Mod-S we define the function C ∗ by the following rule

C ∗

Y
(N)

def
== Ψ−1

Y

(

Im H1(κ
n
C
)
)

. (1)

Proposition 1. The function C ∗ defined by the rule (1) is a closure operator of the

category Mod-S for every closure operator C ∈ CO(R).

Proof. We verify the conditions (c1)− (c3) of the definition of closure operator (see
Section 1).

(c1) We show that N ⊆ C ∗

Y
(N) for every inclusion n : N

⊆
−−→ Y of Mod-S. By

naturality of Ψ we have ΨY · n = H1H2(n) · ΨN , therefore:

ΨY (N) = Im (ΨY · n) = Im
(

H1H2(n) · ΨN

)

= Im
(

H1(κ
n
C
) · H1(i

n
C
) · ΨN

)

⊆ Im H1(κ
n
C
).

Hence:

N ⊆ N + Ker ΨY = Ψ−1
Y

(

ΨY (N)
)

⊆ Ψ−1
Y

(

Im H1(κ
n
C
)
) def

== C ∗

Y
(N).
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(c2) We prove the monotony of C ∗: N1 ⊆ N2 ⇒ C ∗

Y
(N1) ⊆ C ∗

Y
(N2). Let

N1, N2 ∈ L(Y ) and N1 ⊆ N2. We denote the corresponding inclusions as follows:

n1 : N1
⊆

−−→ Y, n2 : N2
⊆

−−→ Y, i : N1
⊆

−−→ N2.

We apply the functor H2 and consider the decompositions by C of the morphisms
H2(n1) and H2(n2) in R-Mod:

H2(Y )

κ
n1
C

77P
S

U
X Z ] _ a d f

i
k

n

H2(n1)

$$H2(n1)// Im H2(n1)
j
n1
C

⊆

// CH2(N1)

(

Im H2(n1)
) i

n1
C

⊆

// H2(N1)

H2(Y )

κ
n2
C

$$r
o

k
h

e b _ \ Y V
S

O
L

H2(n2)

33
H2(n2) // Im H2(n2)

(H2(i))′

OO�
�

�

�

�

�

�

�

�

j
n2
C

⊆

// CH2(N2)

(

Im H2(n2)
)

(H2(i))′′

OO�
�

�

�

�

�

�

�

�

i
n2
C

⊆

// H2(N2).

H2(i)

OO

In this diagram H2(i) defines the morphism
(

H2(i)
)

′

, which implies by C the

morphism
(

H2(i)
)

′′

such that the completed diagram is commutative.

Now applying H1 we obtain in Mod-S the situation:

H1H2(N1)

H1H2(n1)

��
H1H2(i)

��

H1(i
n1
C

)
// CH2(N1)

(

Im H2(n1)
)

H
1 (κ n

1
C )

((R
R

R
R

R
R

R

H1[(H2(i))′′]

���
�

�

�

�

�

�

H1H2(Y ) Y.
ΨYoo

H1H2(N2)

H1H2(n2)

AA

H1(i
n2
C

)
// CH2(N2)

(

Im H2(n2)
)

H1
(κ

n2
C

)
66l

l
l

l
l

l
l

From the commutativity of this diagram it follows that Im H1(κ
n1
C ) ⊆ Im H1(κ

n2
C ),

therefore Ψ−1
Y

(

Im H1(κ
n1
C )

)

⊆ Ψ−1
Y

(

Im H1(κ
n2
C )

)

. By definition this means that
C∗

Y
(N1) ⊆ C∗

Y
(N2), i.e. the function C∗ is monotone.
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(c3) Now we verify the continuity of the function C∗, i.e. the property
f
(

C∗

Y
(N)

)

⊆ C∗

Y ′

(

f(N)
)

for every morphism f : Y → Y ′ of Mod-S. Let

n : N
⊆

−−→ Y be an arbitrary inclusion of Mod-S. Denote by n′ the inclusion

f(N)
⊆

−−→ Y ′, i.e. we have in Mod-S the situation:

f(N)
n′

⊆

// Y ′

N

f̄

OO

n

⊆

// Y,

f

OO

where f̄ is the restriction of f to the submodule N .

Applying H2 we obtain in R-Mod the diagram:

H2(Y
′)

H2(n′) //

H2(f)

��

H2

(

f(N)
)

H2(f̄)
��

H2(Y )
H2(n) // H2(N).

Now we consider the decompositions by C of the morphisms H2(n
′) and H2(n),

supplementing the previous diagram as follows:

H2(Y
′)

H2(n′)

''

κn′

C

44U
W X Z \ ] _ a b d f g

i

H2(n′)//

H2(f)

��

ImH2(n
′)

jn′

C

⊆

//

(H2(f))′

���
�

�

�

�

�
CH2(f(N))(ImH2(n

′))

(H2(f))′′

���
�

�

�

�

�

in′

C

⊆

// H2

(

f(N)
)

H2(f̄)

��
H2(Y )

H2(n)

44

κn
C

((k
i

g e c a _ ] [ Y W
U

S
H2(n)// ImH2(n)

jn
C

⊆

// CH2(N)

(

ImH2(n)
) in

C

⊆

// H2(N).

Here H2(f) implies the morphism
(

H2(f)
)

′

, with the help of which and by C we

obtain the morphism
(

H2(f)
)

′′

. Applying H1 we have in Mod-S the following com-
mutative diagram:

H1H2

(

f(N)
)

H1H2(n′)

''H1(in′

C )// H1[CH2(f(N))

(

ImH2(n
′)

)

]
H1(κn′

C )// H1H2(Y
′) Y ′

Ψ
Y ′oo

H1H2(N)

H1H2(f̄)

OO

H1H2(n)

44
H1(in

C ) // H1[CH2(N)

(

ImH2(n)
)

]

H1[(H2(f))′′]

OO�
�

�

H1(κn
C) // H1H2(Y )

H1H2(f)

OO

Y.

f

OO

ΨYoo
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Now it is obvious that

H1H2(f)
(

Im H1(κ
n
C
)
)

= Im [H1H2(f) · H1(κ
n
C
)] ⊆ Im H1(κ

n′

C
).

Since ΨY

[

Ψ−1
Y

(

Im H1(κ
n
C)

)]

= Im H1(κ
n
C) ∩ Im ΨY ⊆ Im H1(κ

n
C), we obtain:

H1H2(f)
[

ΨY

(

Ψ−1
Y

(Im H1(κ
n
C
))

)]

⊆ H1H2(f)
[

Im H1(κ
n
C
)
]

⊆ Im H1(κ
n′

C
).

Using once again the naturality of Ψ:

ΨY ′ · f = H1H2(f) · ΨY ,

and replacing the morphism H1H2(f) · ΨY in the previous relation, we obtain:

(ΨY ′ · f)
[

Ψ−1
Y

(

Im H1(κ
n
C)

)]

⊆ Im H1(κ
n′

C ).

This means that f
[

Ψ−1
Y

(

Im H1(κ
n
C)

)]

⊆ Ψ−1
Y ′

(

Im H1(κ
n′

C )
)

, therefore by definition
of C ∗ we have f

(

C ∗

Y (N)
)

⊆ C ∗

Y ′

(

f(N)
)

.

By the same method the inverse mapping (−)∗ : CO(S) → CO(R) can be defined,
changing the positions of the functors H1 and H2, and replacing Ψ by Φ. The
total similarity of the construction delivers us from the necessity to define and prove
the dual mapping.

3 The “star” mapping in particular cases

We continue the study of the adjoint situation (H1,H2) and now we will verify
the effect of the defined above mapping C  C ∗ in the cases of extreme (trivial)
closure operators of the classes CO(R) and CO(S).

1. Let C = R, where R is the greatest closure operator of CO(R), i.e.
CX(M) = X for every inclusion M ⊆ X of R-Mod. In this case for every inclusion

n : N
⊆

−−→ Y of Mod-S we have the following decomposition of H2(n) by C in
R-Mod:

H2(Y )
H2(n) //

H2(n)∼=
��

κn
C

++WWWWWWWWWWW H2(N)

Im H2(n)
jn
C

⊆

// CH2(N)

(

Im H2(n)
)

.

in
C

OO

Applying H1 and supplementing the diagram, we obtain in Mod-S:

N
n

⊆

//

ΨN

��

Y

ΨY

��
H1H2(N)

H1(in
C

)

��

H1H2(n) // H1H2(Y )

H1

[

CH2(N)

(

Im H2(n)
)] H1(jn

C
)

//

H1
(κ

n
C
)

33hh
hhhhh

hhh

H1

(

Im H2(n)
)

.

H1

(

H2(n)
)

OO
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So in the case C = R we have H1(κ
n
C
) = H1H2(n) and by definition C ∗

Y
(N) =

Ψ−1
Y

(

Im H1H2(n)
)

. We denote by Dmin the closure operator of Mod-S defined by
the rule:

(Dmin)Y (N)
def
== Ψ−1

Y

(

Im H1H2(n)
)

for every N ⊆ Y . By the previous remarks it follows that ( R)∗ = Dmin. Since in
general case (for every C ∈ CO(R)) we have Im H1H2(n) ⊆ Im H1(κ

n
C
), it is clear

that Dmin is the least closure operator of the form C ∗ for some C ∈ CO(R).

2. Let C = R, where R is the least closure operator of R-Mod, i.e. CX(M) =
M for every M ⊆ X. Following the construction of C ∗, we consider an inclusion

n : N
⊆

−−→ Y of Mod-S and the decomposition by C of H2(n) in R-Mod:

H2(Y )
H2(n) //

H2(n)
��

κn
C

++WWWWWWWWWWW H2(N)

Im H2(n)
jn
C

⊆

// CH2(N)

(

Im H2(n)
)

.
⊆ inC

OO

Returning in Mod-S by H1, we obtain:

N
n

⊆

//

ΨN

��

Y

ΨY

��
H1H2(N)

H1(inC)

��

H1H2(n) // H1H2(Y )

H1

[

CH2(N)

(

Im H2(n)
)] H1(jn

C)
//

H1
(κ

n
C
)

33hhhhh
hhhh

h

H1

(

Im H2(n)
)

.

H1

(

H2(n)
)

OO

Therefore in the considered case H1(κ
n
C
) = H1

(

H2(n)
)

and so by definition

C ∗

Y (N) = Ψ−1
Y

(

Im H1

(

H2(n)
))

. We denote by Dmax the closure operator of Mod-S
defined as follows:

(Dmax)Y (N)
def
== Ψ−1

Y

(

Im H1

(

H2(n)
))

.

Now by the facts mentioned above we have ( R)∗ = Dmax. Since in general case the
relation Im H1(κ

n
C
) ⊆ Im H1

(

H2(n)
)

is true, it is obvious that Dmax is the greatest

closure operator of Mod-S of the form C ∗, where C ∈ CO(R).
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Totalizing the remarks exposed above, now we can show the general situation on
the images of the trivial closure operators:

CO(R)
(−)∗ // CO(S)

(−)∗
oo

Proposition 2. ( R)∗ = Dmin, ( R)∗ = Dmax;

( S)∗ = Cmin, ( S)∗ = Cmax. �

4 The “star” mapping and order relations

In this section we will study the behaviour of the mapping C  C ∗ relative to the
order relations in the classes CO(R) and CO(S). By definition for C,D ∈ CO(R):

C ≤ D ⇔ CX(M) ⊆ DX(M)

for every M ⊆ X of R-Mod.

Proposition 3. The mapping C  C ∗ is antimonotone, i.e. it converts the order

relations: C ≤ D ⇒ C ∗ ≥ D∗.

Proof. Let C,D ∈ CO(R) and C ≤ D. For every inclusion n : N
⊆

−−→ Y of Mod-S
we have in R-Mod the following decompositions of H2(n) by C and D:

CH2(N)

(

Im H2(n)
)

in
C

⊆

((PPPPPPPPPPPP

⊇ l

���
�

�

�

�

�

�

H2(Y )
H2(n)//

κ
n
C

00

p
o

m
k

j
h

g f d c

κn
D

..

N
P

Q
S

T
V

W X Z [

Im H2(n)

j
n
C

⊆

66mmmmmmmmmmmmm

j n
D

⊆

((QQQQQQQQQQQQQ
H2(N).

DH2(N)

(

Im H2(n)
)

i
n
D

⊆

66nnnnnnnnnnnn
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From the relation C ≤ D the inclusion l follows and applying H1 we obtain in
Mod-S the situation:

H1[CH2(N)

(

Im H2(n)
)

]
H

1 (κn
C )

))R
R

R
R

R
R

R

H1H2(N)
H1H2(n) //

H1
(i
n
C
)

55kkkkkkkkkkkkkk

H
1 (in

D )

))SSSSSSSSSSSSSS
H1H2(Y ) Y.

ΨYoo

H1[DH2(N)

(

Im H2(n)
)

]

H1
(κ

n
D
) 55l

l
l

l
l

l
l

H1(l)

OO�
�

�

�

�

�

�

Since this diagram is commutative, we have the relation Im H1(κ
n
D)⊆Im H1(κ

n
C),

therefore Ψ−1
Y

(

Im H1(κ
n
D)

)

⊆ Ψ−1
Y

(

Im H1(κ
n
C)

)

. By definition this means that
D∗

Y (N) ⊆ C ∗

Y (N) for every N ⊆ Y , i.e. D ∗ ≤ C ∗.

5 The “star” mapping and the product of operators

One of the principal operations in the class of closure operators is the multi-
plication: if C,D ∈ CO(R), then the product C · D is defined by the rule (C ·

D)X(M)
def
== CX

(

DX(M)
)

for every M ⊆ X of R-Mod. In continuation we will
verify the concordance of the mapping C  C ∗ with this operation.

Proposition 4. For every closure operators C,D ∈ CO(R) the relation (C ·D)∗ ≤
C ∗ · D∗ is true.

Proof. Let C,D ∈ CO(R) and n : N
⊆

−−→ Y be an inclusion of Mod-S. Firstly
we calculate the left side of indicated relation. We follow the construction of “star”
mapping for the operator C · D. In R-Mod we have the decomposition of H2(n):

H2(Y )
H2(n) //

H2(n)
��

κn
C·D

++VVVVVVVVVVV H2(N)

Im H2(n)
jn
C·D

⊆

// (C ·D)H2(N)

(

Im H2(n)
)

= CH2(N)

(

DH2(N)

(

Im H2(n)
))

.

⊆ in
C·D

OO

By H2 we obtain in R-Mod the situation:

N
n

⊆

//

ΨN

��

Y

ΨY

��
H1H2(N)

H1(in
C·D

)

��

H1H2(n) // H1H2(Y )

H1

[

(C ·D)H2(N)

(

Im H2(n)
)]H1(jn

C·D
)
//

H1
(κ

n
C·D

)
44i

i
i

i
i

i
i

i
i

H1

(

Im H2(n)
)

.

H1

(

H2(n)
)

OO
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By definition we have: (C · D)∗
Y
(N)

def
== Ψ−1

Y

(

Im H1(κ
n
C·D

)
)

.

Passing to the right side of the relation of proposition, now we will show the

submodule D∗

Y (N) for n : N
⊆

−−→ Y . In R-Mod we have the decomposition of
H2(n) by D:

H2(Y )
H2(n) //

H2(n)
��

κn
D

**U
U

U
U

U
U

U
U

U
H2(N)

Im H2(n)
jn
D

⊆

// DH2(N)

(

Im H2(n)
)

.

⊆ in
D

OO

Using H1 we obtain in Mod-S:

N
n

⊆

//

ΨN

��

Y

ΨY

��
H1H2(N)

H1(in
D

)

��

H1H2(n) // H1H2(Y )

H1

[

DH2(N)

(

Im H2(n)
)]H1(jn

D
)
//

H1
(κ

n
D

)
55j

j
j

j
j

j
j

j

H1

(

Im H2(n)
)

.

H1

(

H2(n)
)

OO

By definition we have: D∗

Y (N)
def
== Ψ−1

Y

(

Im H1(κ
n
D)

)

.

Now we consider the inclusions:

N
n

⊆

55
s

⊆

// D∗

Y
(N)

l

⊆

// Y,

where l · s = n. To obtain the submodule C ∗

Y

(

D∗

Y
(N)

)

we repeat the construction

of definition, using the inclusion l : D∗

Y (N)
⊆

−−→ Y and the operator C. In R-Mod
we have the decomposition of H2(l) by C:

H2(Y )
H2(l) //

H2(l)

��

κl
C

++WWWWWWWWWWWW H2

(

D∗

Y (N)
)

Im H2(l)
jl
C

⊆

// CH2(D∗
Y

(N))

(

Im H2(l)
)

.

⊆ il
C

OO
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Applying H1 we obtain in Mod-S the situation:

N

⊇ s

��

n

⊆

**UUUUUUUUUUUUUUUUUUUUUUUU

D∗

Y (N)
l

⊆

//

ΨD∗
Y

(N)

��

Y

ΨY

��
H1H2

(

D∗

Y
(N)

)

H1(ilC)
��

H1H2(l) // H1H2(Y )

H1

[

CH2(D∗
Y

(N))

(

Im H2(l)
)]H1(jl

C)
//

H1
(κ

l
C
)

44j
j

j
j

j
j

j
j

H1

(

Im H2(l)
)

.

H1

(

H2(l)
)

OO

In this case by definition we have: C ∗

Y

(

D∗

Y
(N)

) def
== Ψ−1

Y

(

Im H1(κ
l
C
)
)

.

To establish the relation between (C ·D)∗Y (N) and C ∗

Y

(

D∗

Y (N)
)

we will utilize
the equality l · s = n, which implies in R-Mod the situation:

DH2(N)

(

ImH2(n)
)

⊆

%%KKKKKKKKKKKKKKKKKKKKK

H2(Y )

H2(n)

((

κn
C·D

33V
X Y [ \ ^ _ ` b c e f

H2(n) // ImH2(n)

⊆

OO�
�

�

�

�

�

jn
C·D

⊆

// (C·D)H2(N)

(

ImH2(n)
) in

C·D

⊆

// H2(N)

H2(Y )

H2(l)

33

κl
C

))j
h

g e c a _ ] [ Y W
V

T
H2(l) // ImH2(l)

(H2(s))′

OO�
�

�

�

�

�

jl
C

⊆

// CH2(D∗
Y

(N))

(

ImH2(l)
)

(H2(s))′′

OO�
�

�

�

�

�

il
C

⊆

// H2

(

D∗
Y (N)

)

.

H2(s)

OO

Here H2(s) implies the morphism:

(H2(s))
′ : Im H2(l) −→ Im H2(n)

⊆
−−→ DH2(N)

(

Im H2(n)
)

,

which by the operator C can be extended to the morphism
(

H2(s)
)

′′

such that

κn
C·D =

(

H2(s)
)

′′

· κl
C . Therefore in Mod-S we have the diagram:

H1H2(N)

H1H2(s)

��

H1(in
C·D) // H1

[

(C · D)H2(N)

(

ImH2(n)
)]

H
1 (κn

C·D )

))S
S

S
S

S
S

S

H1[(H2(s))′′]

���
�

�

�

�

�

�

H1H2(Y ) Y,
ΨYoo

H1H2

(

D∗
Y (N)

) H1(il
C) // H1

[

CH2(D∗
Y

(N))

(

ImH2(l)
)]

H1
(κ

l
C
)

55k
k

k
k

k
k

k
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where H1(κ
n
C·D

) = H1(κ
l
C
) · H1[(H2(s))

′′]. Hence Im H1(κ
n
C·D

) ⊆ Im H1(κ
l
C
), and

so Ψ−1
Y

(

Im H1(κ
n
C·D)

)

⊆ Ψ−1
Y

(

Im H1(κ
l
C)

)

.
By definition this means that (C · D)∗Y (N) ⊆ C ∗

Y

(

D∗

Y (N)
)

for every N ⊆ Y ,
i.e. (C · D)∗ ≤ C ∗ · D∗.
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