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Distances on Free Semigroups and Their Applications
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Abstract. In this article it is proved that for any quasimetric d on a set X with
a base-point pX there exists a maximal invariant extension ρ̂ on the free monoid
F a(X,V) in a non-Burnside quasi-variety V of topological monoids (Theorem 6.1).
This fact permits to prove that for any non-Burnside quasi-variety V of topological
monoids and any T0-space X the free topological monoid F (X,V) exists and is abstract
free (Theorem 8.1). Corollary 10.2 affirms that F (X,V), where V is a non-trivial
complete non-Burnside quasi-variety of topological monoids, is a topological digital
space if and only if X is a topological digital space.
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1 Introduction

By a space we understand a topological T0-space X with a base-point pX . We use
the terminology from [19]. Let N = {1, 2, ...}, ω = {0, 1, 2, ...} and Z = {0,±1,±2, ...}
be the discrete semigroups with the additive operation {+}. By clXH we denote
the closure of a set H in a space X. |A| is the cardinality of a set A.

A topological semigroup is a semigroup (G, ·) endowed with a topology such that
the multiplication · : G × G −→ G is jointly continuous. A monoid is a simigroup
with identity (unity).

If a group G with topology is a topological semigroup, then G is called a
paratopological group [6].

In this paper we study properties of free topological monoids in a given quasi-
variety of topological monoids V. We apply the method of pseudo-quasimetrics. In
particular, we prove that in any non-Burnside quasi-variety V of topological monoids
the following assertions are true:

– any continuous pseudo-quasimetric d on a space X admits an extension d̂ on the
free monoid F a(X,V) such that d̂ is the invariant pseudo-quasimetric on F a(X,V);

– any family of invariant pseudo-quasimetrics on a monoid G generates a topology
relative to which G is a topological monoid;

– if the family P of pseudo-quasimetrics is additive and generates a T0-topology
on a set X, then the family {d̂ : d ∈ P} generate on F a(X,V) a topology relatively
to which F a(X,V) is a topological monoid and a T0-space;
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– the T0-space X is a subspace in the free topological monoid F (X,V) and pX = e
is the unity of the monoid F (X,V).

The above results are connected with two problems posed by A. I. Malcev. Sup-
pose that V is a class of topological universal algebras of the given signature with
the following properties:

– there exists a topological algebra G ∈ V which contains a non-proper open
subset U (∅ 6= U 6= G);

– if (G,T0) ∈ V and T is a T0-topology on G such that (G,T ) is a topological
algebra, then (G,T ) ∈ V;

– if H is a subalgebra of a topological algebra G ∈ V, then H ∈ V;

– the topological product of algebras from V is a topological algebra from V.

In [10, 33] was proved: For each non-empty topological space X there exist two
topological E-algebras F (X,V) ∈ V and F o(X,V) ∈ V and a continuous mapping
vX :−→ F o(X,V) with the following properties:

1. The set vX(X) generates the algebra F o(X,V).

2. If g : X −→ G ∈ V) is a continuous mapping, then there exists a unique
continuous homomorphism ḡ : F o(X,V) −→ G such that g = ḡ ◦ vX .

3. X is a subset of the E-algebra F (X,V) and the set X generates the algebra
F (X,V).

4. If g : X −→ G ∈ V) is a mapping, then there exists a unique continuous
homomorphism ḡ : F o(X,V) −→ G such that g = ḡ|X.

5. There exists a unique continuous homomorphism wX : F (X,V) −→ F o(X,V)
such that vX = wX |X.

The algebra F (X,V) is called the free E-algebra on the space X in the class V
and the pair (F o(X,V), vX ) is called the topological free E-algebra on the space X
in the class V. For any space X the free objects are unique.

A. I. Malcev [33] has posed the following problems:

First Malcev’s Problem: Under which conditions the mapping vX is an em-
bedding?

Second Malcev’s Problem: Under which conditions the homomorphism wX

is a continuous isomorphism?

For complete regular spaces X the Malcev’s Problems were solved affirmatively
by S. Swierczkowski [44], in the case of discrete signature E, end by M. M. Choban
and S. S. Dumitrashcu for any signature [10,18].

The theory of topological semigroups has multiple trends: compact semi-
topological semigroups; compact semi-lattices; right-topological semigroups; Lie the-
ory of semi-groups; free topological semigroups; weakly almost-periodic functions on
a topological semigroup (a right-topological semigroup); topological dynamics; au-
tomata theory; etc (see [24,34,35,43,45]).

In [45] A. D. Wallace brings to the attention the following problems:

1W. Which algebraic structures are admitted by what spaces?

2W. What compact connected Hausdorff spaces admit a continuous associative
multiplication with identity?



94 M. M.CHOBAN, I.A.BUDANAEV

In connection with Problems 1W and 2W, W. D. Wallace [45] mentions the
following remarkable theorem of E. Cartan: If an n-sphere is a topological group,
then n = 0, 1 or 3. This fact was deeply improved by L. M. James [16,25,26]: If an
n-sphere is a topological groupoid with unit, then n ∈ {0, 1, 3, 7}.

2 Distances on spaces

Let X be a non-empty set and d : X × X → R be a mapping such that for all
x, y ∈ X we have:

(im) d(x, y) ≥ 0;

(iim) d(x, x) = 0.

Then (X, d) is called a pseudo-distance space and d is called a pseudo-distance on
X.

If

(iiim) d(x, y) + d(y, x) = 0 if and only if x = y,

then (X, d) is called a distance space and d is called a distance on X.

If

(ivm) d(x, y) = 0 if and only if x = y,

then (X, d) is called a strong distance space and d is called a strong distance on X.

General problems of the distance spaces were studied in [3,5,7,9,20,36–41]. The
notion of a distance space is more general than the notion of o-metric spaces in sense
of A. V. Arhangel’skii [5] and S. I. Nedev [36]. A distance d is an o-metric if from
d(x, y) = 0 it follows that x = y, i. e. d is a strong distance. These notions coincide
in the class of T1-spaces.

Let d be a pseudo-distance on X and B(x, d, r) = {y ∈ X : d(x, y) < r} be the
ball with the center x and radius r > 0. The set U ⊂ X is called d-open if for any
x ∈ U there exists r > 0 such that B(x, d, r) ⊂ U . The family T (d) of all d-open
subsets is the topology on X generated by d. A pseudo-distance space is a sequential
space, i.e. a set B ⊆ X is closed if and only if together with any sequence it contains
all its limits [19].

Let (X, d) be a pseudo-distance space, {xn : n ∈ N} be a sequence in X and
x ∈ X. We say that the sequence {xn : n ∈ N}:

1) is convergent to x if and only if limn→∞d(x, xn) = 0. We denote this by
xn → x or x = limn→∞xn (really, we may denote x ∈ limn→∞xn);

2) is convergent if it converges to some point in X;

3) is Cauchy or fundamental if limn,m→∞d(xn, xm) = 0.

A pseudo-distance space (X, d) is complete if every Cauchy sequence in X con-
verges to some point in X.

Lemma 2.1. Let (X, d) and (Y, ρ) be pseudo-distance spaces, ϕ : X −→ Y be a
mapping and for each point x ∈ X there exist two positive numbers c(x), k(x) > 0
such that ρ(ϕ(x), ϕ(y)) ≤ k(x) · d(x, y) provided y ∈ X and d(x, y) ≤ c(x). Then the
mapping ϕ is continuous.
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Proof. Let {xn ∈ X : n ∈ N} be a convergent to x ∈ X sequence. Then
limn→∞d(x, xn) = 0, limn→∞d(ϕ(x), ϕ(xn)) = 0 and limn→∞ϕ(xn) = ϕ(x). Hence
the mapping ϕ is continuous.

Let X be a non-empty set and d be a pseudo-distance on X. Then:

– (X, d) is called a pseudo-symmetric space and d is called a pseudo-symmetric
on X if for all x, y ∈ X we have

(vm) d(x, y) = d(y, x);

– (X, d) is called a symmetric space and d is called a symmetric on X if d is a
distance and a pseudo-symmetric;

– (X, d) is called a pseudo-quasimetric space and d is called a pseudo-quasimetric
on X if for all x, y, z ∈ X we have

(vim) d(x, z) ≤ d(x, y) + d(y, z);

– (X, d) is called a quasimetric space and d is called a quasimetric on X if d is a
distance and a pseudo-quasimetric;

– (X, d) is called a pseudo-metric space and d is called a pseudo-metric if d is a
pseudo-symmetric and a pseudo-quasimetric simultaneously;

– (X, d) is called a metric space and d is called a metric if d is a symmetric and
a quasimetric simultaneously.

Let G be a semigroup and d be a pseudo-distance on G. The pseudo-distance d
is called:

– left (respectively, right) invariant if d(xa, xb) ≤ d(a, b) (respectively, d(ax, bx) ≤
d(a, b)) for all x, a, b ∈ G;

– invariant if it simultaneously is both left and right invariant;

– left (respectively, right) strongly invariant if d(xa, xb) = d(a, b) (respectively,
d(ax, bx) = d(a, b)) for all x, a, b ∈ G;

– strongly invariant if d(xa, xb) = d(a, b) and d(ax, bx) = d(a, b) for all x, a, b ∈ G;

– stable if d(xy, uv) ≤ d(x, u) + d(y, v) for all x, y, u, v ∈ G (see [11,13]).

Proposition 2.1. Let d be a pseudo-quasimetric on a semigroup G. The next
assertions are equivalent:

1. d is invariant.

2. d is stable.

Proof. Is obvious.

Lemma 2.2. Let d be a stable pseudo-quasimetric on a semigroup G. Then
(G,T (d)) is a topological semigroup.

Proof. In this case the balls B(x, d, r) are d-open sets. Fix x, y ∈ G and ε > 0. We
consider that 0 < 2δ ≤ ε. Then B(x, d, δ) · B(y, d, δ) ⊆ B(xy, d, ε). The proof is
complete.

Example 2.1. Let R be the group of reals and R
+ be the semigroup of non-negative

reals. Consider on R the pseudo-quasimetric d(x, y) = min{1, y − x} if x ≤ y and
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d(x, y) = 1 if x > y. Denote by S the monoid R with the topology T (d) and by S+

the monoid R
+ with the topology T (d). Then:

– S and S+ are topological monoids;

– the topology T (d) is generated by the open base consisting of the sets [a, b) =
{x ∈ R : a ≤ x < b}, where a, b ∈ R and a < b;

– the space S is the Sorgenfrey line [4, 19];

– the spaces S and S+ are homeomorphic;

– S is a hereditarily Lindelöf first-countable hereditarily separable non-metrizable
space;

– the space S does not admit a structure of a topological group.

Example 2.2. Let ≺ be a linear ordering on a monoid G. We put dl(x, x) = dr(x, x)
= 0, dl(x, y) = dr(y, x) = 0 if x ≺ y and dl(x, y) = dr(y, x) = 1 if y ≺ x. Then dl

and dr are quasimetrics. We say that dl and dr are the quasimetrics generated by
the linear ordering ≺. Assume now that e � x for any x ∈ G, where e is unity in G,
and from x � u, y � v it follows that xy � uv. Then:

– the topologies T (dl) and T (dr) are T0-topologies on G;

– T (dl) and T (dr) are not T1-topologies;

– the quasimetrics dl and dr are stable on G;

– (G,T (dl)) and (G,T (dr)) are topological monoids.

3 Free topological monoids

A class V of topological monoids is called a quasi-variety of monoids if:

(F1) the class V is multiplicative;

(F2) if G ∈ V and A is a submonoid of G, then A ∈ V;

(F3) every space G ∈ V is a T0-space.

A class V of topological monoids is called a complete quasi-variety of monoids if
it is a quasi-variety with the next property:

(F4) if G ∈ V and T is a T0-topology on G such that (G,T ) is a topological
monoid, then (G,T ) ∈ V too.

A quasi-variety V of topological monoids is non-trivial if |G| ≥ 2 for some G ∈ V.

Let X be a non-empty topological space and V be a quasi-variety of topological
monoids. In the space X the basic point pX ∈ X is fixed, i.e. any space is pointed.

A free monoid of a space X in a class V is a topological monoid F (X,V) with
the properties:

– X ⊆ F (X,V) ∈ V and pX is the unity of F (X,V);

– the set X generates the monoid F (X,V);

– for any continuous mapping f : X −→ G ∈ V, where f(pX) = e, there exists a
unique continuous homomorphism f̄ : F (X,V) −→ G such that f = f̄ |X.

An abstract free monoid of a space X in a class V is a topological monoid
F a(X,V) with the properties:

– X is a subset of F a(X,V), F a(X,V) ∈ V and pX is the unity of F a(X,V);

– the set X generates the monoid F a(X,V);
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– for any mapping f : X −→ G ∈ V, where f(pX) = e, there exists a unique
continuous homomorphism f̂ : F a(X,V) −→ G such that f = f̂ |X.

In the proof of the next assertion we use the Kakutani’s method [27].

Theorem 3.1. Let V be a non-trivial quasi-variety of topological monoids. Then
for each space X the following assertions are equivalent:

1. There exists G ∈ V such that X is a subspace of G and pX is the neutral
element in G.

2. For the space X there exists the unique free topological monoid F (X,V).

Proof. Implication 2 → 1 is obvious. Assume now that there exists A ∈ V such that
X is a subspace of A and pX is the neutral element in A. Let τ be an infinite cardinal
number and |X| ≤ τ . Denote by V(τ) the collection of all G ∈ V of the cardinality
≤ τ . Since we identify the topologically isomorphic topological monoids, the family
V(τ) is a set. Hence the collection {hµ : X −→ Gµ : µ ∈ M} of all continuous
mappings f : X −→ G ∈ V(τ) with f(pX) = e ∈ G is a set too. Consider the
diagonal product h : X −→ G = Π{Gµ : µ ∈ M}, where h(x) = (hµ(x) : µ ∈ M) ∈ G
for every point x ∈ X. By construction, h(pX) = (eµ ∈ Gµ : µ ∈ M) = e ∈ G and
h is a continuous mapping. Denote by H(X) the submonoid of G generated by the
set Y = h(X) in G. For each η ∈ M consider the projection πη : H(X) −→ Gµ,
where πη(xµ : µ ∈ M) = xη for each point (xµ : µ ∈ M) ∈ H(X). Then hη = πη ◦h.
Each projection πη is a homomorphism.

Since |Y | ≤ |X| ≤ τ , we have |H(X)| ≤ τ and H(X) ∈ V(τ).

For some λ ∈ M we have that Gλ is a submonoid of A and hλ : X −→ Gλ is an
embedding of X in Gλ and eλ = pX is the unity of the monoid Gλ. We have hλ(x)
= x for each x ∈ X. Since hλ = pλ ◦ h is an embedding, h is an embedding too.
Hence, we can assume that X = h(X) = Y is a subspace of H(X) and h(x) = x for
each point x ∈ X.

Fix a continuous mapping f : X −→ G ∈ V, where f(pX) = e ∈ G. There exists
η ∈ M such that Gη is the submonoid of G generated by f(X) and f(x) hη(x) for
each x ∈ X. Then pη(x) = πη(h(x)) = f(x) for each x ∈ X. Since X generated
H(X), the homomorphism f̄ is unique. Thus we can assume that πη = f̄ and H(X)
is the free topological monoid of the space X in the class V. The existence of the
free topological monoid of the space X is proved.

Let F (X,V) and F1(X,V) be two free topological monoids of the space X. There
existtwo continuous homomorphisms h : F1(X,V) −→ F (X,V) and g : F (X,V) −→
F1(X,V) such that h(x) = g(x) = x for each x ∈ X. Consider the homomorphism
ϕ = h ◦ g : F (X,V) −→ F (X,V). That homomorphism is unique and is generated
by the embedding of X in F (X,V). Hence ϕ is the identical mapping and h = g−1.
Thus h and g are topological isomorphisms and the uniqueness of the free topological
monoid of the space X is proved.

Corollary 3.1. Let V be a non-trivial quasi-variety of topological monoids. Then
for each space X there exists the unique abstract free monoid F a(X,V).
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Let V be a non-trivial quasi-variety of topological monoids.
Problem 3.1. Let V be a non-trivial quasi-variety of topological monoids. Under
which conditions for a space X there exists the free topological monoid F (X,V)?

Fix a space X for which there exists the free topological monoid F (X,V). Then
there exists a unique continuous homomorphism πX : F a(X,V) −→ F (X,V) such
that πX(x) = x for each x ∈ X. The monoid F (X,V) is called abstract free if πX is
a continuous isomorphism.
Problem 3.2. Let V be a non-trivial quasi-variety of topological monoids. Under
which conditions for a space X there exists the free topological monoid F (X,V),
which is abstract free?

The Problems 3.1 and 3.2 are important in the theory of universal algebras with
topologies (see [10–13, 17, 33]). These problems for varieties of topological algebras
were posed by A. I. Malcev [33].

We say that a spaceX is zero-dimensional and denote indX = 0 if X has a base
whose elements are open-and-closed [19].

Theorem 3.2. Let V be a non-trivial quasi-variety of topological monoids and there
exists H ∈ V and point b ∈ H such that e 6= b, and E = {e, b} is a discrete subspace
of H. Then for each zero-dimensional space X there exists the unique free topological
monoid F (X,V).

Proof. Let {(Uµ, Vµ) : µM} be a family of open-and-closed subsets of the space X
with a fixed point pX such that:

– X = Uµ ∪ Vµ and Uµ ∩ Vµ = ∅ for each µ ∈ M ;
– if the set U is open in X, x ∈ U and x 6= pX , then there exists µ ∈ M such

that x ∈ Vµ ⊆ U ;
– if the set U is open in X and pX ∈ U , then there exists µ ∈ M such that

pX ∈ Uµ ⊆ U .
We put hµ(Uµ) = {e} and hµ(Vµ) = {b}. Then hµ : X −→ H is a continuous

mapping and the diagonal product h : X −→ HM , where h(x) = (hµ(x) : µ ∈ M)
for each point x ∈ X, is an embedding of X into G = HM and h(pX) is the unity
of G. Theorem 3.1 completes the proof.

The condition of the existence of a topological monoid H with a discrete space
E is essential in the above theorem.

Example 3.1. Let H be the topological monoid ω with the topology {∅,H}∪{Un =
{i ∈ ω : i ≤ n} : n ∈ ω}. The set {0} is open and dense in H. Let V(H) be the
quasi-variety of topological monoids generated by H. Any element of V(H) is a
topological submonoid of the topological monoid HM for some non-empty set M .
In any G ∈ V(H) the unity {e} is a dense subset. We have the following cases:

Case 1. If X is a space with the fixed point pX and the set {pX} is closed in X
(for instance, X is a T1-space), then for X the free topological monoid F (X,V(H))
does not exist.

Case 2. Let X be the space H with the fixed point pX = 0. By virtue of
Theorem 3.1, the free topological monoid F (X,V(H)) of the space X exists.
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Case 3. Let X be the space H with the fixed point pX 6= 0. If f : X −→ H
is a continuous mapping and f(pX) = 0 then f(x) = 0 for each x ≤ pX . Hence the
free topological monoid F (X,V(H)) of the space X =H with the fixed point pX 6= 0
does not exist.

4 Construction of the abstract free monoid

Fix a non-trivial quasi-variety V of topological monoids. Consider a space X
for which we can assume that X ⊆ F a(X,V) as a subset and pX = e is the unity
(neutral element) in F a(X,V). In this case e ∈ X ⊆ F a(X,V). The set A = X \{e}
is called an alphabet. If n ≥ 1 and x1, x2, ..., xn ∈ X, then the symbol x1x2...xn is
called a word of the length n in the alphabet A. The word e is the empty word.
Any word x1x2...xn, where x1, x2, ..., xn ∈ X, represents a unique element x1x2...xn

= x1 · x2 · ... · xn ∈ F a(X,V). A given element b ∈ F a(X,V) is represented by many
words. There exists a word of the minimal length which represents the given element
b. The length n of this word is called the length of the element b and we put l(b) =
n. If the element b is represented by the words x1x2...xn, y1y2...ym of the minimal
length, then n = m and {x1, x2, ..., xn} = {y1, y2, ..., ym}. In this case we say that
the word x1x2...xn is irreducible and that Sup(b) = {x1, x2, ..., xn} is the support
of the element b. If the element b is represented by the words x1x2...xn, y1y2...yn of
the minimal length, then there exists a bijection h : {1, 2, ..., n} −→ {1, 2, ..., n} such
that xi = yh(i) for each i ≤ n. Obviously, Sup(e) = {e} and e 6∈ Sup(b) if b 6= e.
If e ∈ Y ⊆ X, b ∈ F a(X,V) and Sup(b) ⊆ Y , then b ∈ F a(Y,V). In particular,
F a(Y,V) is the submonoid of F a(X,V) generated by the set Y .

For any two elements a, b ∈ F a(Y,V) we put Sup(a, b) = Sup(a) ∪ Sup(b)∪ {e}.
In particular, Sup(a, a) = Sup(a) ∪ {e}.

Remark 4.1. Let b ∈ F a(X,V) and b 6= e. Then x ∈ Sup(b) if and only if x 6= e and
b 6∈ F a(X \ {x},V).

Remark 4.2. Let b = x1x2...xn ∈ F a(X,V). Then we have Sup(b) ⊆ Sup(b, b) ⊆
{e, x1, x2, ..., xn}.

Remark 4.3. If V is the variety of all topological monoids, then any b ∈ F a(X,V)
is represented by some word of the minimal length. If the monoids from V are
commutative and pX , a, b are distinct elements of X, then ab and ba are distinct
words, but ab = ba in F a(Y,V).

5 On the non-Burnside quasi-varieties

A quasi-variety V of topological monoids is called a Burnside quasi-variety if
there exist two minimal numbers p = p(V), q = q(V) ∈ ω such that 0 ≤ q < p and
xp = xq for all x, y ∈ G ∈ V. In this case any G ∈ V is a (p, q)-periodic monoid of
the exponent (p, q). If q = 0, then any monoid G ∈ V is a periodic monoid of the
exponent p and xp = e for each x ∈ G ∈ V.

The trivial quasi-variety is considered Burnside of the exponent (0, 1).
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Example 5.1. Fix 0 ≤ q < p and an element b 6= e. We put b0 = e, b1 = b and
bn+1 = bn · b = b · bn for each n ∈ N. We consider that bp = bq and all elements
{bi : i < p} are distinct. Then G(p,q) = {bn : n ∈ N} = {bi : i < p} is a monoid and
|G(p,q)| = p. Denote by W(p,q) the complete variety of topological monoids generated
by the discrete monoid G(p,q), i.e. is the minimal class of topological monoids with
the properties:

– the class W(p,q) is a complete quasi-variety of topological monoids;
– G(p,q) ∈ W(p,q)

– if f : A → B is a continuous homomorphism of a topological monoid A onto a
a topological monoid B, A ∈ W(p,q) and B is a T0-space, then B ∈ W(p,q).

Then W(p,q) is a variety of topological commutative monoids of the exponent
(p, q).

Example 5.2. Let Wω is the complete quasi-variety generated by the discrete
monoid ω = {0, 1, 2, ...} with the additive operation. The class Wω is a non-Burnside
quasi-variet of commutative topological monoids.

Theorem 5.1. Let V be a non-trivial Burnside quasi-variety of the exponent p ≥ 2.
Then:

1. Each topological monoid G ∈ V is a topological group.
2. If d is a stable pseudo-quasimetric on G ∈ V, then d is a pseudo-metric on G

and d(x, y) = d(y, x) = d(xz, yz) = d(zx, zy) = d(y−1, x−1) ≤ (p − 1)d(y, x) for all
x, y, z,∈ G ∈ V.

3. If p = 2 and d is a stable pseudo-quasimetric on G ∈ V, then d is a pseudo-
metric on G.

Proof. Let x ∈ G ∈ V and p(x) = min{q ∈ N : xq = e}. If p(x) ≥ 2, then xp(x) = e.
Thus we can assume that xp(x)−1 = x−1. Thus G is a group. If d is a stable pseudo-
quasimetric on G, then d(x, y) = d(xz, yz) = d(zx, zy) = d(y−1xx−1, y−1yx−1) =
d(y−1, x−1) for all x, y, z,∈ G. If p = 2, then x = x−1. Assertion 2 is proved.
Assertion 3 follows from Assertion 2.

Let G ∈ V be a paratopological group. A topological group is a paratopological
group with a continuous inverse operation x → x−1. Since the inverse operation
x → xp−1 = x−1 is continuous, Assertion 1 is proved. The proof is complete.

Theorem 5.2. Let V be a non-trivial quasi-variety of topological monoids. Then
the following assertions are equivalent:

1. V is a non-Burnside quasi-variety.
2. On ω there exists a topology T for which (ω, T ) ∈ V.

Proof. Implication 2 → 1 is obvious. Assume that V is a non-Burnside quasi-
variety. Let {(pn, qn) : n ∈ N} is the collection of all pairs (p, q) ∈ ω × ω such that
q < p. For each n ∈ N there exist Gn ∈ V and an ∈ Gn such that all elements
a0

n = e, a1
n, a2

n, ..., apn−1
n are distinct and apn

n = aqn
n . We put G = Π{Gn : n ∈ N} and

a = (an : n ∈ N). Then a ∈ G ∈ V. We put H = {an : n ∈ ω}. Then H ∈ V is a
submonoid of the monoid G. The mapping n → an is a isomorphism of ω onto H.
Implication 1 → 2 and the theorem are proved.
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Corollary 5.1. Let V be a non-Burnside quasi-variety, X be a space, b =
x1x2...xn ∈ F a(X,V), l(b) = m and Sup(b) = {y1, y2, ..., ys}. Then:

1. If b = e, then s = 1, m = 0 and xi = y1 = e for each i ≤ n.

2. Let b 6= e. Then n ≥ m ≥ s ≥ 1 and {y1, y2, ..., ys} ⊆ {x1, x2, ..., xn}
⊆ {e} ∪ {y1, y2, ..., ys}, i.e. for each i ≤ n we have xi ∈ Sup(b, b). Moreover, if A =
{i ≤ n : xi 6= e}, then there exists a mapping h : A −→ {1, 2, ..., s} such that h(A)
= {1, 2, ...,m}, A = {i1, i2, ..., im}, xi = yh(i) for each i ∈ A and x = [xi1xi2 ...xim ]
is an irreducible word.

3. Sup(b) ⊆ {x1, x2, ..., xn} ⊆ Sup(b, b).

Corollary 5.2. Let V be a non-Burnside quasi-variety, X be a space and b =
x1x2...xm = y1, y2, ..., ym ∈ F a(X,V) and xi 6= e for each i ≤ m. Then there
exists a one-to-one mapping h : {1, 2, ...,m} −→ {1, 2, ...,m} such that xi = yh(i) for
each i ≤ m.

Remark 5.1. Assertions of Corollary 5.1 are not true for Burnside quasi-varieties.
Consider the quasi-variety W(0,2) of topological monoids (groups) with the identity
x2 = e. Let X = {e, a, b, c} be a discrete space with four distinct points. Then z =
a = cabeeaecba = bba = acc ∈ F a(X,W(0,2)) and Sup(z) = {a}.

The following theorem solves Problem 3.1 for complete non-Burnside quasi-
varieties of topological monoids.

Theorem 5.3. Let V be a complete non-Burnside quasi-variety of topological
monoids. Then for each T0-space X there exists the free topological monoid F (X,V).

Proof. By virtue of Theorem 5.2 the discrete monoid ω is an element of V. Denote by
ωl the monoid ω with the topology Tl = {∅, ω} ∪ {Vn = {i ∈ ω : i ≤ n} : n ∈ ω} and
by ωr the monoid ω with the topology Tr = {∅, ω}∪{Wn = {i ∈ ω : i ≥ n} : n ∈ ω}.
Obviously, the topological monoids ωl and ωr are elements of V.

Consider a space X with the fixed point pX . Let U be an open subset of the
space X. We construct a topological monoid GU ∈ V with the unity eU and a
continuous mapping hU : X −→ GU such that hU (pX) = eU and U = h−1

U (hU (U)).
For that we consider two cases.

Case 1. pX ∈ U .

In this case we put GU = ωl, hU (U) = {0} and hU (X \ U) = {1}.

Case 2. pX 6∈ U .

In this case we put GU = ωr, hU (U) = {1} and hU (X \ U) = {0}.

Now consider the diagonal product h : X −→ G = Π{GU : U is open subset of
X}, where h(x) = (hU (x) : U is open subset of X) for each x ∈ X. By construction,
G ∈ V, h is an embedding of X in G and h(pX) = e is the neutral element in G.
Theorem 3.1 completes the proof.

The following theorem solves Problem 3.1 for complete non-trivial quasi-varieties
of topological monoids.
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Theorem 5.4. Let V be a complete non-trivial quasi-variety of topological monoids.
Then for each completely regular space X there exists the free topological monoid
F (X,V).

Proof. In [10] it was proved that any topological monoid G ∈ V is a submonoid of
some arcwise connected topological monoid from V. Hence there exists a topological
monoid H ∈ V such that the closed interval [0, 1] is a subspace of H and e = 0 is
the neutral element in H.

Let βX be the Stone-Čech compactification of the given completely regular space
with the fixed point pX . Let {(Uµ, Fµ) : µ ∈ M} be the collection of all pairs (U,F ),
where U is an open subset of the space βX, F is a closed subset of the space βX
and F ⊆ U and pX ∈ F provided pX ∈ U . We construct a topological monoid
Gµ = H ∈ V with the unity eµ and a continuous mapping hµ : X −→ Gµ such that
hµ(pX) = eµ and hµ(Fµ) ∩ hµ(X \ Uµ) = ∅. For that we consider two cases.

Case 1. pX ∈ Uµ.

In this case we fix a continuous mapping h : X −→ [0, 1] ⊆ H = Gµ such that
hµ(Fµ) = {0} and hµ(X \ Uµ) = {1}.

Case 2. pX 6∈ Uµ.

In this case we fix a continuous mapping h : X −→ [0, 1] ⊆ H = Gµ such that
hµ(Fµ) = {1} and hµ(X \ Uµ) = {0}.

Now consider the diagonal product h : X −→ G = Π{Gµ : µ ∈ M}, where
h(x) = (hµ(x) : µ ∈ M) for each x ∈ X. By construction, G ∈ V, h is an embedding
of X in G and h(pX) = e is the neutral element in G. Theorem 3.1 completes the
proof.

The following corollary follows from Theorems 5.1 and 5.3.

Corollary 5.3. Let V be a complete non-trivial Burnside quasi-variety of the expo-
nent p ≥ 2. Then for a space X there exists the free monoid F (X,V) if and only if
the space X is Tychonoff.

Completeness of quasi-variety V is essential in the conditions of the above two
theorems.

Example 5.3. Let H be a discrete monoid and V(H) the quasi-variety of topological
monoids generated by H. Any element of V(H) is a topological submonoid of the
topological monoid HM for some non-empty set M . Hence, for a space X there exists
the free monoid F (X,V) if and only if the space X is Tychonoff and indX = 0.

Example 5.4. Let ωr be the monoid ω with the topology Tr = {∅, ω}∪{Wn = {i ≥
n : n ∈ ω}} and V(ωr) be the quasi-variety of topological monoids generated by ωr.
Any element of V(ωr) is a topological submonoid of the topological monoid ωM

r for
some non-empty set M . For a space X there exists the free monoid F (X,V) if and
only if the space X is a T0-space and the set {pX} is closed in X. Denote by Z an
infinite space with a fixed point pZ and the topology {∅, Z} ∪ {U ⊆ Z : pZ ∈ U}.
The subset {pZ} is open and dense in Z. Moreover, if f : Z −→ ωr is a continuous
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mapping and f(pZ) = 0, then f(Z) = {0}. Thus the free topological monoid for the
space Z in the quasi-variety V(ωr) does not exist.

6 Extension of pseudo-quasimetrics

Lemma 6.1. Let d1, d2 be two pseudo-quasimetrics on a monoid G. Then:

1. d(x, y) = sup{d1(x, y), d2(x, y)} is a pseudo-quasimetric on G.

2. If the pseudo-quasimetrics d1, d2 are invariant on G, then the pseudo-
quasimetric d is invariant on G too.

Proof. Fix x, y, z, v ∈ G. Then d(x, z) = sup{d1(x, z), d2(x, z)} ≤ sup{d1(x, y) +
d1(y, z), d2(x, y) + d2(y, z)} ≤ sup{d1(x, y), d2(x, y)} + sup{d1(y, z), d2(y, z)} =
d(x, y) + d(x, z). Hence d is a pseudo-quasimetric on G.

Assume that the pseudo-quasimetrics d1, d2 are invariant on G. We observe that
d(zxv, zyv) = sup{d1(zxv, zyv), d2(zxv, zyv)} ≤ sup{d1(x, y), d2(x, y)} = d(x, y).
Thus the pseudo-quasimetric d is invariant too.

Fix a non-trivial complete quasi-variety V of topological monoids. Consider a
non-empty set X with a fixed point e ∈ X. We assume that e ∈ X ⊆ F a(X,V)
and e is the identity of the monoid F a(X,V). Let ρ be a pseudo-quasimetric on
the set X. Denote by Q(ρ) the set of all stable pseudo-quasimetrics d on F a(X,V)
for which d(x, y) ≤ ρ(x, y) for all x, y ∈ X. The set Q(ρ) is non-empty, since it
contains the trivial pseudo-quasimetric d(x, y) = 0 for all x, y ∈ F a(X,V). For all
a, b ∈ F a(X,V) we put ρ̂(a, b) = sup{d(a, b) : d ∈ Q(ρ)}. We say that ρ̂ is the
maximal stable extension of ρ on F a(X,V).

Property 6.1. ρ̂ ∈ Q(ρ).

Proof. Obviously d(x, y) ≤ ρ(x, y) for x, y ∈ X. Let d ∈ Q(ρ). Fix two points
a, b ∈ F a(X,V). There exists n ∈ N and x1, y1, x2, y2, ..., xn, yn ∈ X such that a =
x1x2...xn and b = y1y2...yn. Then d(a, b) ≤ Σ{d(xi, yi) : i ≤ n} ≤ Σ{ρ(xi, yi) : i ≤
n}. Hence ρ(a, b) ≤ sup{Σ{d(xi, yi) : i ≤ n} : d ∈ Q(ρ)} ≤ Σ{ρ(xi, yi) : i ≤ n} <
+∞. Therefore, by virtue of Lemma 6.1, ρ̂ is a stable pseudo-quasimetric from the
set Q(ρ).

For any r > 0 we put dr(a, a) = 0 and dr(a, b) = r for all distinct points
a, b ∈ F a(X,V). Then dr is an invariant metric on F a(X,V).

Property 6.2. Let r > 0 and ρ(x, y) ≥ r for all distinct points x, y ∈ X. Then
ρ̂ is a quasimetric on F a(X,V), dr ∈ Q(ρ) and ρ̂(a, b) ≥ r for all distinct points
a, b ∈ F a(X,V).

Proof. It is obvious.

For any a, b ∈ F a(X,V) we put ρ̄ = inf{Σ{ρ(xi, yi) : i ≤ n} : n ∈ N, x1, y1,
x2, y2, ..., xn, yn ∈ X,a = x1x2...xn, b = y1y2...yn} and ρ∗(a, b) = inf{ρ̄(a, z1) +... +
ρ̄(zi, zi+1) + ... + ρ̄(zn, b) : n ∈ N, z1, z2, ..., zn ∈ F a(X,V)}.
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Property 6.3. ρ̄ is a pseudo-distance on F a(X,V) and ρ̄(x, y) ≤ ρ(x, y) for all
x, y ∈ X.

Proof. Obviously, ρ̄ is a pseudo-distance. If a, b ∈ X, then a = ae = a, b = be =
b and ρ̄(a, b) = inf{Σ{ρ(xi, yi) : i ≤ n} : n ∈ N, x1, y1, x2, y2, ..., xn, yn ∈ X,a =
x1x2...xn, b = y1y2...yn} ≤ ρ(a, b).

Property 6.4. Let V be a non-Burnside quasi-variety. Then ρ̄(x, y) = ρ(x, y) for
all x, y ∈ X.

Proof. Assume that n ∈ N, x1, y1, x2, y2, ..., xn, yn ∈ X, x = x1x2...xn and y =
y1y2...yn. There exist i, j ≤ n for which x = xi and y = yj. We have two possible
cases.

Case 1. i = j.
In this case, as was mention in Corollary 5.1, xk = yk = e for each k 6= i. Thus

Σ{ρ(xi, yi) : i ≤ n} = ρ(xi, yi) = ρ(x, y).

Case 2. i 6= j.
In this case, as was mention in Corollary 5.1, we have xj = yi = e. Hence

Σ{ρ(xi, yi) : i ≤ n} ≥ ρ(xi, yi) + ρ(xj, yj) = ρ(x, e) + ρ(e, y) ≥ ρ(x, y). The proof is
complete.

Property 6.5. The pseudo-distance ρ̄ is stable on F a(X,V).

Proof. Fix a, b, c ∈ F a(X,V) and ε > 0. Let c = z1z2...zm. There exist n ∈ N and the
words a = x1x2...xn, b = y1y2...yn such that ρ̄(a, b) ≤ Σ{ρ(xi, yi) : i ≤ n} < ρ(a, b)+
ε. Then ρ̄(ac, bc) = ρ̄(x1x2...xnz1z2...zm, y1y2...ynz1z2...zm) ≤ Σ{ρ(xi, yi) : i ≤ n}
< ρ̄(a, b) + ε. Hence ρ̄(ac, bc) ≤ ρ̄(a, b). The proof of inequality ρ̄(ca, cb) ≤ ρ̄(a, b) is
similar. Proposition 2.1 completes the proof.

Property 6.6. The pseudo-distance ρ∗ is a stable pseudo-quasimetric on F a(X,V)
and ρ∗ ∈ Q(ρ).

Proof. Follows from Properties 6.2 and 6.4.

In the following properties we assume that V is a non-Burnside quasi-variety.
Property 6.7. If ρ is a quasimetric on X, then ρ̄ is a distance on F a(X,V).

Proof. Assume that ρ is a quasimetric on X and ρ̄ is not a distance on F a(X,V).
There exist two distinct points b, c ∈ F a(X,V) such that ρ̄(b, c) = ρ̄(c, b) = 0.
Suppose that n ≥ 2 and l(b) + l(c) ≤ n. Then ρ̄(b, c) = inf{Σ{ρ(xi, yi) : i ≤ m} :
m ∈ N,m ≤ 4n2, x1, x2, ..., xm ∈ Sup(b, b), y1, y2, ..., ym ∈ Sup(c, c), b = x1x2...xm,
c = [y1y2...ym]}.

Since ρ̄(b, c) = 0, there exist m ∈ N, x1, x2, ..., xm ∈ Sup({b}) ∪ {e}, and
y1, y2, ..., ym ∈ Sup({c}) ∪ {e} such that b = x1x2...xm, c = y1y2...ym and ρ̄(b, c)
= Σ{ρ(xi, yi) : i ≤ m} = 0. Since ρ̄(c, b) = 0, there exist k ∈ N, c1, c2, ..., ck ∈
Sup({c}) ∪ {e}, b1, b2, ..., bk ∈ Sup({b}) ∪ {e} such that b = b1b2...bk, c = c1c2...ck

and ρ̄(c, b) = Σ{ρ(cj , bj) : j ≤ k} = 0.
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Fix i1 ≤ m. Then ρ(xi1 , yi1) = 0. There exists j1 such that cj1 = yi1. Then
ρ(cj1 , bj1) = 0. There exists i2 such that xi2 = bj1 . Then ρ(xi2 , yi2) = 0 and so on.
As a result, we obtain a sequence xi1 , yi1 = cj1 , bj1 = xi2 , yi2 = cj2 , ..., xip , yip = cjp

,
bjp

= xip+1, yip+1 = cjp+1, .... such that ρ(xip , yip) = ρ(cjp
, bjp

) = 0 for any p ∈ N.
Since xi1 , xi2, ... , xip , ... are elements of a finite set Sup(b, b) = Sup(b)∪{e}, there
exist two numbers p, q ∈ N such that q < p and xiq = xip . Hence ρ(xiq , yiq) = 0
and 0 ≤ ρ(yiq , xiq) = ρ(yiq , xip) ≤ ρ(yiq , cjq

) + ρ(cjq
, bjq

) + ρ(xiq+ , yiq+1) + ... +
ρ(cjp−1 , bpp−1) + ρ(bjp−1 , xip) = 0, a contradiction. The proof is complete.

Property 6.7 is not true for Burnside quasi-varieties.

Example 6.1. Let n ∈ N and n ≥ 2. Consider the quasi-variety W of topological
monoids (groups) with the identities xn = e. Let ≺ be a linear ordering on a set
X, |X| ≥ 2, and e � x for each x ∈ X. We put ρ(x, x) = 0 for each x ∈ X and
for distinct x, y ∈ X with x ≺ y we put ρ(x, y) = 1 and ρ(y, x) = 0. Then ρ is
a quasimetric on X. Fix a, b ∈ X with a � b. Then ρ̄(b, a) = 0 and ρ̄(a, b) =
ρ̄(bna, ben) ≤ ρ(b, a) + (n − 1)ρ(b, e) + ρ(a, e) = 0.

Fix now a, b ∈ F a(X,W). There exists m ∈ N and x1, y1, x2, y2, ..., xm, ym ∈ X
such that a = x1x2...xm and b = y1y2...ym. By virtue of Property 6.5, we have
0 ≤ ρ̄(a, b) = ρ̄(x1x2...xm, y1y2...ym) ≤ Σ{ρ̄(xi, yi) : i ≤ m} = 0. Hence ρ̄(x, y) = 0
for all x, y ∈ F a(X,W). Therefore ρ̂(x, y) = 0 for all x, y ∈ F a(X,W).

Example 6.2. Let p, q ∈ N and 1 ≤ q < p = q + k. Consider the non-trivial quasi-
variety W of topological monoids with the identity xq = xp. Fix a set X with three
distinct elements {e, a, b}. Let ≺ be a linear ordering on a set X and e ≺ a ≺ b. We
put ρ(x, x) = 0 for each x ∈ X and for distinct x, y ∈ X with x ≺ y we put ρ(x, y)
= 1 and ρ(y, x) = 0. Then ρ is a quasimetric on X. We have ρ(x, x) = 0 for each
x ∈ X, ρ(e, a) = ρ(e, b) = ρ(a, b) = 1 and ρ(b, a) = ρ(a, e) = ρ(b, e) = 0.

We put u = bq ∈ F a(X,W) and v = aqbq ∈ F a(X,W). There exist two numbers
for which q+k(p−q) = 2q+m. By construction, ρ̂(v, u) = ρ̂(aqbq, eqbq) ≤ q(ρ(a, e)+
ρ(b, b)) = 0 and ρ̂(u, v) = ρ̄(bq, aqbq) = ρ̄(bq+k(p−q), aqbqem) = ρ̄(bqbqbm, aqbqem) =
qρ(b, a) + qρ(b, b) + mρ(b, e) = 0. Hence ρ̄(x, y) + ρ̄(v, u) = 0. Therefore ρ̂(u, v) +
ρ̂(v, u) = 0.

Example 6.3. Consider the quasi-variety V = W(0,2) of topological monoids with
the identity x2 = e. Let X = {e, a, b}, ρ(x, x) = 0 for each x ∈ X, ρ(a, b) = ρ(e, a)
= ρ(b, e) = 0, ρ(b, a) = ρ(a, e) = ρ(e, b) = 1. We have F a(X,V) = {e, a, b, ab} and
ab = ba. In this case ρ is not a quasimetric and ρ̄(b, a) = ρ̄(be, ea) = 0 < ρ(b, a) =
1, ρ̄(a, b) = ρ(a, b) = 0, ρ̄(a, ab) = ρ̄(ea, bb) = 0, ρ̄(ab, a) =ρ̄(ab, ae) = 0, ρ̄(ab, b) =
ρ̄(ab, be) = 0, ρ̄(b, ab) = ρ̄(eb, ab) = 0, ρ̄(e, b) = ρ̄(bb, be) = 0, ρ̄(ab, e) = ρ̄(ab, bb) =
0, ρ̄(e, ab) = ρ̄(ebb, aeb) = 0, ρ̄(e, b) = ρ̄(ebb, eeb) = 0. Hence ρ̄ = ρ̂ is the trivial
pseudo-metric on F a(X,V).

Property 6.7 is not true for distances which are not quasimetrics.

Example 6.4. Consider a non-trivial quasi-variety V of topological monoids. Let
X = {e, a, b}, ρ(x, x) = 0 for each x ∈ X, ρ(a, b) = ρ(e, a) = ρ(b, e) = 0, ρ(b, a) =
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ρ(a, e) = ρ(e, b) = 1. In this case ρ̄(b, a) = ρ̄(be, ea) = 0 < ρ(b, a) = 1 and ρ̄(a, b) =
ρ(a, b) = 0.

Property 6.8. Let a, b ∈ F a(X,V) be two distinct points in F a(X,V) and r(a, b) =
min{ρ(x, y) : x ∈ Sup(a, a), y ∈ Sup(b, b), x 6= y}. Then ρ̂(a, b) = ρ∗(a, b) ≥ r(a, b).

Proof. Assume that r(a, b) − ρ∗(a, b) = 3δ > 0. There exist n ∈ N and
z1, z2, ..., zn ∈ F a(X,V) such that ρ∗(a, b) ≤ ρ̄(a, z1) +...+ ρ̄(zi, zi+1) + ... +
ρ̄(zn, b) < ρ∗(a, b) + δ. Let z0 = a and zn+1 = b. For each i ∈ {0, 1, 2, ..., n} there
exist the representations zi = u(i,1)u(i,2)...u(i,mi) and zi+1 = v(i,1)v(i,2)...v(i,mi) such
that {u(i,1), u(i,2), ..., u(i,mi)} ⊆ Sup(zi, zi), {v(i,1), v(i,2), ..., v(i,mi)} ⊆ Sup(zi+1, zi+1)
and ρ̄(zi, zi+1) ≤ Σ{ρ(u(i,j), v(i,j) : j ≤ mi} ≤ ρ̄(zi, zi+1) ≤ δ/(n + 1). Without lost
of generality, we can assume that there exists m ∈ N such that mi = m for each
i ∈ {0, 1, 2, ..., n}. For each i ∈ {0, 1, 2, ..., n} there exists a one-to-one mapping
hi : {1, 2, ...,m} −→ {1, 2, ...,m} such that v(i,j) = u(i+1,hi(j)) for each j ≤ m. Then
the chain j0 = j, j1 = h1(j), j2 = h2(j1), ..., jn = hn(jn−1) and the number rj

= ρ(u(0,j0), v(0,j0)) + ρ(u(1,j1), v(1,j1)) + ...+ ρ(u(n,jn), v(n,jn)) ≥ ρ(u(0,j0), v(n,jn)) are
determined for any j ≤ m. We put h(j) = jn. Then h : {1, 2, ...,m} −→ {1, 2, ...,m}
is a one-to-one mapping as the composition of the mappings h1, h2, ..., hn. We obtain
that ρ∗(a, b)+3δ ≤ ρ̄(a, z1), ..., ρ̄(zi, zi+1 + ... + ρ̄(zn, b) ≥ ρ̄(a, b) r(a, b). The proof
is complete.

The following properties follow from Property 6.8.
Property 6.9. If ρ is a quasimetric on X, then ρ∗ and ρ̂ are quasimetrics on
F a(X,V).
Property 6.10. If ρ is a strong quasimetric on X, then ρ∗ and ρ̂ are strong quasi-
metrics on F a(X,V).

Proved properties lead us to the following general result:

Theorem 6.1. Let ρ be a pseudo-quasimetric on X, Y be a subspace of X and e ∈ Y .
Denote by M(Y ) = F a(Y,V) the submodule of the module F a(X,V) generated by

the set Y and by dY the extension ˆρ|Y on M(Y ) of the pseudo-quasimetric ρY on
Y , where ρY (y, z) = ρ(y, z) for all y, z ∈ Y . Then:

1. dY (a, b) = ρ̂(a, b) for all a, b ∈ M(Y ).
2. If ρ is a (strong) quasimetric on Y , then ρ̂ is a (strong) quasimetric on M(Y ).
3. If ρ is a metric on Y , then ρ̂ is a metric on M(Y ).
4. If a, b ∈ F a(Y,V) are distinct points and ρ is a quasimetric on Sup(a, b), then

ρ̂(a, b) + ρ̂(b, a) > 0.
5. If a, b ∈ F a(Y,V) are distinct points and ρ is a strong quasimetric on

Sup(a, b), then ρ̂(a, b) > 0 and ρ̂(b, a) > 0.
6. For any a, b ∈ F a(Y,V) there exist n ∈ N, x1, x2, ..., xn ∈ Sup(a, a) and

y1, y2, ..., yn ∈ Sup(b, b) such that a = x1x2...xn, b = y1y2...yn, n ≤ l(a) + l(b) and
ρ̄(a, b) = Σ{ρ(xi, yi) : i ≤ n}.

7. ρ̂ = ρ̄ = ρ∗.

The following assertion is obvious.
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Proposition 6.1. Let ρ be a pseudo-quasimetric on X and V be a non-Burnside
quasi-variety of topological monoids. For any a=a1a2...an ∈ F a(X,V) we put a←

= an...a2a1. Then a← ∈ F a(X,V), ρ∗(a, b)=ρ(a←, b←) and (ab)←=b←a← for all
a, b ∈ F a(X,V).

Remark 6.1. Invariant pseudo-metrics on free groups were constructed by M. I.
Graev [21]. Stable metrics on free algebras were considered in [11]. Invariant quasi-
metrics on free groups were constructed in [17] and [42].

Remark 6.2. Let A be a non-empty set and V be the non-Burnside quasi-variety of
all topological monoids. Consider that ε 6∈ A and X = A∪{ε}. Let ρ(x, x) = 0 and
ρ(x, y) = 1 for all distinct points x, y ∈ X. Then L(A) = F (X,V) is the family of all
strings on the alphabet A. In this case there exists the maximal invariant extension
ρ̂ of ρ on L(A). The metric ρ̂ was studied in [14,15]. It was proved that the metric
ρ̂ coincides with the V. I. Levenshtein metric on L(A) [32].

7 Strongly invariant quasimetrics

Fix the non-Burnside quasi-variety of topological monoids V and a space X with
basepoint pX .

Consider on X some linear ordering for which pX � x for any x ∈ X. On X
consider the following distances ρl, ρr, ρs, where ρl(x, x) = ρr(x, x) = 0 for any x ∈
X; if x, y ∈ X and x ≺ y, then ρl(x, y) = 1, ρl(y, x) = 0, ρr(x, y) = 0, ρr(y, x) = 1,
ρs(x, y) = ρl(x, y) + ρr(x, y). By construction, ρl and ρr are quasimetrics and ρs

is a metric on X. Then ρ∗l (x, y) and ρ∗r(x, y) are invariant discrete quasimetrics on
F (X,V) and ρ∗s is a discrete invariant metric on F (X,V). We consider this metric
below.

A distance d on a semigroup G is strongly invariant if d(xz, yz) =d(zx, zy) =
d(x, y) for all x, y, z ∈ G.

On a group any invariant pseudo-quasimetric is strongly invariant. For monoids
that fact is not true.

Example 7.1. Consider a semigroup H = {e, a, b}, where ex = xe = x for each
x ∈ H and xy = a provided e 6∈ {x, y} ⊂ H . The discrete metric d on H such
that d(x, y) = 0 for x = y and d(x, y) = 1 for x 6= y is invariant on H and is
not strongly invariant, since 0 = d(a, a) = d(ab, bb) = d(ba, bb) < d(a, b) = 1. Let
W(H) be the complete variety of topological monoids generated by the monoid
H. For every monoid G ∈ W(H) there exists a unique point aG ∈ G such that
xy = aG provided that e 6∈ {x, y}. Let X be a space with the basepoint pX ,
|X| ≥ 2 and ρ be a metric on X such that ρ(x, y) = 1 for all distinct points
x, y ∈ X. Then ρ∗ is an invariant metric on F (X,W(H)) and ρ∗(x, y) ≥ 1 for all
distinct points x, y ∈ F (X,W(H)). Let c ∈ X ⊆ F (X,W(H)) and c 6= pX = e.
Then c2 ∈ F (X,W(H)) and c2 6= c. We have that cn = c3 = c2 for any n ≥ 3.
Hence 1 ≤ ρ∗(c, c2) and 0 = ρ∗(c2, c2) = ρ∗(c2, c3) = ρ∗(c · c, c2 · c) < ρ∗(c, c2). In
F (X,W(H)) there exists a point a 6= e such that xy = a provided e 6∈ {x, y}. Hence
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the metric ρ∗ is not strongly invariant on F (X,W(H)). We observe that W(H)
is a Burnside variety of the exponent (3,2). The above considerations permit to
state that on the free monoid F (X,W(H)) any invariant quasimetric is not strongly
invariant.

For any pseudo-distance d S. Nedev [36] considered the adjoint pseudo-distance
da defined by da(x, y) = d(y, x).

Two properties P1 and P2 are called adjoint properties if the pseudo-distance
d on a space X has property P1 if and only if the adjoint pseudo-distance da on a
space X has property P2. If P1 = P2 and the properties P1 and P2 are adjoint, then
we say that the property P1 is auto-adjoint.

Remark 7.1. The auto-adjoint properties are the conditions for pseudo-distance to
be invariant or strongly invariant on a semigroup G.

The proof of the following assertion is simple.

Proposition 7.1. Let V be a non-trivial quasi-variety of topological monoids, ρ be
a pseudo-distance on a space X with basepoint pX . If d = ρa, then d∗ = ρ∗a, i.e.
ρa∗ = ρ∗a.

The quasi-variety of topological monoids V is rigid if for any space X, any word
a ∈ F (X,V), any point c ∈ X \ {px} and any representation ac = x1x2...xn, where
x1, x2, ..., xn ∈ X, there exists m ≤ n such that xm = c and a = x1x2...xm−1. In
this case xi = pX = e for each i > m.

The variety of all topological monoids is rigid.

Theorem 7.1. Let V be a non-Burnside rigid quasi-variety of topological monoids,
ρ be a quasimetric on a space X with basepoint pX and ρ(x, pX) = ρ(y, pX) for all
x, y ∈ X \ {pX}, or ρ(pX , x) = ρ(pX , y) for all x, y ∈ X \ {pX}. Then ρ∗(ac, bc) =
ρ∗(ca, cb) = ρ∗(a, b) for all a, b, c ∈ F (X,V).

Proof. Assume that ρ(pX , x) = ρ(pX , y) for all x, y ∈ X \ {pX}. It is sufficient to
prove the assertion of the theorem for c ∈ X. Assume that ρ∗(ac, bc) = r < ρ∗(a, b),
where a, b ∈ F (X,V) and c ∈ A. Then, by definition, there exist the representations
ac = x1x2 · · · xn and bc = y1y2 · · · yn such that ρ∗(ac, bc) = Σ{d(xi, yi) : i ≤ p}.

From the definition of rigidity, there exist p, q ≤ n such that xp =yq = c, a =
x1x2...xp−1, b = y1y2...yq−1 and xi = yj = pX with p < i ≤ n and q < j ≤ n. We
can assume that n = max{p, q}.

Case 1. n = p = q.
In this case a = x1x2 · · · xn−1, b = y1y2 · · · yn−1 and ρ∗(a, b) ≤ Σ{d(xi, yi) : i ≤

n − 1} = Σ{d(xi, yi) : i ≤ n} = ρ∗(ac, bc) < ρ∗(a, b), a contradiction.

Case 2. q < p = n.

Then yn = pX , xn = yq = c, a = x1x2 · · · xn−1, b = y1y2...yq−1 = y′1y
′
2...y

′
n−1,

where y′j = yj for j < q and y′j = pX for j ≥ q. Since ρ(xq, pX) ≤ ρ(xq, c) +
ρ(c, pX), we have ρ∗(a, b) ≤ Σ{d(xi, y

′
i) : i ≤ n − 1} ≤ Σ{d(xi, yi) : i ≤ n} =

ρ∗(ac, bc) < ρ∗(a, b), a contradiction.
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Case 3: p < q = n.
Then xn = pX , yn = xp = c, a = x1x2 · · · xp−1 = x′1x

′
2...x

′
n−1, b = y1y2...yn−1,

where x′i = xi for i < p and x′i = pX for i ≥ p. Since ρ(pX , yp) ≤ ρ(pX , c), we have
ρ∗(a, b) ≤ Σ{d(x′i, yi) : i ≤ n − 1} ≤ Σ{d(xi, yi) : i ≤ n} = ρ∗(ac, bc) < ρ∗(a, b), a
contradiction.

Therefore, we proved that ρ∗(ac, bc) = ρ∗(a, b) for all a, b, c ∈ F (X,V). By virtue
of Proposition 6.1, we have ρ∗(ca, cb) = ρ∗(a←c←, b←c←) = ρ∗(a←, b←) = ρ∗(a, b)
for all a, b, c ∈ F (X,V).

Since the properties ”ρ(x, pX ) = ρ(y, pX) for all x, y ∈ X \ {pX}” and ”ρ(pX , x)
= ρ(pX , y) for all x, y ∈ X \ {pX}” are adjoint, the proof is complete.

Corollary 7.1. Let V be the non-Burnside rigid quasi-variety of topological monoids,
the space X is linear ordered such that pX � x for any x ∈ X. If ρ ∈ {ρl, ρr, ρs},
then ρ∗ is a strongly invariant quasimetric on F (X,V).

The following question is open.
Problem 7.1. Does Theorem 7.1 hold for any non-Burnside quasi-variety of
topological monoids?

8 Free monoids of T0-spaces

Suppose that X is a topological space. Let x and y be points in X. We say
that x and y can be separated by a function if there exists a continuous function
f : X → [0, 1] into the unit interval such that f(x) = 0 and f(y) = 1.

A functionally Hausdorff space is a space in which any two distinct points can
be separated by a continuous function.

The pseudo-distance d is continuous on a space X if any d-open subset U ∈ T (d)
is open in X.

Lemma 8.1. Let Y be a non-empty finite subspace of a T0-space X. Then on X
there exists a continuous pseudo-quasimetric dY such that dY on Y generates the
topology of the subspace Y .

Proof. There exists a finite minimal family {U1, U2, ..., Un} of open subsets of X
such that T = {U1 ∩ Y,U2 ∩ Y, ..., Un ∩ Y } is the topology of the subspace Y . For
each i ≤ n we put di(x, y) = 1 for x ∈ Ui, y ∈ X \Ui and di(x, y) = 0 for x ∈ X \Ui

or y ∈ Ui. Then di is a continuous pseudo-quasimetric on X and T (di) = {∅, Ui,X}.
Hence dY (x, y) = max{di(x, y) : i ≤ n} is the desired pseudo-quasimetric on X.

The following theorem improves Theorem 5.3 and solves Problem 3.2 for complete
non-Burnside quasi-varieties of topological monoids.

Theorem 8.1. Let V be a non-trivial complete non-Burnside quasi-variety of topo-
logical monoids. Then:

1. For each T0-space X on the free monoid F a(X,V) there exists a T0-topology
T (qm) such that:
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– (F a(X,V),T (qm)) ∈ V;

– X is a subspace of the space (F a(X,V),T (qm));

– the topology T (qm) is generated by the family of all invariant pseudo-
quasimetrics on F a(X,V) which are continuous on X.

2. For each T0-space X the free topological monoid F (X,V) exists and is abstract
free.

3. A space X is a T1-space if and only if spaces F (X,V) and (F a(X,V),T (qm))
are T1-spaces.

4. A space X is functionally Hausdorff if and only if the spaces F (X,V) and
(F a(X,V),T (qm)) are functionally Hausdorff.

Proof. Fix a T0-space X. Let Q(X) be the family of all continuous pseudo-
quasimetrics on X and IQ(X) be the family of all invariant pseudo-quasimetrics on
(F a(X,V)) which are continuous on X. Then T (qm) is the topology on (F a(X,V))
generated by the pseudo-quasimetrics IQ(X).

Claim 1. X is a subspace of the space (F a(X,V),T (qm)).

By virtue of Theorem 6.1, for each ρ ∈ Q(X) we have ρ̂ ∈ IQ(X) and ρ(x, y)
= ρ̂(x, y) for all x, y ∈ X. Hence the pseudometrics Q(X) and IQ(X) generate
on X the same topology. By virtue of Lemma 8.1, the topology of the space X is
generated by the family of all continuous pseudo-quasimetrics Q(X). Hence X is a
subspace of the space (F a(X,V),T (qm)).

Claim 2. (F a(X,V),T (qm)) is a T0-space.

Fix two distinct points a, b ∈ F a(X,V). Let Y be a finite subspace of X such
that pX ∈ Y and a, b ∈ F a(Y,V) ⊆ F a(X,V). By virtue of Lemma 8.1, on X there
exists a continuous pseudo-quasimetric dY which is a quasimetric on Y . From the
assertion 4 of Theorem 6.1 it follows that d̂Y is a quasimetric on F a(Y,V). Hence
d̂Y (a, b) + d̂Y (b, a) > 0. Therefore (F a(X,V),T (qm)) is a T0-space.

Claim 3. The topology T (qm) is generated by the family of all invariant pseudo-
quasimetrics F a(X,V) which are continuous on X.

That assertion follows from the definition of the topology T (qm).

Claim 4. (F a(X,V),T (qm)) ∈ V.

Since the topology T (qm) is generated by the invariant pseudo-quasimetrics,
(F a(X,V),T (qm)) is a a topological monoid. Hence the assertion of Claim 4 follows
from Claim 2 and completeness of the quasi-variety V.

Claim 5. For the T0-space X the free topological monoid F (X,V) is abstract
free.

Let G be the topological monoid (F a(X,V),T (qm)). There exists a continuous
homomorphism h : F (X,V) −→ G such that h(x) = x for each x ∈ X. Since G is
abstract free relatively to X, h is a continuous isomorphism. Claim 5 is proved.

Claim 6. A space X is a T1-space if and only if the spaces F (X,V) and
(F a(X,V),T (qm)) are T1-spaces.

If F (X,V) is a T1-space, then X is a T1-space as a subspace of T1-space. If
(F a(X,V),T (qm)) is a T1-space, then F (X,V) is a T1-space, since F (X,V) admits
a continuous isomorphism onto (F a(X,V),T (qm)).
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Assume now that X is a T1-space. Fix two distinct points a, b ∈ F a(X,V). Let
Y be a finite subspace of X such that pX ∈ Y and a, b ∈ F a(Y,V) ⊆ F a(X,V). By
virtue of Lemma 8.1, on X there exists a continuous pseudo-quasimetric dY which
is a discrete metric on Y . Then d̂Y is a discrete metric on F a(Y,V) and F a(Y,V) is
a discrete subspace of (F a(X,V),T (qm)). Hence {a, b} is a discrete subspace and
(F a(X,V),T (qm)) is a T1-space. Claim 6 is proved.

Claim 7. Let Y be a finite subspace of the functionally Hausdorff space X and
pX ∈ Y . Then there exists d ∈ IQ(X) such that d is a pseudo-metric and d(a, b) ≥ 1
for all distinct points a, b ∈ F a(Y,V).

Let {(xi, yi) : i ≤ n} be the family of all ordered pairs x, y ∈ Y such that x 6= y.
For any i ≤ n fix a continuous function fi : X → [0, 1] such that hi(xi) = 0 and
hi(yi) = 1. Then rY (x, y) = min{1,Σ{|fi(x) − fi(y)| : i ≤ n}} is a continuous
pseudo-metric on X and rY (x, y) = 1 for any two distinct points x, y ∈ Y . Then r̂Y

is the desired pseudo-metric from IQ(X).
Claim 8. The space X is functionally Hausdorff if and only if the spaces F (X,V)

and (F a(X,V),T (qm)) are functionally Hausdorff.
If F (X,V) is a functionally Hausdorff space, then X is a T1-space as a subspace

of a functionally Hausdorff space. If (F a(X,V),T (qm)) is a functionally Hausdorff
space, then F (X,V) is a functionally Hausdorff space, since F (X,V) admits a con-
tinuous isomorphism onto (F a(X,V),T (qm)).

Assume now that X is a functionally Hausdorff space. Fix two distinct points
a, b ∈ F a(X,V). Assume that Y = Sup(a, b) = {x1, x2, ..., xn}, where xi 6= xj for
i 6= j. Since X is functionally Hausdorff space, there exists a construction function
f : X → [0, 1] such that f(xi) 6= f(xj) for i 6= j. Consider the continuous pseudo-
metric ρ(x, y) = |f(x) − f(y)|, x, y ∈ X. We have ρ(xi, yi) 6= 0 for i 6= j. Hence ρ
is a metric on Y . Then ρ∗ is a continuous pseudo-metric on F a(X,V), and ρ∗ is a
metric on F a(Y,V). Hence ρ∗(a, b) 6= 0. The function g(x) = ρ∗(a, x) is continuous
on (F a(X,V),T (qm)), g(a) = 0 and g(b) 6= 0. The function f is continuous on the
space (F a(X,V),T (qm)), f(a) = 0 and f(b) = 1. Hence (F a(X,V),T (qm)) is a
functionally Hausdorff space. The Claim 8 and Theorem 8.1 are proved.

Corollary 8.1. Let V be a complete non-trivial quasi-variety of topological monoids.
Then for each completely regular space X:

– on the free monoid F a(X,V) there exists a completely regular topology T (m)
generated by a family of invariant pseudo-metrics such that (F a(X,V),T (m)) ∈ V,
X is a subspace of the space (F a(X,V),T (m));

– the free topological monoid F (X,V) exists, it is a functionally Hausdorff space
and abstract free.

The following question is open.
Problem 8.1. Let V be a non-trivial quasi-variety of topological monoids. Under
which conditions for a space X the free topological monoid F (X,V) is a Hausdorff
space, or a regular space, or a completely regular space?

Remark 8.1. Let X be a T0-space and V be a non-trivial complete non-Burnside
quasi-variety of topological monoids. Then on F (X,V) there exist:
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– the free topology T (f) such that (F (x,V),T (f)) is the free monoid of the space
X in the quasi-variety V;

– the topology T (qm) generated by the invariant continuous pseudo-quasimetrics
on (F (x,V),T (f));

– the topology T (m) generated by the invariant continuous pseudo-metrics on
(F (x,V),T (f)).

These topologies satisfy the following properties:

P1. T (m) ⊂ T (qm) ⊂ T (f).

P2. (F (x,V),T (m)), (F (x,V),T (f)) ∈ V.

P3. (F (x,V),T (m)) ∈ V if and only if X is a functionally Hausdorff space.

If the point pX is isolated in X and V is the variety of all topological monoids,
then on F (X,V) we have T (qm) = T (f). The invariant pseudo-metrics on topologi-
cal groups were examined by G. Birkhoff [8] and Sh. Kakutani [28,29] (see [6,21,22]).
There exists a locally compact topological group G with countable base without in-
variant metrics (see [22,28]). Since in G the involution x → x−1 is a homeomorphism,
the topology of G is not generated by some family of invariant pseudo-quasimetrics.

The following question is open.

Problem 8.2. Let V be a non-trivial quasi-variety of topological monoids. Under
which conditions on F (X,V) we have that T (qm) = T (f)?

9 Free semi-topological monoids of T0-spaces

A semi-topological semigroup is a semigroup with topology in which all transla-
tions x → ax, x → xa are continuous.

A class W of semi-topological monoids is called a quasi-variety of monoids if:

(F1) the class W is multiplicative;

(F2) if G ∈ W and A is a submonoid of G, then A ∈ V;

(F3) every space G ∈ W is a T0-space.

A class W of semi-topological monoids is called a complete quasi-variety of
monoids if it is a quasi-variety with the next property:

(F4) if G ∈ V and T is a T0-topology on G such that (G,T ) is a semi-topological
monoid, then (G,T ) ∈ V too.

A quasi-variety V of topological monoids is non-trivial if |G| ≥ 2 for some G ∈ V.

Let X be a non-empty topological space with a basepoint pX and W be a quasi-
variety of topological monoids.

A free monoid of a space X in a class W is a semi-topological monoid F (X,W)
with the properties:

– X ⊆ F (X,V) ∈ W and pX is the unity of F (X,V);

– the set X generates the monoid F (X,V);

– for any continuous mapping f : X −→ G ∈ V, where f(pX) = e, there exists a
unique continuous homomorphism f̄ : F (X,V) −→ G such that f = f̄ |X.

The abstract free monoid F a(X,W) of a space X in a class W is defined for
quasi-varieties of topological monoids.
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Theorem 9.1. Let W be a non-trivial quasi-variety of semi-topological monoids.
Then for each space X the following assertions are equivalent:

1. There exists G ∈ W such that X is a subspace of G and pX is the neutral
element in G.

2. For the space X there exists the unique free topological monoid F (X,W).

Proof. Is similar to the proof of Theorem 3.1.

Corollary 9.1. Let W be a non-trivial quasi-variety of semi-topological monoids.
Then for each space X there exists the unique abstract free monoid F a(X,W).

Let W be a non-trivial quasi-variety of semi-topological monoids.

We put Wt = {G ∈ W : G is a topological monoid}. Obviously, Wt is a quasi-
variety of topological monoids.

Fix a space X for which there exists the free semi-topological monoid F (X,W).
Then there exists a unique continuous homomorphism λX : F a(X,V) −→ F (X,V)
such that λX(x) = x for each x ∈ X. The monoid F (X,W) is called abstract free
if λX is a continuous isomorphism.

Theorem 9.2. Let W be a non-trivial non-Burnside quasi-variety of semi-topological
monoids. Then for each space X the following assertions are equivalent:

1. The class Wt is a non-trivial non-Burnside quasi-variety of topological
monoids.

2. For each space X we have F a(X,W) = F a(X,Wt).

3. For each T0-space X on the free monoid F a(X,W) there exists a T0-topology
T (qm) such that:

– (F a(X,V),T (qm)) ∈ Wt ⊆ W;

– X is a subspace of the space (F a(X,W),T (qm));

– the topology T (qm) is generated by the family of all invariant pseudo-
quasimetrics on F a(X,V) which are continuous on X.

4. For each T0-space X there exists the free topological monoid F (X,W) and
it is abstract free. Also, there exists a continuous isomorphism µX : F (X,W) −→
F (X,Wt) such that µX(x) = x for each x ∈ X.

5. A space X is a T1-space if and only if spaces F (X,W) and (F a(X,W),T (qm))
are T1-spaces.

6. A space X is functionally Hausdorff if and only if the spaces F (X,W) and
(F a(X,W),T (qm)) are functionally Hausdorff.

Proof. Assertion 1 is obvious. For any space X denote by Xt the set X with the
discrete topology. Then Gt ∈ Wt for each G ∈ W. Fix a T0-space X. The space
F a(X,W) is discrete. Hence F a(X,W) ∈ Wt and Assertion 2 is proved.

Assertion 3 follows from Assertion 2 and Theorem 8.1.

Assertions 4 - 6 follow from Assertion 3 and Theorem 8.1.

Condition of completeness is essential.
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Example 9.1. Let B be the semigroup ω with the topology T (B) = {∅, B}∪{B\F :
F is a finite subset of B}. Then B is a semi-topological monoid and B is not a
topological monoid. Denote now by W (B) the quasi-variety generated by B. Then
the elements of W (B) are the submonoids of the monoids of the form BM . Thus
any non-trivial monoid G ∈ W (B) is not a topological monoid. Therefore the class
W (B)t is trivial.

10 On topological digital spaces

A space X is called an Alexandroff space if it is a T0-space and the intersection
of any family of open sets is open [2].

Alexandroff spaces were first introduced in 1937 by P. S. Alexandroff [2] (see
also [1]) under the name discrete spaces, where he provided the characterizations in
terms of sets and neighbourhoods.

If (X,T ) is an Alexandroff space, then we say that T is a T0-discrete topology.

We observe the importance of distances with natural values. We affirm that this
fact is important from topological point of view as well.

Theorem 10.1. On a space X there exists a quasimetric with the natural values if
and only if X is an Alexandroff space.

Proof. Let X be an Alexandroff space. For any x ∈ X denote by Mx the intersection
of all open sets which contains x. Then Mx is the minimal open set which contains
the point x ∈ X. Observe that if x, y ∈ X, x 6= y, and y ∈ Mx, then My ⊂ Mx and
x 6∈ My. Consider the distance ρ(x, y), where ρ(x, x) = 0 for any x ∈ X, ρ(x, y) = 0
if y ∈ Mx, and ρ(x, y) = 1 if y 6∈ Mx. We affirm that ρ is a quasimetric with natural
values. By construction, ρ(x, y) ∈ {0, 1} and ρ has natural values. Let x, y, z ∈ X.
If ρ(x, y) = ρ(y, z) = 0, then y ∈ Mx and z ∈ My ⊂ Mx. Hence ρ(x, z) = 0. In
this case ρ(x, y) + ρ(y, z) = ρ(x, z). If ρ(x, y) + ρ(y, z) ≥ 1, then ρ(x, z) ≤ 1 and
ρ(x, y) + ρ(y, z) ≥ ρ(x, z). Therefore ρ is a quasimetric.

If d is a quasimetric on X with natural values, then Mx = {y ∈ X : d(x, y) < 1}
is the minimal open set which contains the point x ∈ X. Therefore (X,T (d)) is an
Alexandroff space, and this concludes the proof of Theorem 10.1.

General criteria of quasi-metrizability of spaces were proved in [36].
Let � be a partial ordering on a set X. For any point x ∈ X we put M(x,�)

= {y ∈ X : x � y}. Then {M(x,�) : x ∈ X} is a base of the T0-discrete topology
T (�) on X.

Let T be a T0-topology on a set X. For any points x, y ∈ X we put x �T y if
and only if x ∈ clX{y}. Then �T is a partial ordering on X. By construction, � =
�T (�), T ⊂ T (�T ) and T = T (�T ) if and only if T is T0-discrete topology (see [2]).

For any T0-topology T on X we put aT = T (�T ). If M(x) = ∩{U ∈ T : x ∈ U},
then {M(x) : x ∈ X} is the minimal base of the topology aT . We say that aT is
the Alexandroff modification of the topology T .

The following assertion is obvious.
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Proposition 10.1. Let T be a T0-topology on a set X. Then aT is the unique
T0-discrete topology on the space X such that �T = �aT . Moreover, �T = �T ′ for
any intermediary topology T ⊂ T ′ ⊂ aT .

Theorem 10.2. Let (G,T ) be a topological semigroup. Then (G, aT ) is a topological
semigroup too.

Proof. We put M(x) = ∩{U ∈ T : x ∈ U}. Then {M(x) : x ∈ X} is the base of the
topology aT and M(x) · M(y) ⊂ M(x · y). The proof is complete.

Corollary 10.1. Let V be a non-trivial complete non-Burnside quasi-variety of
topological monoids. Then for each space X the following assertions are equivalent:

1. F (X,V) is an Alexandroff space.

2. On a space F (X,V) there exists a quasimetric with the natural values.

3. X is an Alexandroff space.

Proposition 10.2. Let G be a topological semigroup and X be a connected subspace
of G. If X algebraically generates the semigroup G, then G is a connected space.

Proof. For each n ∈ N we put Gn(X) = {x1 · x2 · ... · xn : x1, x2, ...xn ∈ X}. By
construction, the subspace Gn(X) of G is connected as a continuous image of the
connected space Xn and Gn(X) ⊂ Gn+1(X). Hence G = ∪{Gn(X) : n ∈ N} is a
connected space. The proof is complete.

A digital space is a pair (D,α), where D is a non-empty set and α is a binary,
symmetric relation on D such that for any two elements x, y ∈ D there is a finite
sequence {x0, x1, ..., xn} of elements in D such that x = x0, y = xn and (xj , xj +1) ∈
α for j ∈ 0, 1, ..., n − 1}.

The topological methods may be applied in the study of reflexive or anti-reflexive
binary structures. We develop that point of view for reflexive digital structures.

Let ρ be a distance on the non-empty set D. We consider that (x, y) ∈ αρ if and
only if ρ(x, y) · ρ(y, x) = 0. We say that αρ is the binary relation generated by the
distance ρ.

A binary relation α on the set D is compatible with the topology T on D if T is
a T0-topology and (x, y) ∈ α if and only if x ∈ cl(X,T ){y} or x ∈ cl(X,T ){y}.

Proposition 10.3. If a binary relation α on the set D is compatible with the topology
T on D, then the binary relation α is compatible by the T0-discrete topology aT .

Proof. For any x ∈ D denote Mx = ∩{U ∈ T : x ∈ U}. Let Ta be the topology on
D generated by the open base {Mx : x ∈ D}. Then Mx is the minimal open set
from Ta which contains the point x ∈ X. It is obvious that x ∈ cl(X,T ){y} if and
only if x ∈ cl(X,aT ){y}. The proof is complete.

.
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Proposition 10.4. Let a symmetric binary relation α on the non-empty set D
is compatible with the T0-discrete topology T on D. The following assertions are
equivalent:

1. (D,α) is a digital space.
2. (D,T ) is a connected space.
3. There exists a discrete quasimetric ρ on D such that α = αρ and the space

(D,T (ρ)) is connected.

Proof. Implication 1 → 2 follows from Proposition 10.3. Implication 2 → 3 → 2
follows from Theorem 10.1.

Assume that (D,T ) is a connected Alexandroff space.
For any x ∈ D denote by M1(x) the intersection of all open sets which contains

x. Let Mn+1(x) = ∪{M1(y) : M1(y)∩Mn(x) 6= ∅} and Mω(x) = ∪{Mn(x) : n ∈ N}.
By construction, if y ∈ M1(x), then (x, y) ∈ α. Hence, if y ∈ Mn(x), then

there is a sequence {x0, x1, ..., xn} of elements in D such that x = x0, y = xn and
(xj , xj + 1) ∈ α for j ∈ {0, 1, ..., n − 1}.

Fix x ∈ D. We affirm that the set Mω(x) is closed. If the set Mω(x) is not closed,
then there exists a point y ∈ clXMω(x) \ Mω(x). Hence M1(y) ∩ Mω(x) 6= ∅. In
this case M1(y)∩Mn(x) 6= ∅ for some n ∈ N and y ∈ Mn+1(x) 6= ∅, a contradiction.
Thus the set Mω(x) is non-empty and open-and-closed. Since (X,T ) is a connected
space, we have Mω(x) = X. Therefore (D,α) is a digital space. Implication 2 → 1
is proved. The proof is complete.

If the digital structure α on a set D is compatible with a T0-discrete topology T
on D, then we say that (D,T ) is a topological digital space and put (D,α) ≡ (D,T ).
Otherwise the digital space (D,α) is not topological. Hence a topological space X
is a topological digital space if and only if X is a connected Alexandroff space
(see [23,30,31]).

From Corollary 10.1 and Propositions 10.2 and 10.4 follows:

Corollary 10.2. Let V be a non-trivial complete non-Burnside quasi-variety of
topological monoids. Then for each space X the following assertions are equivalent:

1. F (X,V) is a topological digital space.
2. X is a topological digital space.

There exists a non-topologically digital spaces (D,α) (see [23]). For example, let
D = {a, b, c, d, e} and α = {(a, a), (a, b), (b, a), (b, b), (b, c), (c, b), (c, c), (c, d), (d, c),
(d, d), (d, e), (e, d), (e, e), (e, a), (a, e)}. Then the digital space (D,α) is not topolog-
ical.

If D is a non-empty set and α = D ×D, then (D,α) is a digital space such that
for any linear ordering � on D we have α = b(�) and binary relation α is compatible
with the topology T ((�). We observe that a topology is compatible with a unique
binary structure and a binary structure may be compatible with a set of arbitrary
cardinality of topologies.

Now let α be an anti-reflexive digital structure on G. Let ρ be a distance on
the non-empty set D. We consider that (x, y) ∈ αρ if and only if x 6= y and
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ρ(x, y) · ρ(y, x) = 0. We say that αρ is the binary relation generated by the distance
ρ. A binary anti-reflexive relation α on the set D is compatible with the topology
T on D if T is a T0-topology and (x, y) ∈ α if and only if x 6= y and x ∈ cl(X,T ){y}
or x ∈ cl(X,T ){y}. For anti-reflexive digital structures similar assertions hold as in
the reflexive case.
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[24] Hofmann K. H., Lawson J. D., Pym J. S. The analytical and topological theory of semi-
groups, de Gruyter, 1990.

[25] James L.M. Multiplications on spheres, I, Proceed. Amer. Mat. Soc., 1957, 13, 192–196.

[26] James L.M. Multiplications on spheres, II, Trans. Amer. Math. Soc., 1957, 84, 545–548.

[27] Kakutani Sh. Free topological groups and infinite direct product topological groups, Proceed.
Imp. Acad. Tokyo, 1944, 20, 595–598.
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