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The Center of the Lattice of Factorization Structures

Dumitru Botnaru, Elena Baeş

Abstract. The center of the lattice of factorization structures of the category of
locally convex topological vector spaces is studied. The center consists of those struc-
tures for which the projections class is contained in the class of universal epimorphisms.
The injective class is contained in the class of universal monomorphisms. It is proved
that every element of the center defines two commuting functors: a coreflector and
a reflector functor. The relationships of these pair of functors with left and right
products of two subcategories and with the theories of relative torsion are examined.
Some concrete examples are constructed.

Mathematics subject classification: 18A40, 46A03.

Keywords and phrases: Reflective and coreflective subcategories, locally convex
space, factorization structure, commutative functors, relative torsion theories.

1 Introduction

The conditions for a reflector functor and a coreflector functor to commute were
examined by many authors. Various examples of this kind were constructed in [8,
9, 10], in the category of uniform spaces and in [2] - in the category C2V of locally
convex vector Hausdorff spaces. We use the terminology from [7, 11, 12]. We denote
by B the class of factorization structures of the category C2V.

The epimorphism p is called up orthogonal on a morphism m, and m is called
down orthogonal on p (see [1, 3]), if for any commutative square

m · g = g · p

it results that there a morphism t (diagonal of the square) so that

f = t · p

and

g = m · t

This is denoted by p ⊥ m. If P (respectively: I) is a class of epimorphisms (re-
spectively: of monomorphisms), then P⌊ (respectively: I⌉) is the class of all down
orthogonal monomorphisms (respectively: up orthogonal epimorphisms) for all ele-
ment of P (respectively: of I).

The following statement is well known.
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Let E (respectively: M) be a class of epimorphisms (respectively: of monomor-
phisms), in the category C2V. Then (E⌊⌉, E⌊) (respectively: (M⌉,M⌉⌊) is a factor-
ization structure.

Definition 1 [3]. 1. The monomorphism m is called a universal monomorphism
if for every pushout

f
′

· m = m
′

· f,

the morphism m
′

is a monomorphism.
2. An epimorphism e is called exact if it is up orthogonal to every universal

monomorphism.

Definition 2 [3]. Let A and B be two classes of morphisms of the category C. The
class of all morphisms of the category C, of the form a · b, with a ∈ A and b ∈ B, for
which this composition exists, is named the composition of the classes A and B and
is denoted by A ◦ B.

Definition 3 [3]. Let A and B be two classes of morphisms of the category C. The
class A is called B-hereditary (B-cohereditary) if from the fact that f · g ∈ A and
f ∈ B (respectively: g ∈ B), it follows that g ∈ A (respectively: f ∈ A).

Theorem 1 [3]. 1. A monomorphism m : X −→ Y is an universal monomorphism
in the category C2V if every continuous functional f : X −→ K extends through m:
f = g · m for a morphism g.

2. A monomorphism f : (E, u) −→ (F, v) belongs to the class Ep iff :
a) f is a surjective mapping ;
b) v = min(u′′,m(v)), where u′′ is the factor topology defined by the mapping

f : (E, u) −→ (F, v), and m(v) is the Mackey topology defined on the space F and
compatible with duality of topology v: (F, v)′ = (F,m(v))′.

In the category C2V we denote by Mu the class of universal monomorphisms
and by Ep - the class of exact epimorphisms.

Dual notions and notations: a universal epimorphism, an exact monomorphism,
Eu - class of universal epimorphisms, Mp - class of exact monomorphisms.

In the category C2V the following structures are well known (see [3]):
(Eu,Mp)=(the class of universal epimorphisms, the class of exact monomor-

phisms)=(the class of surjective morphisms, the class of topological embeddings);
(Ep,Mu)=(the class of exact epimorphisms, the class of universal monomor-

phisms );
(E

′

p,M
′

u)=(Ep, the class of universal monomorphisms with closed image);
(Ef ,Mono)=(the class of cokernels, the class of monomorphisms)=(the class of

factorial morphisms, the class of injective morphisms);
(Epi,Mf ) - (the class of epimorphisms, the class of kernels) = (the class of

morphisms with dense image, the class of topological inclusions with closed images).
The properties of factorization structures (Ef ,Mono) and (Epi,Mf ) characterize

the category C2V as a semiabelian category. The factorization structures (Eu,Mp)
and (Ep,Mu) play an important role in the study of the reflective and coreflective
subcategories. We need some notions and results from [3], [4] and [6].

We use the following notations for some subcategories of the category C2V.
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Π - the subcategory of complete spaces with a weak topology and with respective
functor π : C2V → Π;

S - the subcategory of spaces endowed with a weak topology, s : C2V → S;
Γ0 - the subcategory of complete spaces, go : C2V → Γo;∑

- the coreflective subcategory of spaces with the strongest locally convex
topology, σ : C2V →

∑
;

M̃ - the subcategory of spaces endowed with the Mackey topology, m : C2V →
M̃.

Any factorization structure (P,I) in the category C2V divides the lattice R (re-
spectively: the lattice K) of reflective (respectively: coreflective) subcategories into
three classes

R(P) = {R ∈ R | R is a P-reflective subcategory},
R(I) = {R ∈ R | R is an I-reflective subcategory},
R(P,I) = (R\{R(P) ∪ R(I)}) ∪ {C2V}.
Respectively - the division class K:
K(P) = {L ∈ K | L is a P-coreflective subcategory},
K(I) = {V ∈ K | V is a I-coreflective subcategory},
K(P,I) = (K\{K(P) ∪ K(I)}) ∪ {C2V}.
Let R be a reflective non-zero subcategory of category C2V. We examine R and

the Π-replica of an arbitrary object X ∈ |C2V| rX : X −→ rX and πX : X −→ πX.
Because Π ⊂ R we have πX = vX · rX for a morphism vX . Let

U = U(R) = {rX | X ∈ |C2V|}, V = V(R) = {vX | X ∈ |C2V|}.

We build factorization structures:

(P
′′

,I
′′

) = (P
′′

(R),I
′′

(R)) = ((V(R))q, (V(R))q
x

),

(P
′

,I
′

) = (P
′

(R),I
′

(R)) = ((U(R))xq, (U(R))x).

We establish notations for the dual case. Let k : C2V → K be a non-zero
coreflector functor. We examine K and the

∑
-coreplica of an arbitrary object X ∈

|C2V| : kX : kX → X and σX : σX → X. Because
∑

⊂ K, we have

σX = kX · vX
c

for a morphism vX
c : σX → kX. Let

Uc = Uc(K) = {kX |X ∈ |C2V|}, Vc = Vc(K) = {vX
c |X ∈ |C2V|}.

We build factorization structures:

(E
′

,M
′

) = (E
′

(K),M
′

(K)) = ((Vc(K))xq, (Vc(K))x),

(E
′′

,M
′′

) = (E
′′

(K),M
′′

(K)) = ((Uc(K))q, (Vc(K))q
x

).

For R ∈ R and K ∈ K set Lρ(R) = {(P,I) ∈ B | P
′

(R) ⊂ P ⊂ P
′′

(R)},
Lκ(K) = {(P,I) ∈ B | E

′

(K) ⊂ P ⊂ E
′′

(K)}.
The class B is divided into disjoint subclasses of the form Lκ(R), where K ∈ K.
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For a reflective non-zero subcategory R of category C2V with reflector functor
r : C2V → R denote by: εR = {e ∈ Epi | r(e) ∈ Iso.

Dually, for a coreflective non-zero subcategory K of category C2V with coreflector
functor k : C2V → K set µK = {m ∈ Mono | r(m) ∈ Iso}.

Theorem 2 [3]. 1. For any reflective non-zero subcategory R of category C2V, the
factorization structure (P

′′

(R),I
′′

(R)) has Mu-hereditary class P
′′

(R), of projec-
tions.

2. The application R 7−→ (P
′′

(R),I
′′

(R)) establishes a bijective correspondence
between the lattice R of reflective non-zero subcategories of category C2V and the
lattice Bεp of factorization structure (P,I) with properties:

a) I ⊂ Mu;

b) the class P is Mu-hereditary.

3. Consider f : X −→ Y ∈ Epi, and f = m · e the (Ep,Mu)-factorization of
this morphism. The epimorphism f ∈ P

′′

(R) iff the reflector functor r : C2V −→ R
takes m to an isomorphism : r(m) ∈ Iso. In other words P

′′

(R) = (εR) ◦ Ep where
εR = {e ∈ Epi | r(e) ∈ Iso}.

4. Consider f : X −→ Y ∈ Mu. f ∈ I
′′

(R) iff the square r(f) · rX = rY · f is a
pullback.

Let K be a coreflective subcategory, and R - a reflective subcategory of the
category C2V with corresponding functors k : C2V → K and r : C2V → R. For an
arbitrary object X of the category C2V let kX : kX → X be the K-coreplica of the
object X, and rX : X → rX and rkX : kX → rkX R-replicas of respective objects.
Further, let r(kX) : rkX → rX be the unique morphism for which r(kX) · rkX =
rX · kX .

For the morphisms rX and rkX we build the pullback

rX · lX = r(kX) · fX .

Then there exists a morphism tX so that:

lX · tX = kX ,

fX · tX = rkX ,

and

lX

kX

X rX

rkX-

-
? ?

HHHHHj �����*

������

rkX

kX tX

lX

rX

r(kX)
fX = rlX

k and r commutes.
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Lemma 1 [4]. For any object X of the category C2V the morphism fX is the
R-replica of object lX.

We denote by L = K ∗s R the full subcategory of the category C2V consisting of
all objects isomorphic with the objects of the form lX when X ∈ |C2V|.

Definition 4 [4]. 1. The subcategory L = K ∗s R is called the S-product or left
product of the subcategories K and R.

2. The diagram is called the left product diagram for X.
Dual notions: the right product V = K ∗d R of the subcategories K and R, the

right product diagram are presented to fix notations.
For arbitrary object X of the category C2V let rX : X → rX be the R-replica,

and kX : kX → X and krX : krX → rX the K-coreplicas of the respective objects.
Then

rX · kX = krX · k(rX)

for a morphism k(rX) : kX → krX. On the morphisms kX and k(rX) we build the
pushout vX · kX = gX = k(rX). Then there exists a morphism uX : vX → rX so
that

rX = uX · vX ,

krX = uX · gX ,

and

vX

kX

X rX

krX-

-

? ?
HHHHHj

������

�����*

k(rX)

kX

uXvX

rX

krX

gX = kvX

k and r commutes.
Theorem 3 [4]. For the pair of subcategories K and R, the following affirmations
are equivalent:

1. r(kX) is a monomorphism for any object X ∈ |C2V|.
2. L is a coreflective subcategory of the category C2V.
3. lX is a monomorphism for any object X ∈ |C2V|.
4. lX is the L-coreplica of X for any object X ∈ |C2V|.
5. lX ∈ Eu ∩Mono for any object X ∈ |C2V|.
6. tX ∈ Eu for any object X ∈ |C2V|.
7. tX is the K-coreplica of lX for any object X ∈ |C2V|.
8. tX ∈ Eu ∩Mono for any object X ∈ |C2V|.
9. lX , tX ∈ Eu ∩Mono for any object X ∈ |C2V|.
10. X ∈ |L| ⇔ rX · kX is the R-replica of kX.
11. The equality kX = lX · tX is the (εR, (εR)⊥)-factorization of the morphism

kX by the right factorization structure (εR, (εR)⊥) for any object X ∈ |C2V|.
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The previous theorem indicates a string of necessary and sufficient conditions
for the left product of two subcategories to be a coreflective subcategory. This
affirmation is not always true.

Proposition 1 [6]. In the category C2V the following assertions are true:
1.

∑
∗s

∏
is not a coreflective subcategory.

2.
∑

∗d

∏
is not a reflective subcategory.

At the same time the following theorem indicates the cases when the left product
is a coreflective subcategory, and the right product is a reflective subcategory.

Theorem 4 (see [6], Theorem 6). 1. Let K be a coreflective subcategory of the

category C2V and M̃ ⊂ K. Then, for any reflective subcategory R of category C2V:
a) the left product K ∗s R is a coreflective subcategory of category C2V;
b) the right product K ∗d R is a reflective subcategory of category C2V.
2. Let R a reflective subcategory of category C2V and S ⊂ R. Then, for any

coreflective subcategory K of category C2V:
a) the left product K ∗s R is a coreflective subcategory of category C2V;
b) the right product K ∗d R is a reflective subcategory of category C2V.

2 The center of the lattice of factorization structures

Let (P,I) be a factorization structure in the category C2V, and A be an arbitrary
subcategory. We denote by:

QP(A) - the full subcategory of all P-factorobjects of the objects belonging to
the subcategory A,

SI(A) - the full subcategory of all I-subobjects of the objects belonging to the
subcategory A.

Proposition 2. Let (P,I) be a factorization structure in the category C2V, K a
coreflective subcategory, and R a reflective subcategory in the category C2V.

1. L = QP(K) is an I-coreflective subcategory of the category C2V,
2. V = SI(R) is an P- reflective subcategory of the category C2V.

Proof. 1. kX : kX → X is K-coreplica of object X, and

kX = lX · tX (1)

is (P,I)-factorization of coreplica. We proved that lX is L-coreplica of object X.
Let A ∈| K |, and p : A → B ∈ P, i.e. B ∈| L | . Further, let f : B → X ∈ C2V.
Then

f · p = kX · g (2)

for a morphism g. Equality (2) can be written as

f · p = lX · (tX · g) (3)

where p ∈ P, and lX ∈ I. Since p ⊥ lX it follows that there exists a morphism
h : B → lX so that

f = lX · h, (4)
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tX · g = h · p. (5)

The uniqueness of the morphism h which verifies the equality (4) follows from the
fact that lX is an monomorphism.

kX lX X

A B-

- -

@
@

@
@

@R
? ?

��*

p

g h f

tX lX

kX

2. It is proved in dual mode. We indicate (P,I)-factorization of R-replica of an
arbitrary object X.

X vX rX- -

��*

vX uX

rX

Let (P,I) be a factorization structure in the category C2V. Then there exists a
unique coreflective subcategory K and a unique reflective subcategory R such that

(P,I) ∈ Lκ(K) and (P,I) ∈ Lρ(R) (6)

Since ε (R 7→ εR) and µ (K 7→ µK) are contravariant operations, we have that

Lemma 2. Let K be a coreflective subcategory in category C2V. M̃ ⊂ K iff Ep ⊂

E
′

(K). In particular, (Ep,Mu) = (E ′(M̃),M′(M̃)).
2. Let R be a reflective subcategory in the category C2V. S ⊂ R iff P

′′

(R) ⊂ Eu.
In particular, (Eu,Mp) = (P ′′(S),I ′′(S)).

Proof. 1. Because M̃ ⊂ K, we deduce that µK ⊂ µM̃ = Eu ∩Mu. Hence M
′

(K) =

Mp · (µK) ⊂ Mp · (Eu ∩ Mu) = Mu. It follows that M
′

(K) ⊂ M
′

(M̃), and

E
′

(M̃) ⊂ E
′

(K). That is Ep ⊂ E
′

(K).
The inverse statement. Consider Ep ⊂ E

′

(K). Then M
′

(K) ⊂ Mu. For any
object X of the category C2V we have the following equation

mX · tX = kX · vX
c , (7)

where kX : kX → X is the K-coreplica, mX : mX → X is the M̃-coreplica of the
object X, and tX : σX → mX and vX

c : σX → X are the
∑

-coreplicas of the
respective objects. In equality (7) tX ∈ Ep, and vX

c ∈ M
′

(K) ⊂ Mu.
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Hence tX⊥kX . There is a morphism uX : mX → kX such that

vX
c = uX · tX , (8)

mX = kX · uX . (9)

Equality (9) proves that M̃ ⊂ K.

σX

kX X

mX-

-
? ?

tX

vX
c

kX

mX

��
��

��
��

���

uX

2. Consider S ⊂ R. Then εR ⊂ εS = Eu ∩ Mu, and P
′′

(R) = (εR) · Ep ⊂
(Eu ∩Mu) · Ep = Eu. So P

′′

(R) ⊂ Eu.

The inverse statement. Let P
′′

(R) ⊂ Eu. Then Mp ⊂ I
′′

(R). For any object X

of the category C2V we have the following equation

vX · rX = iX · sX , (10)

where sX : X → sX is the S-replica, rX : X → rX is the R-replica of object X,
and iX : sX → πX and vX : rX → πX are the

∏
-replicas of the respective objects.

In equality (10) rX ∈ P
′′

(R), and iX ∈ Mp ⊂ I
′′

(R). Hence rX⊥iX . There is a
morphism lX with properties

.
X

sX πX

rX-

-
? ?

rX

sX

iX

vX

��
��

��
��

���

lX

sX = lX · rX , (11)

vX = iX · lX . (12)

Equality (11) proves that S ⊂ R.
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(P
′′

(R),I
′′

(R))

(P
′

(R),I
′

(R))

Lρ(R)

•

•

(E
′

(K),M
′

(K))

(E
′′

(K),M
′′

(K))

Lκ(K)

•

•

(Eu,Mp)

(Ep,Mu)

•

•

(Epi,Mf )

(Ef ,Mono)
•

•

A schematic interpretation of the lattices Lρ(R) and Lκ(K) in the case when

S ⊂ R and M̃ ⊂ K is shown above.
We denote by C(B) the class of all factorization structures (P,I) with the prop-

erty
Ep ⊂ P ⊂ Eu.

C(B) is called the lattice center of the lattice B of factorization structures of the
category C2V.

Lemma 3. Let (P,I) be a factorization structure in the category C2V, K and R
subcategories for which

(P,I) ∈ Lκ(K) and (P,I) ∈ Lρ(R).

The following affirmations are true:
1. M̃ ⊂ K iff Ep ⊂ P.
2. S ⊂ R iff P ⊂ Eu.
3. M̃ ⊂ K and S ⊂ R iff (P,I) ∈ C(B).

Proof. 1. In the previous lemma Ep ⊂ E
′

(K), and E
′

(K) ⊂ P.
2. Dually.
3. Follows from 1. and 2.

Corollary 1. For any coreflective subcategory K of the category C2V with the prop-
erty M̃ ⊂ K, it follows that (E

′

(K),M
′

(K)) ∈ C(B).
2. For any reflective subcategory R with the property S ⊂ R, it follows that

(P
′′

(R),I
′′

(R)) ∈ C(B).
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3. C(B) is a complete lattice with first element and last element: (Ep,Mu) and
(Eu,Mp).

4. C(B) contains two proper classes of elements:

{(E
′

(K),M
′

(K)) | M̃ ⊂ K ∈ K},

{(P
′′

(R),I
′′

(R)) | S ⊂ R ∈ R}.

3 Commutative functors

We shall examine some cases when the coreflector and reflector functor commute
in the category C2V.

Theorem 5. Consider (P,I) ∈ C(B) and let K and R be subcategories of the
category C2V for which (P,I) ∈ Lκ(K) ∩ Lρ(R). Then the coreflector functor k :
C2V → K and the reflector functor r : C2V → R commute: k · r = r · k.

Proof. We construct the K-coreplica an arbitrary object X of the category C2V. Let
σX : σX → X, mX : mX → X and kX : kX → X respectively the Σ-coreplica,
M̃-coreplica and K-coreplica of X. Because Σ ⊂ M̃ ⊂ K it follows that:

σX = kX · vX
c , (13)

σX = mX · pX , (14)

mX = kX · pX
1 (15)

for three morphisms vX
c , pX , pX

1 . We have pX ⊂ P. So both equalities (13) and (15)
are (P,I)-factorizations of respective morphisms.

X

@
@

@
@@R

σX mX

?

kX

�
�

�
��	

- -
HHj

kX

mX

σX

vX
c

pX pX
1

Dual. Let rX : X → rX and sX : X → sX be respectively the R-replica and
the S-replica of the object X. Then

sX = iX1 · rX (16)

for any morphism iX1 and this equality is (P,I)-factorization of S-replica sX of
object X.
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πX

@
@

@
@@R

X rX

?

sX

�
�

�
�

�
�	

- -

iX2

vX

πX

rX iX1
HHj

sX

So we obtained the following rule:

1. The K-coreplica of an arbitrary object X of the category C2V is obtained by
the (P,I)-factorization of the M̃-coreplica of this object

mX = kX · pX
1 .

2. The R-replica of the object X is obtained by the (P,I)-factorization of the
S-replica of this object

sX = iX1 · rX .

We apply this rule to obtain the R-replica of the object kX and the K-coreplica
of the object rX.

Because kX ∈ Eu

⋂
Mu, it follows that the morphism sX · kX is the S-replica

of the object kX. So to obtain the R-replica of the object kX it is necessary to
execute the (P,I)-factorization of the morphism sX · kX . Considering that iX1 ∈ I,
remains to be performed the (P,I)-factorization of morphism rX · kX . Let

rX · kX = lX · tX (17)

be this factorization.

X

mX kX tX = rkX = krX

rX sX

- -

- -

? ?

@
@

@
@

@
@

@@R

��*

mX kX lX = krX = r(kX)

rX

tX = rkX = k(rX)pX
1

iX1

sX

Hence tX : kX → tX is the R-replica of the object kX. Since rX · mX ∈
Eu

⋂
Mu, it follows that this morphism is the M̃-coreplica of the object rX. To
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obtain the K-coreplica of the object rX should to perform the (P,I)-factorization
of this morphism, or the morphism rX · kX , because pX

1 ∈ P, and

rX · mX = rX · kX · pX
1 . (18)

But equality (11) is the (P,I)-factorization of the morphism rX · kX . So we
proved that the functors k and r commute: k · r = r · k.

Assume that the conditions of the previous theorem are met and return to the
last diagram. Equalities

mX = kX · pX
1 , (19)

sX = iX1 · rX , (20)

rX · kX = krX · rkX (21)

are (P,I)-factorizations of respective morphisms (the left part of equality). Hence

rX , pX
1 , rkX ∈ P, iX1 , krX , kX ∈ I. (22)

The equalities (19) and (21) are (E ,M)-factorizations of respective morphisms
for any element (E ,M) ∈ Lκ(K), in particular, for the element (E ′(K),M′(K)). So

rkX , pX
1 ∈ E ′(K); krX , kX ∈ M′(K). (23)

Dual

rX , rkX ∈ P
′′

(R); iX1 , krX ∈ I
′′

(R). (24)

We have the following equalities:

krX = r(kX), (25)

rkX = k(rX). (26).

Theorem 6. Consider (P,I) ∈ C(B), (P,I) ∈ Lκ(K)
⋂

Lρ(R) and let the class P
of projections be Mu-hereditary. Then:

1. (P,I) = (P
′′

(R),I
′′

(R)).

2. For any object X ∈ |C2V| the square rX · kX = krX · rkX is a pullback.

3. K = C ∗s R for any coreflective subcategory C with the property K ⊂ C ⊂ M̃.

4. The subcategory K is closed in relation to (εR)-subobjects.

Proof. 1. In the lattice Lρ(R) there is an unique factorization structure whose class
of projections is Mu-hereditary, i.e. (P

′′

(R),I
′′

(R)).

2. Because kX ∈ I = I
′′

(R) by equality

rX · kX = r(kX) · rkX . (27)

3. Let C be a coreflective subcategory of the category C2V and K ⊂ C ⊂ M̃. For
an arbitrary object X ∈ |C2V| construct the diagram
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lX

cX

X rX

rcX-

-

? ?

HHHHHj
�����*

������

rcX

cX

tX

lX

rX

r(cX)fX = rlX

.

From the equality
rcX = fX · tX (28)

and from the fact that tX is an epimorphism it follows that tX ∈ εR ⊂ P
′′

(R).
Further, the morphisms cX and lX are universal monomorphisms. Because

rX · lX = r(cX) · fX (29)

is a pullback, we deduce that lX ∈ I ′′(R). So the equality

cX = lX · tX (30)

is the (P
′′

(R),I
′′

(R))-factorization of the morphism cX .

In particular we consider C = M̃. Then L = K and we have proved the equality

K = M̃ ∗s R.

In Theorem 2.4 [3] we deduce that K = K ∗s R. The relations K ⊂ C ⊂ M̃ and

K ∗s R = M̃ ∗s R = K imply that C ∗s R = K.
4. Let X ∈ |K|, and e : Y → X ∈ εR. To prove that Y ∈ |K| we examine the

K-coreplica of this object. By the hypothesis kY : kY → Y ∈ I
′′

(R), and kY is a the
P

′′

(R)-factorobject of the object mY . Because e and kY belong to the class Eu∩Mu,

it follows that the M̃-coreplicas of kY , Y and X coincide: mkY = mY = mX. On
the other hand, because X ∈ |K|, we deduce that mX ∈ P

′′

(R).

kY Y X- -

mX = mY = mkY

�
�

�
��	 ?

@
@

@
@@R

mkY mY mX

kY e

We have
mX = e · kY · mkY . (31)

So mX ∈ P
′′

(R), e ∈ Mu and the class P
′′

(R) is Mu-hereditary. Hence kY ·mkY ∈
P

′′

(R) and kY ∈ P
′′

(R). Finally, kY ∈ P
′′

(R) ∩ I
′′

(R) = Iso. So we have proved
that Y ∈ |K|.
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Corollary 2. Take R ∈ R and S ⊂ R. Then:
1. QP ′′(R)(M̃) = M̃ ∗s R.

2. The coreflector functor l : C2V → M̃∗sR and the reflector functor r : C2V → R
commute: l · r = r · l.

We formulate the dual result.
Theorem 7. Let (P,I) ∈ C(B), (P,I) ∈ Lκ(K) ∩ Lρ(R), and let the class I of
injections be Eu-cohereditary. Then:

1. ((P,I) = (E
′

(K),M
′

(K)).
2. For any object X ∈| C2V |, the square rX · kX = krX · rkX is a pushout.
3. R = K ∗d C1 for any reflective subcategory C1 of the category C2V with the

condition S ⊂ C1 ⊂ R.

4. The subcategory R is closed in relation to (µK)-factorobjects.

Corollary 3. Let K ∈ K and M̃ ⊂ K. Then:

1.SM′(K)(S) = K ∗d S.
2. The coreflector functor k : C2V → K and the reflector functor v : C2V → K∗dS

commute:

k · v = v · k.

Definition 5 [2]. Let K be a coreflective non-zero subcategory, and R - a reflective
non-zero subcategory of the category C2V. The pair (K,R) is called a relative torsion
theory (RTT) if the functors k and r commute and for any object X of the category
C2V the square rX · kX = krX · rkX is a pullback and a pushout.

Considering the last two theorems we obtain:

Theorem 8. Consider (P,I) ∈ C(B), (P,I) ∈ Lκ(K) ∩ Lρ(R) where the class P
(respectively: the class I) is Mu-hereditary (respectively: Eu-cohereditary). Then:

1.(P,I) = (E
′

(K),M
′

(K)) = (P
′′

(R),I
′′

(R)).
2. For any object X ∈| C2V | the square rX · kX = krX · rkX is a pushout and a

pullback.
3. K = C ∗s R and R = K ∗d C1 for any coreflective subcategory C, with the

condition K ⊂ C ⊂ M̃ and any reflective subcategory C1 with the condition S ⊂
C1 ⊂ R,

4. The pair (K,R) is a relative torsion theory (RTT).

5. The subcategory K is closed in relation to (εR)-subobjects, and the subcategory
R is closed in relation to (µK)-factorobjects.

4 Examples and problems

Example 1. For the reflective subcategory S of spaces with weak topology, we have

P
′′

(S) = (εS) · Ep = (Eu ∩Mu) · Ep = Eu.

Hence I
′′

(S) = Mp. Then QEu
(M̃) = C2V. For the pair (C2V,S), the coreflector

functor i : C2V → C2V and the reflector functor s : C2V → S commute.
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Example 2. Let R be a reflective subcategory of the category C2V, S ⊂ R and
S 6= R.

Let (E, u) be an arbitrary object of the category C2V, r(E, u) = (E, r(u)) - the
R-replica of this object, and m(E, u) = (E,m(u)) and r(E,m(u)) = (E, rm(u))

- the M̃-coreplica and the R-replica respectively of (E, u). We denote by L the

subcategory QP ′′(R)(M̃). Hence L = M̃ ∗s R. Let l(E, u) = (E, l(u)) be the

L-coreplica of (E, u).

(E, l(u))

(E,m(u))

(E, u) (E, r(u))

(E, rm(u))-

-
? ?

HHHHHj �����*

������

rmE

mE

tE

lE

rE

r(mE)
fE

Because
rE · mE = r(mE) · rmE

is an pullback we deduce that

l(u) = sup(u, rm(u)),

where the supremum is taken in the class of locally convex topologies.
Let lE be an isomorphism. We consider lE = 1. For the morphism lE there

exists a morphism g : (E, r(u)) → (E, rm(u)) so that

fE = g · rE.

We have
g · r(mE) · rmE = g · rE · mE = fE · mE = rmE

i.e.
g · r(mE) · rmE = rmE .

Since rmE is an epimorphism, we deduce that

g · r(mE) = 1.

But r(mE) is an epimorphism. Hence r(mE) is an isomorphism. Finally, if lE is an
isomorphism, then r(E, u) = r(E,m(u)). So, if for any object (E, u) of the category
C2V, the morphism lE is an isomorphism, we deduce that this is the case also when
(E, u) ∈ |S|:

(E, u) = r(E, u) = r(E,m(u)).

The R-replica of objects of subcategory M̃ belongs to the subcategory S. From
here it results that the R-replica of any object belongs to the subcategory S. So
R = S.
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Theorem 9. Let R be a reflective subcategory of the category C2V, S ⊂ R and
S 6= R. Then:

1. M̃ ∗s R 6= C2V.

2. The coreflector functor l : C2V → M̃∗sR and the reflector functor r : C2V → R
commute: l · r = r · l.

3. For any object (E, u) ∈ |C2V|, its the L-coreplica (E, l(u)) has the property
l(u) = max(u, rm(u)), where (E, rm(u)) is the R-replica of the object (E,m(u)),
and the maximum is taken in the class of locally convex topologies.

We formulate the dual result.

Theorem 10. Let K a coreflective subcategory of the category C2V, M̃ ⊂ K and
M̃ 6= K. Then:

1. K ∗d S 6= C2V.

2. The reflector functor v : C2V → K∗dS and the coreflector functor k : C2V → K
commute: k · v = v · k.

3. For any object (E, u) ∈ |C2V|, its the V-replica (E, v(u)) has the property
v(u) = min(u, ks(u)), where the minimum is taken in the class of locally convex
topologies, and (E, ks(u)) is the K-coreplica of (E, s(u)).

(E, v(u))

(E, k(u))

(E, u) (E, s(u))

(E, ks(u))-

-
? ?

HHHHHj

������

�����*

k(sE)

kE

uEvE

sE

ksEgE

Problem 1. Let (P1,I1) and (P2,I2) be two factorization structures in the category
C2V, (P1 ⊂ P2 and P1 6= P2). Is there always a factorization structure (P,I) with
property P1 ⊂ P ⊂ P2 and P1 6= P 6= P2?

Problem 2. Let K and R be two subcategories of the category C2V, the first
coreflective, and the second reflective.

If the right product K ∗d R is a coreflective subcategory, then is M̃ ⊂ K or
S ⊂ R?

Problem 3. Is it true that for any factorization structure (P,I) which belongs
to the center C(B), the class P must be Mu-hereditary and the class I must be
Eu-cohereditary?
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