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Semi-integral filters and semi-integral BL-algebras

Somayeh Motamed

Abstract. In this paper, we introduced the concepts of semi-integral filters and semi-
integral BL-algebras. With respect to these concepts, we give some related results.
In particular, we give some relations among semi-integral BL-algebras, integral BL-
algebras and local BL-algebra. Also, we give some relations among semi-integral filters
and other types of filters in BL-algebras, such as prime, maximal, primary, perfect,
normal, positive implicative and obstinate filters.
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1 Introduction

BL-algebras are the algebraic structure for Hájek basic logic introduced in order
to investigate many valued logic by algebraic means. His motivations for introducing
BL-algebras were of two kinds. The first one was providing an algebraic counterpart
of a propositional logic, called Basic Logic, which embodies a fragment common to
some of the important many-valued logics, namely Lukasiewicz Logic, Godel Logic
and Product Logic. This Basic Logic (BL for short) is proposed as the most general
many-valued logic with truth values in [0, 1] and BL-algebras are the corresponding
Lindenbaum-Tarski algebras. The second one was to provide algebraic means for the
study of continuous t-norms (or triangular norms) on [0, 1], [6]. Turunen introduced
the notion of an implicative filter and a Boolean filter and proved that these notions
are equivalent in BL-algebras, [11]. Boolean filters are an important class of filters,
because the quotient BL-algebras induced by these filters are Boolean algebras.

2 Preliminaries

Definition 1 (see [6]). A BL-algebra is an algebra (A,∧,∨, ∗,→, 0, 1) with four
binary operations ∧,∨, ∗,→ and two constants 0, 1 such that:

(BL1) (A,∧,∨, 0, 1) is a bounded lattice L(A),

(BL2) (A, ∗, 1) is a commutative monoid,

(BL3) ∗ and → form an adjoint pair, i.e. c ≤ a → b if and only if a ∗ c ≤ b, for
all a, b, c ∈ A,

(BL4) a ∧ b = a ∗ (a → b),

(BL5) (a → b) ∨ (b → a) = 1.
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A BL-algebra A is called
– an MV -algebra if for all x ∈ A, x−− = x, where x− = x → 0.
– a Godel algebra if for all x ∈ A, x2 = x.
– an Integral BL-algebra if for all x, y ∈ A, x ∗ y = 0 imlpies x = 0 or y = 0, [3].
It is easy to prove that if A is a BL-algebra and x, y, z ∈ A, we have the following

rules of calculus (for more details see [4], [5], [6], [12]):
(BL6) x ≤ y if and only if x → y = 1,
(BL7) 1 → x = x and x ≤ y → x,
(BL8) x → (y → z) = (x ∗ y) → z = y → (x → z),
(BL9) If x ≤ y, then y → z ≤ x → z, z → x ≤ z → y and y− ≤ x−,
(BL10) x ≤ x−−, x−−− = x−, x ∗ 0 = 0 and x ∗ x− = 0,
(BL12) x → y− = y → x− = x−− → y− = (x ∗ y)−.

Hájek defined a filter of a BL-algebra A to be a nonempty subset F of A such that
(i) a, b ∈ F implies a ∗ b ∈ F , and (ii) if a ∈ F , a ≤ b, then b ∈ F ,[6]. Turunen
defined a deductive system of a BL-algebra A to be a nonempty subset D of A such
that (i) 1 ∈ D and (ii) x ∈ D and x → y ∈ D imply y ∈ D. Note that a subset F
of a BL-algebra A is a deductive system of A if and only if F is a filter of A, [11].
Let F be a filter of a BL-algebra A. F is proper if F 6= A. A proper filter F of A
is called a prime filter of A if for all x, y ∈ A, x ∨ y ∈ F implies x ∈ F or y ∈ F .
Equivalently, F is a prime filter of A if and only if for all x, y ∈ A, either x → y ∈ F
or y → x ∈ F . A filter of A is maximal if it is proper and it is not contained in any
other proper filter of A.

Let F be a proper filter of A. The intersection of all maximal filters of A
containing F is called the radical of F and it is denoted by Rad(F ). We proved
that Rad(F ) = {a ∈ A : (an)− → a ∈ F, for all n ∈ N}, for any filter F of A (for
details, see [9]). It is clear that F ⊆ Rad(F ), for any filter F of A.

Definition 2 (see [1–3]). Let A be a BL-algebra and F be a nonempty subset of
A. Then

⋆ F is called a normal filter of A if F is a filter of A and z → ((y → x) → x) ∈ F
and z ∈ F imply that (x → y) → y ∈ F ,

⋆ a proper filter F is called obstinate filter of A if F is a filter of A and x, y 6∈ F
imply x → y ∈ F and y → x ∈ F ,

⋆ a proper filter F is called primary filter of A if F is a proper filter of A and
(x ∗ y)− ∈ F implies (xn)− ∈ F or (yn)− ∈ F , for some n ∈ N ,

⋆ a proper filter F is called integral filter of A if (x ∗ y)− ∈ P implies x− ∈ P
or y− ∈ P ,

for all x, y, z ∈ A.

If F is a proper filter of A, then the relation ∼F defined on A by (x, y) ∈∼F

if and only if x → y ∈ F and y → x ∈ F is a congruence relation on A. The
quotient algebra A/ ∼F denoted by A/F becomes a BL-algebra in a natural way,
with the operations induced from those of A. So, the order relation on A/F is given
by x/F ≤ y/F if and only if x → y ∈ F . Hence x/F = 1/F if and only if x ∈ F
and x/F = 0/F if and only if x− ∈ F .
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Theorem 1 (see [11]). Let P be a proper filter of BL-algebra A. The following are
equivalent:

(1) A/P is a linearly BL-algebra,
(2) P is a prime filter of A.

3 Main Results in BL-algebras

In this section, first we obtain some new properties of X− in BL-algebras, that
it defined in [10]. Further we define a new radical of a non-empty subset of BL-
algebras. Also, we introduce the notions of semi-integral BL-algebras and semi-
integral filters and characterized them.

Let X be a non-empty subset of BL-algebra A. We have X− = {a ∈ A : a− ∈
X}, for details see [10].

Proposition 1. Let A and B be BL-algebras, X, Y and Xi (i ∈ I), be non-empty
subsets of A, F be a proper filter of A, Z be a non-empty subset of B and f : A −→ B
be a BL-homomorphism. Then
(i) If X ⊆ Y , then X− ⊆ Y −. If A is an MV -algebra, the converse is true.
(ii) F ∩ F− = ∅.
(iii) F−− = {a ∈ A : a−− ∈ F}, F ⊆ F−− and if A is an MV -algebra, then
F = F−−.
(iv) X−−− = X−.
(v) (∩i∈IXi)

− = ∩i∈IX
−

i
.

(vi) F is an obstinate filter if and only if F ∪ F− = A.
(vii) (∪i∈IXi)

− = ∪i∈IX
−

i
.

(viii) X− = ∪a∈X{a}−, {0}− = D(A) and {1}− = {0}, where {a}− = {x ∈ A :
x− = a}.
(ix) f(X−) ⊆ f(X)− and if A is an MV -algebra, then f(X−) = f(X)−.
(x) f−1(Z−) = (f−1(Z))−.

Proof. (i) If X ⊆ Y , then it is clear that X− ⊆ Y −. Now let X− ⊆ Y −, A be
an MV -algebra and x ∈ X. Then (x−)− = x ∈ X and therefore x− ∈ X−. Thus
x− ∈ Y −. So x = (x−)− ∈ Y . Hence X ⊆ Y .
(ii) Let x ∈ F ∩ F−. So x ∈ F and x− ∈ F . Hence 0 ∈ F , which is a contradiction.
Thus F ∩ F− = ∅.
(iii), (iv), (v), (vi), (vii) The proofs are clear.
(viii) Since {a} ⊆ X, for all a ∈ X, by item (i), {a}− ⊆ X− and so ∪a∈X{a}− ⊆ X−.
Now let x ∈ X−. Then x− ∈ X and so there exists a ∈ X such that x− = a ∈ {a}.
Thus x ∈ {a}− and therefore x ∈ ∪a∈X{a}−.
(ix) Let a ∈ X−. Then a− ∈ X and so f(a)− = f(a−) ∈ f(X). Therefore f(X−) ⊆
f(X)−. Now assume that A is an MV -algebra and y ∈ f(X)−. Then y− ∈ f(X)
and so y− = f(a), for some a ∈ X. As A is an MV -algebra and a−− = a ∈ X, we
have a− ∈ X− and y = y−− = f(a)− = f(a−) ∈ f(X−). Thus f(X−) = f(X)−.
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(x) Let a ∈ f−1(Z−). Then f(a) ∈ Z− and f(a−) = f(a)− ∈ Z. So a− ∈ f−1(Z)
and a ∈ (f−1(Z))−. So f−1(Z−) ⊆ (f−1(Z))−. Now let a ∈ (f−1(Z))−. Then
a− ∈ f−1(Z) and f(a)− = f(a−) ∈ Z. Thus f(a) ∈ Z− and so a ∈ f−1(Z−), i.e.
(f−1(Z))− ⊆ f−1(Z−).

Definition 3. Let X be a non-empty subset of BL-algebra A. Define

√
X = {a ∈ A : at ∈ X, for some t ∈ N}.

Example 1. Let A = {0, a, b, c, d, 1}, where 0 < d < c < a, b < 1. Define ∗ and →
as follows:

∗ 0 a b c d 1

0 0 0 0 0 0 0
a 0 a c c d a
b 0 c b c d b
c 0 c c c d c
d 0 d d d 0 d
1 0 a b c d 1

→ 0 a b c d 1

0 1 1 1 1 1 1
a 0 1 b b d 1
b 0 a 1 a d 1
c 0 1 1 1 d 1
d d 1 1 1 1 1
1 0 a b c d 1

Then (A,∧,∨, ∗,→, 0, 1) is a BL-algebra. Now for X = {a, b} and Y = {0}, we
have

√
X = X and Y = {0} ⊂

√
Y = {0, d}.

An element a ∈ A is called nilpotent if an = 0, for some n ∈ N. We have
Nil(A) = {a ∈ A : a is a nilpotent element of A}.

Proposition 2. Let A and B be BL-algebras, X, Y and Xi (i ∈ I) be non-empty
subsets of A, F and G be filters of A, Z be a non-empty subset of B and f : A −→ B
be a BL-homomorphism. Then
(i) X ⊆

√
X, F =

√
F and if A is a Godel algebra, then

√
X = X.

(ii) If X ⊆ Y , then
√

X ⊆
√

Y .

(iii)
√√

X =
√

X.
(iv)

√

(∩i∈IXi) ⊆ ∩i∈I

√
Xi.

(v)
√

(∪i∈IXi) = ∪i∈I

√
Xi.

(vi) f(
√

X) ⊆
√

f(X) and if f is an isomorphism, then f(
√

X) =
√

f(X).

(vii) f−1(
√

Z) =
√

(f−1(Z)).
(viii)

√
0 = Nil(A).

(ix)
√

X = ∪x∈X

√
x, where

√
x = {a ∈ A : at = x, for some t ∈ N}.

In the following, the concepts of semi-integral BL-algebras and semi-integral
filters are introduced and also characterized.

Definition 4. A BL-algebra A is called semi-integral if x ∗ y = 0, for x, y ∈ A,
implies x = 0 or yn = 0, for some n ∈ N.
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Lemma 1. Any integral BL-algebra is a semi-integral BL-algebra.

Example 2. In Example 1, A is a semi-integral BL-algebra; but it is not integral.
Since d2 = 0, but d 6= 0.

Definition 5. A proper filter P of BL-algebra A is called a semi-integral filter if
for x, y ∈ A, (x ∗ y)− ∈ P implies x− ∈ P or (yn)− ∈ P , for some n ∈ N.

Example 3. (i) In Example 1, {1}, {a, 1} and {a, b, c, 1} are semi-integral filters.
(ii) Let A = {0, a, b, c, d, 1}, where 0 < a < b, d < 1 and 0 < c < d < 1. Define ∗ and
→ as follows:

∗ 0 a b c d 1

0 0 0 0 0 0 0
a 0 0 a 0 0 a
b 0 a b 0 a b
c 0 0 0 c c c
d 0 0 a c c d
1 0 a b c d 1

→ 0 a b c d 1

0 1 1 1 1 1 1
a d 1 1 d 1 1
b c d 1 c d 1
c b b b 1 1 1
d a b b d 1 1
1 0 a b c d 1

Then (A,∧,∨, ∗,→, 0, 1) is a BL-algebra and {1} is not a semi-integral filter. Since
(b ∗ c)− = {1} and bn = b, cn = c, b− = c, c− = b 6∈ {1}, for all n ≥ 1.

Corollary 1. In any BL-algebra, every integral filter is a semi-integral filter.

Example 4. In Example 1, {1} is a semi-integral filter; but it is not an integral
filter. Since (d ∗ d)− ∈ {1} while d− = d 6∈ {1}.

Theorem 2. Let P be a proper filter of BL-algebra A. Then A/P is a semi-integral
BL-algebra if and only if P is a semi-integral filter of A.

Proof. Let A/P be a semi-integral BL-algebra and (x ∗ y)− ∈ P , for x, y ∈ A. Then
[x] ∗ [y] = [0]. Hence [x] = [0] or [yn] = [y]n = [0], for some n ∈ N, since A/P is
semi-integral BL-algebra. Therefore x− ∈ P or (yn)− ∈ P , for some n ∈ N and so
P is a semi-integral filter of A. Now let P be a semi-integral filter and [x] ∗ [y] = [0],
for x, y ∈ A. Then [x ∗ y] = [0] and therefore (x ∗ y)− ∈ P . So x− ∈ P or (yn)− ∈ P ,
for some n ∈ N. Hence [x] = [0] or [y]n = [yn] = [0], for some n ∈ N, i.e. A/P is a
semi-integral BL-algebra.

Theorem 3. Every linearly ordered BL-algebra is a semi-integral BL-algebra.

Proof. Let x ∗ y = 0, for x, y ∈ A. As A is a linearly ordered BL-algebra, we have
x ≤ y or y ≤ x. Therefore x2 ≤ x ∗ y or y2 ≤ x ∗ y, so x2 = 0 or y2 = 0. Thus, A is
a semi-integral BL-algebra.

Example 5. In Example 1, A is a semi-integral BL-algebra; but it is not a linearly
ordered BL-algebra, since a 6≤ b and b 6≤ a.
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Corollary 2. In any BL-algebra, every prime filter is semi-integral.

Proof. Let F be a prime filter of BL-algebra A. Then by Theorem 1, A/F is a
linearly ordered BL-algebra. So by Theorem 3, A/F is a semi-integral BL-algebra.
Therefore by Theorem 2, F is a semi-integral filter.

Corollary 3. In any BL-algebra, every maximal filter is semi-integral.

Example 6. In Example 1, F = {1} is a semi-integral filter; but it is not a prime
and so maximal filter. Since a → b 6∈ F and b → a 6∈ F .

Lemma 2. In any BL-algebra, every semi-integral filter is primary.

Proof. Let (x ∗ y)− ∈ P , for x, y ∈ A. Then x− ∈ P or (yn)− ∈ P , for some n ∈ N.
As xn ≤ x, by (BL9), we have (xn)− ∈ P or (yn)− ∈ P , for some n ∈ N and so P is
a primary filter of A.

Open Problem. Is every primary filter semi-integral?

Proposition 3. Let P be an obstinate filter of BL-algebra A. Then A/P is semi-
integral BL-algebra.

Proof. Let [x] ∗ [y] = [0], for x, y ∈ A. So (x ∗ y) → 0 ∈ P . Thus by (BL8),
x → (y → 0) ∈ P, (I). Similarly y → (x → 0) ∈ P, (II). If x ∈ P , then by
(I), y− ∈ P and so [y] = [0]. If y ∈ P , then by (II), x− ∈ P and so [x] = [0]. If
x, y /∈ P , then by hypothesis x− ∈ P and y− ∈ P . Therefore [x] = [y] = [0], i.e A/P
is semi-integral BL-algebra.

Corollary 4. In any BL-algebra, every obstinate filter is semi-integral.

In the following example, we show that the converse of the above corollary is not
true in general.

Example 7. In Example 1, {1} is a semi-integral filter; but it is not an obstinate
filter. Since a, b 6∈ {1} and a → b, b → a 6∈ {1}.

Proposition 4. In any BL-algebra, every positive implicative and semi-integral
filter is obstinate.

Proof. Let F be a positive implicative and semi-integral filter of BL-algebra A and
x, y /∈ F , for x, y ∈ A. As (x−∗x)− ∈ F and F is semi-integral, we have (x−)− ∈ F or
(xn)− ∈ F , for some n ∈ N. If (x−)− ∈ F , then since F is normal, (x−)− → x ∈ F
and so x ∈ F , which is a contradiction. Thus (xn)− ∈ F , for some n ∈ N. As
(xn)− ≤ xn → yn, we have xn → yn ∈ F . Similarly yn → xn ∈ F . Therefore
[xn] = [yn]. So [x]n = [y]n and since F is implicative, we have [x] = [y]. Hence
x → y ∈ F and y → x ∈ F , i.e. F is obstinate.
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By Propositions 4.6 [2], 4 and Corollary 4 we have:

Theorem 4. Let F be a proper filter of BL-algebra A. Then the following conditions
are equivalent.
(i) F is a maximal and positive implicative filter;
(ii) F is a maximal and implicative filter;
(iii) F is an obstinate filter;
(iv) F is a semi-integral and positive implicative filter.

By Theorems 4.14 [3] and Corollary 1, we have the following theorem.

Theorem 5. Let A be a finite BL-algebra. Then any perfect filter of A is a semi-
integral filter.

Proposition 5. Let F and G be proper filters of BL-algebra A such that F ⊆ G
and F be a semi-integral filter. Then G is a semi-integral filter of A.

Proof. Let (x ∗ y)− ∈ G, for x, y ∈ A. As ((x ∗ y) ∗ (x ∗ y)−)− = 1 ∈ F and F is a
semi-integral filter, we have (x ∗ y)− ∈ F or (((x ∗ y)−)n)− ∈ F , for some n ∈ N. If
(((x∗y)−)n)− ∈ F , for some n ∈ N, then (((x∗y)−)n)− ∈ G, which is contradictions
with ((x ∗ y)−)n ∈ G. So (x ∗ y)− ∈ F and as F is a semi-integral filter, we have
x− ∈ F or (yn)− ∈ F , for some n ∈ N. Therefore x− ∈ G or (yn)− ∈ G, for some
n ∈ N. Thus G is a semi-integral filter of A.

By Lemma 2 and Theorem 3.3 [8], we have:

Proposition 6. Let F be a semi-integral filter of BL-algebra A. Then Rad(F ) is a
maximal filter.

Corollary 5. Let F be a prime or semi-integral filter of BL-algebra A. Then
Rad(F ) is a prime, semi-integral and primary filter.

Theorem 6. Let A be a BL-algebra. Then the following conditions are equivalent.
(i) {1} is a semi-integral filter;
(ii) Any filter of A is a semi-integral filter;
(iii) A is a semi-integral BL-algebra.

Proof. (i) ⇒ (ii) By Proposition 5, the proof is easy.
(ii) ⇒ (iii) As {1} is a semi-integral filter, by Theorem 2, A/{1} is semi-integral.
So A is a semi-integral BL-algebra.
(iii) ⇒ (i) A/{1} is semi-integral, so by Theorem 2, {1} is a semi-integral filter of
A.

Theorem 7. Let F be a proper filter of BL-algebra A. Then F is a semi-integral
filter if and only if every filter of the quotient algebra A/F is a semi-integral filter.
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Proof. Let F be a semi-integral filter and ([x]∗ [y])− ∈ {[1]}. Then (x∗y)− ∈ F and
so x− ∈ F or (yn)− ∈ F , for some n ∈ N. Thus [x]− ∈ {[1]} or ([y]n)− ∈ {[1]}, for
some n ∈ N. Therefore {[1]} is a semi-integral filter and by Theorem 6 (i) ⇒ (ii),
every filter of the quotient algebra A/F is a semi-integral filter. Conversely, assume
that every filter of the quotient algebra A/F is a semi-integral filter. So {[1]} is a
semi-integral filter. Let (x∗y)− ∈ F , for x, y ∈ A. Then ([x]∗[y])− ∈ {[1]}. Therefore
[x]− ∈ {[1]} or ([y]n)− ∈ {[1]}, for some n ∈ N. Hence x− ∈ F or (yn)− ∈ F , for
some n ∈ N. Thus F is a semi-integral filter of A.

Proposition 7. Let A be a Godel algebra. Then any proper filter F of A is semi-
integral if and only if F is primary.

Lemma 3. A Godel algebra A is a semi-integral BL-algebra if and only if A is an
Integral BL-algebra.

By Theorem 4.15 [3] and Lemma 3, we have

Corollary 6. Let A be a Godel algebra and F be a proper filter of A. The following
conditions are equivalent:

(i) F is an integral filter of A;
(ii) F is a primary filter of A;
(iii) F is a semi-integral filter of A;
(iv) A/F is a local BL-algebra.

By Theorem 3.6 [8] and Proposition 5, we have:

Proposition 8. Let F be a filter of BL-algebra A. Then we have (i) ⇒ (ii) ⇒
(iii) ⇒ (iv) ⇒ (v).
(i) F is a semi-integral filter.
(ii) F is a primary filter.
(iii) Rad(F) is a prime filter.
(iv) Rad(F) is a primary filter.
(v) There exists a unique maximal filter M of A containing F .

By Theorem 4.8 [3] and Lemma 1, we have

Proposition 9. If BL-algebra A has the Godel negation, then A is a semi-integral
BL-algebra.

Lemma 4. Let P be a semi-integral filter of BL-algebra A and [x] ∗ [y] = [0], for
[x] and [y] ∈ A/P . Then [x] or [y] is nilpotent.

Proof. As [x] ∗ [y] = [0], we have (x ∗ y)− ∈ P . By Theorem 2, A/P is a semi-
integral BL-algebra and so [x] = [0] or [yn] = [0], for some n ∈ N. Thus [x] or [y] is
nilpotent.

An element a ∈ A is called zero divisor element of A if a ∗ b = 0, for some
0 6= b ∈ A.
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Proposition 10. Let F be a proper filter of BL-algebra A. If any zero divisor
element of A/F is nilpotent, then F is a semi-integral filter of A.

Proof. Let (x ∗ y)− ∈ F , for x, y ∈ A. So [x] ∗ [y] = 0. Let x− 6∈ F . If [y] = 0, then
y− ∈ F . Otherwise [x] and [y] are zero divisors. Thus there exists n ∈ N such that
[yn] = 0. Therefore (yn)− ∈ F . Hence F is a semi-integral filter.

Theorem 8. Let A be a semi-integral BL-algebra. Then (Nil(A))− = A−{0}. The
converse is true, when (Nil(A))− is a (∗)-closed subset.

Proof. It is clear that (Nil(A))− ⊆ A − {0}. Let x ∈ A − {0}. Then x ∗ x− = 0
and so (x ∗ x−)− = 1 ∈ {1}. By Theorem 6 (iii) ⇒ (i), {1} is a semi-integral
filter of A. Thus x− = 1 or ((x−)n)− = 1, for some n ∈ N. If x− = 1, then as
x ≤ x−− = 1− = 0, we have x = 0, which is a contradiction. So ((x−)n)− = 1, for
some n ∈ N. Since (x−)n ≤ ((x−)n)−− = 1− = 0, we have (x−)n = 0. Therefore
x ∈ (Nil(A))−, i.e. (Nil(A))− = A−{0}. Now assume that (Nil(A))− is a ∗-closed
subset, (Nil(A))− = A − {0} and x ∗ y = 0, for x, y ∈ A. If x /∈ (Nil(A))−, then
x = 0. Similarly if y /∈ (Nil(A))−, then y = 0. If x, y ∈ (Nil(A))−, then by
hypothesis x ∗ y ∈ (Nil(A))−, which is a contradiction. Therefore A is semi-integral
BL-algebra.

Definition 6. Let F be a semi-integral filter of BL-algebra A. If m = Rad(F )
(which by Proposition 6, is an maximal filter), then F is called a m-semi-integral
filter of A

Example 8. In Example 1, {1}, {a, 1} and {a, b, c, 1} are {a, b, c, 1}-semi-integral
filters.

By Theorem 3.1 (1), (2) [8] and Lemma 2, we have:

Proposition 11. Let F be a semi-integral filter of BL-algebra A. Then the following
conditions hold:
(i) (xn)− ∈ F or ((x−)m)− ∈ F , for some n,m ∈ N, for all x ∈ A.
(ii) (a ∗ b)− ∈ F implies that (am)− ∈ F or (bn)− ∈ F , for some n,m ∈ N, for all
a, b ∈ A.

Theorem 9. Let F be a proper filter of BL-algebra A. Then the following conditions
are equivalent.
(i) A/F is a semi-integral BL-algebra;
(ii) For all x ∈ A −

√
F−, F− = {a ∈ A : (a ∗ x)− ∈ F};

(iii) For any subset X of A such that X *
√

F−, F− = {a ∈ A : (a ∗ x)− ∈
F, for all x ∈ X}.

Proof. (i) ⇒ (ii) Assume that x ∈ A −
√

F−. Let a ∈ F−. So a− ∈ F and as
a− ≤ (a ∗ x)−, we have (a ∗ x)− ∈ F . Now let (a ∗ x)− ∈ F . Thus (a ∗ x) → 0 ∈ F
and 0 → (a ∗ x) = 1 ∈ F . Therefore [a] ∗ [x] = [0] and by item (i), [a] = [0] or
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[xn] = [x]n = [0], for some n ∈ N. So a ∈ F− or xn ∈ F−, i.e. a ∈ F− or x ∈
√

F−.
Hence as x /∈

√
F−, we have a ∈ F−.

(ii) ⇒ (iii) Assume that X is a subset of A such that X *
√

F−. It is clear that
F− ⊆ {a ∈ A : (a ∗ x)− ∈ F, for all x ∈ X}. Now let (a ∗ x)− ∈ F , for all x ∈ X.
Since X *

√
F−, there exists y ∈ X −

√
F−. So (a ∗ y)− ∈ F and by item (ii),

a ∈ F−.
(iii) ⇒ (i) Let [x] ∗ [y] = [0], for x, y ∈ A. Thus (x ∗ y)− ∈ F . If there exists
n ∈ N such that [y]n = [0], then A/F is a semi-integral BL-algebra. Otherwise for
all n ∈ N, [y]n 6= [0]. So for all n ∈ N, (yn)− /∈ F . Hence y /∈

√
F−. So {y} *

√
F−

and (x ∗ y)− ∈ F . Therefore by item (iii), x ∈ F−. So x− ∈ F and [x] = [0].

Lemma 5. Let f : A → B be a BL-homomorphism, F be a filter of B and G =
f−1(F ) be a filter of A. Then the following conditions hold:
(i) If F is an m-semi-integral filter, then G is an f−1(m)-semi-integral filter of A.
(ii) Let f be a BL-epimorphism. Then F is an m-semi-integral filter of B if and
only if G is an f−1(m)-semi-integral filter of A.

Proof. (i) Let F be a semi-integral filter of B and (a ∗ b)− ∈ G, for a, b ∈ A. Then

f((a ∗ b)−) ∈ F ⇒ (f(a) ∗ f(b))− ∈ F,

⇒ (f(a))− ∈ F or (f(b)n)− ∈ F, for some n ∈ N,

⇒ f(a−) ∈ F or f((bn)−) ∈ F, for some n ∈ N,

⇒ (a)− ∈ G or (bn)− ∈ G, for some n ∈ N,

⇒ G is a semi-integral filter of A.

Now let Rad(F ) = m. Then f−1(Rad(F )) = f−1(m) and so by Theorem 4.5 [9],
f−1(Rad(F )) = Rad(f−1(F )), i.e. Rad(G) = f−1(m). Therefore G is a f−1(m)-
semi-integral filter of A.

(ii) Let G be a semi-integral filter of A and (a ∗ b)− ∈ F , for a, b ∈ B. Since
f is onto, then there exist c, d ∈ A, such that a = f(c) and b = f(d) and so
f((c ∗ d)−) = (f(c) ∗ f(d))− = (a ∗ b)− ∈ F . Thus

(c ∗ d)− ∈ f−1(F ) = G ⇒ c− ∈ G or (dn)− ∈ G, for some n ∈ N,

⇒ (f(c))− ∈ F or (f(d)n)− ∈ F, for some n ∈ N,

⇒ (a)− ∈ F or (bn)− ∈ F, for some n ∈ N,

⇒ F is a semi-integral filter of B.

Let Rad(G) = f−1(m). Then by Theorem 4.5 [9],

Rad(F ) = f(f−1(Rad(F ))) = f(Rad(f−1(F ))) = f(f−1(m)) = m.

Therefore F is an m-semi-integral filter of B.
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Let F be a filter of BL-algebra A and x ∈ A. From [8], (F : x) = {r ∈ A :
r ∨ x ∈ F} is a filter of A which contains F and (F : x) is a proper filter of A, when
x 6∈ F .

By Theorem 4.5(1) [8] and Proposition 5, we have:

Proposition 12. Let F be an m-semi-integral filter of BL-algebra A and x ∈ A−F .
Then
(i) Rad(F ) = Rad((F : x)).
(ii) (F : x) is an m-semi-integral filter.

Open Problem. Is intersection of two m-semi-integral filters an m-semi-integral
filter?

The following example shows that if F is an m1-semi-integral filter and G is an
m2-semi-integral filter, then F ∩ G is not a semi-integral filter.

Example 9. Let A = {0, a, b, c, d, e, f, g, 1}, where 0 < a < b, d < e < 1 and
0 < c < d, f < g < 1. Define ∗ and → as follow:

∗ 0 a b c d e f g 1

0 0 0 0 0 0 0 0 0 0
a 0 0 a 0 0 a 0 0 a
b 0 a b 0 a b 0 a b
c 0 0 0 0 0 0 c c c
d 0 0 a 0 0 a c c d
e 0 a b 0 a b c d e
f 0 0 0 c c c f f f
g 0 0 a c c d f f g
1 0 a b c d e f g 1

→ 0 a b c d e f g 1

0 1 1 1 1 1 1 1 1 1
a g 1 1 g 1 1 g 1 1
b f g 1 f g 1 f g 1
c e e e 1 1 1 1 1 1
d d e e g 1 1 g 1 1
e c d e f g 1 f g 1
f b b b e e e 1 1 1
g a b b d e e g 1 1
1 0 a b c d e f g 1

Then (A,∧,∨, ∗,→, 0, 1) is a BL-algebra. We have F = {e, b, 1} and G = {f, g, 1}
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are semi-integral filters and also Rad(F ) = F and Rad(G) = G. We get that F ∩G is
not a semi-integral filter, since (b∗f)− ∈ F ∩G while b− 6∈ F ∩G and (fn)− 6∈ F ∩G,
for all n ∈ N.

References

[1] Borumand Saeid A., Motamed S. Normal filters in BL-algebras. World Applied Sci. J.,
(Special Issue Appl. Math.), 2009, 7, 70–76.

[2] Borumand Saeid A., Motamed S. A new filter in BL-algebras. Journal of Intelligent and
Fuzzy Systems, 2014, 27, 2949–2957.

[3] Borzooei R. A., Paad A. Integral filters and integral BL-Algebras. Italian Journal of Pure
and Applied Mathematics, 2013, 30, 303–316.

[4] Busneag D., Piciu D. BL-algebra of fractions relative to an ∧-closed system. Analele Stiintifice
ale Universitatii Ovidius Constanta, Seria Matematica, 2003, XI, fascicola 1, 39–48.

[5] Busneag D., Piciu D. On the lattice of deductive systems of a BL-algebra. Central European
Journal of Mathematics, 2003, 1(2), 221–237.
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