Semi-integral filters and semi-integral *BL*-algebras

Somayeh Motamed

Abstract. In this paper, we introduced the concepts of semi-integral filters and semiintegral BL-algebras. With respect to these concepts, we give some related results. In particular, we give some relations among semi-integral *BL*-algebras, integral *BL*algebras and local BL-algebra. Also, we give some relations among semi-integral filters and other types of filters in BL-algebras, such as prime, maximal, primary, perfect, normal, positive implicative and obstinate filters.

Mathematics subject classification: 03B47, 03G25, 06D99. Keywords and phrases: (Semi-integral) BL-algebra, (Semi-integral, Primary, Prime) filter.

1 Introduction

BL-algebras are the algebraic structure for Hájek basic logic introduced in order to investigate many valued logic by algebraic means. His motivations for introducing BL-algebras were of two kinds. The first one was providing an algebraic counterpart of a propositional logic, called Basic Logic, which embodies a fragment common to some of the important many-valued logics, namely Lukasiewicz Logic, Godel Logic and Product Logic. This Basic Logic (BL for short) is proposed as the most general many-valued logic with truth values in [0, 1] and *BL*-algebras are the corresponding Lindenbaum-Tarski algebras. The second one was to provide algebraic means for the study of continuous t-norms (or triangular norms) on [0,1], [6]. Turunen introduced the notion of an implicative filter and a Boolean filter and proved that these notions are equivalent in *BL*-algebras, [11]. Boolean filters are an important class of filters, because the quotient BL-algebras induced by these filters are Boolean algebras.

$\mathbf{2}$ **Preliminaries**

Definition 1 (see [6]). A *BL*-algebra is an algebra $(A, \land, \lor, \ast, \rightarrow, 0, 1)$ with four binary operations $\land, \lor, *, \rightarrow$ and two constants 0, 1 such that:

 (BL_1) $(A, \land, \lor, 0, 1)$ is a bounded lattice L(A),

 (BL_2) (A, *, 1) is a commutative monoid,

 (BL_3) * and \rightarrow form an adjoint pair, i.e. $c \leq a \rightarrow b$ if and only if $a * c \leq b$, for all $a, b, c \in A$,

 $(BL_4) \ a \wedge b = a * (a \to b),$ $(BL_5) \ (a \to b) \lor (b \to a) = 1.$

[©] Somayeh Motamed, 2018

- an *MV*-algebra if for all $x \in A$, $x^{--} = x$, where $x^{-} = x \to 0$.

- a Godel algebra if for all $x \in A$, $x^2 = x$.

- an Integral *BL*-algebra if for all $x, y \in A$, x * y = 0 implies x = 0 or y = 0, [3]. It is easy to prove that if A is a *BL*-algebra and $x, y, z \in A$, we have the following

rules of calculus (for more details see [4], [5], [6], [12]): (BL₆) $x \leq y$ if and only if $x \rightarrow y = 1$, (BL₇) $1 \rightarrow x = x$ and $x \leq y \rightarrow x$, (BL₈) $x \rightarrow (y \rightarrow z) = (x * y) \rightarrow z = y \rightarrow (x \rightarrow z)$, (BL₉) If $x \leq y$, then $y \rightarrow z \leq x \rightarrow z$, $z \rightarrow x \leq z \rightarrow y$ and $y^- \leq x^-$, (BL₁₀) $x \leq x^{--}$, $x^{---} = x^-$, x * 0 = 0 and $x * x^- = 0$, (BL₁₂) $x \rightarrow y^- = y \rightarrow x^- = x^{--} \rightarrow y^- = (x * y)^-$.

Hájek defined a filter of a BL-algebra A to be a nonempty subset F of A such that (i) $a, b \in F$ implies $a * b \in F$, and (ii) if $a \in F$, $a \leq b$, then $b \in F$,[6]. Turunen defined a deductive system of a BL-algebra A to be a nonempty subset D of A such that (i) $1 \in D$ and (ii) $x \in D$ and $x \to y \in D$ imply $y \in D$. Note that a subset Fof a BL-algebra A is a deductive system of A if and only if F is a filter of A, [11]. Let F be a filter of a BL-algebra A. F is proper if $F \neq A$. A proper filter F of Ais called a prime filter of A if for all $x, y \in A, x \lor y \in F$ implies $x \in F$ or $y \in F$. Equivalently, F is a prime filter of A if and only if for all $x, y \in A$, either $x \to y \in F$ or $y \to x \in F$. A filter of A is maximal if it is proper and it is not contained in any other proper filter of A.

Let F be a proper filter of A. The intersection of all maximal filters of A containing F is called the radical of F and it is denoted by Rad(F). We proved that $Rad(F) = \{a \in A : (a^n)^- \to a \in F, \text{ for all } n \in N\}$, for any filter F of A (for details, see [9]). It is clear that $F \subseteq Rad(F)$, for any filter F of A.

Definition 2 (see [1-3]). Let A be a *BL*-algebra and F be a nonempty subset of A. Then

★ F is called a normal filter of A if F is a filter of A and $z \to ((y \to x) \to x) \in F$ and $z \in F$ imply that $(x \to y) \to y \in F$,

★ a proper filter F is called obstinate filter of A if F is a filter of A and $x, y \notin F$ imply $x \to y \in F$ and $y \to x \in F$,

★ a proper filter F is called primary filter of A if F is a proper filter of A and $(x * y)^- \in F$ implies $(x^n)^- \in F$ or $(y^n)^- \in F$, for some $n \in N$,

★ a proper filter F is called integral filter of A if $(x * y)^- \in P$ implies $x^- \in P$ or $y^- \in P$,

for all $x, y, z \in A$.

If F is a proper filter of A, then the relation \sim_F defined on A by $(x, y) \in \sim_F$ if and only if $x \to y \in F$ and $y \to x \in F$ is a congruence relation on A. The quotient algebra A/\sim_F denoted by A/F becomes a *BL*-algebra in a natural way, with the operations induced from those of A. So, the order relation on A/F is given by $x/F \leq y/F$ if and only if $x \to y \in F$. Hence x/F = 1/F if and only if $x \in F$ and x/F = 0/F if and only if $x^- \in F$. **Theorem 1** (see [11]). Let P be a proper filter of BL-algebra A. The following are equivalent:

(1) A/P is a linearly BL-algebra,
(2) P is a prime filter of A.

3 Main Results in *BL*-algebras

In this section, first we obtain some new properties of X^- in *BL*-algebras, that it defined in [10]. Further we define a new radical of a non-empty subset of *BL*algebras. Also, we introduce the notions of semi-integral *BL*-algebras and semiintegral filters and characterized them.

Let X be a non-empty subset of *BL*-algebra A. We have $X^- = \{a \in A : a^- \in X\}$, for details see [10].

Proposition 1. Let A and B be BL-algebras, X, Y and X_i $(i \in I)$, be non-empty subsets of A, F be a proper filter of A, Z be a non-empty subset of B and $f : A \longrightarrow B$ be a BL-homomorphism. Then

(i) If $X \subseteq Y$, then $X^- \subseteq Y^-$. If A is an MV-algebra, the converse is true. (ii) $F \cap F^- = \emptyset$. (iii) $F^{--} = \{a \in A : a^{--} \in F\}, F \subseteq F^{--} and if A is an MV-algebra, then <math>F = F^{--}$. (iv) $X^{---} = X^-$. (v) $(\cap_{i \in I} X_i)^- = \cap_{i \in I} X_i^-$. (vi) F is an obstinate filter if and only if $F \cup F^- = A$. (vii) $(\cup_{i \in I} X_i)^- = \cup_{i \in I} X_i^-$. (viii) $X^- = \cup_{a \in X} \{a\}^-$, $\{0\}^- = D(A)$ and $\{1\}^- = \{0\}$, where $\{a\}^- = \{x \in A : x^- = a\}$. (ix) $f(X^-) \subseteq f(X)^-$ and if A is an MV-algebra, then $f(X^-) = f(X)^-$. (x) $f^{-1}(Z^-) = (f^{-1}(Z))^-$.

Proof. (i) If $X \subseteq Y$, then it is clear that $X^- \subseteq Y^-$. Now let $X^- \subseteq Y^-$, A be an MV-algebra and $x \in X$. Then $(x^-)^- = x \in X$ and therefore $x^- \in X^-$. Thus $x^- \in Y^-$. So $x = (x^-)^- \in Y$. Hence $X \subseteq Y$.

(ii) Let $x \in F \cap F^-$. So $x \in F$ and $x^- \in F$. Hence $0 \in F$, which is a contradiction. Thus $F \cap F^- = \emptyset$.

(iii), (iv), (v), (vi), (vii) The proofs are clear.

(viii) Since $\{a\} \subseteq X$, for all $a \in X$, by item (i), $\{a\}^- \subseteq X^-$ and so $\cup_{a \in X} \{a\}^- \subseteq X^-$. Now let $x \in X^-$. Then $x^- \in X$ and so there exists $a \in X$ such that $x^- = a \in \{a\}$. Thus $x \in \{a\}^-$ and therefore $x \in \bigcup_{a \in X} \{a\}^-$.

(ix) Let $a \in X^-$. Then $a^- \in X$ and so $f(a)^- = f(a^-) \in f(X)$. Therefore $f(X^-) \subseteq f(X)^-$. Now assume that A is an MV-algebra and $y \in f(X)^-$. Then $y^- \in f(X)$ and so $y^- = f(a)$, for some $a \in X$. As A is an MV-algebra and $a^{--} = a \in X$, we have $a^- \in X^-$ and $y = y^{--} = f(a)^- = f(a^-) \in f(X^-)$. Thus $f(X^-) = f(X)^-$.

(x) Let $a \in f^{-1}(Z^{-})$. Then $f(a) \in Z^{-}$ and $f(a^{-}) = f(a)^{-} \in Z$. So $a^{-} \in f^{-1}(Z)$ and $a \in (f^{-1}(Z))^{-}$. So $f^{-1}(Z^{-}) \subseteq (f^{-1}(Z))^{-}$. Now let $a \in (f^{-1}(Z))^{-}$. Then $a^{-} \in f^{-1}(Z)$ and $f(a)^{-} = f(a^{-}) \in Z$. Thus $f(a) \in Z^{-}$ and so $a \in f^{-1}(Z^{-})$, i.e. $(f^{-1}(Z))^{-} \subseteq f^{-1}(Z^{-})$.

Definition 3. Let X be a non-empty subset of BL-algebra A. Define

 $\sqrt{X} = \{a \in A : a^t \in X, \text{ for some } t \in \mathbb{N}\}.$

Example 1. Let $A = \{0, a, b, c, d, 1\}$, where 0 < d < c < a, b < 1. Define * and \rightarrow as follows:

*	0	a	b	c	d	1	\rightarrow	0	a	b	c	d	1
0	0	0	0	0	0	0	 0	1	1	1	1	1	1
a	0	a	c	c	d	a	a	0	1	b	b	d	1
b	0	c	b	c	d	b	b	0	a	1	a	d	1
c	0	c	c	c	d	c	c	0	1	1	1	d	1
	0						d	d	1	1	1	1	1
1	0	a	b	c	d	1	1	0	a	b	c	d	1

Then $(A, \land, \lor, *, \rightarrow, 0, 1)$ is a *BL*-algebra. Now for $X = \{a, b\}$ and $Y = \{0\}$, we have $\sqrt{X} = X$ and $Y = \{0\} \subset \sqrt{Y} = \{0, d\}$.

An element $a \in A$ is called nilpotent if $a^n = 0$, for some $n \in \mathbb{N}$. We have $Nil(A) = \{a \in A : a \text{ is a nilpotent element of } A\}.$

Proposition 2. Let A and B be BL-algebras, X, Y and X_i $(i \in I)$ be non-empty subsets of A, F and G be filters of A, Z be a non-empty subset of B and $f : A \longrightarrow B$ be a BL-homomorphism. Then (i) $X \subseteq \sqrt{X}$, $F = \sqrt{F}$ and if A is a Godel algebra, then $\sqrt{X} = X$.

(ii) If $X \subseteq Y$, then $\sqrt{X} \subseteq \sqrt{Y}$. (iii) $\sqrt{\sqrt{X}} = \sqrt{X}$. (iv) $\sqrt{(\bigcap_{i \in I} X_i)} \subseteq \bigcap_{i \in I} \sqrt{X_i}$. (v) $\sqrt{(\bigcup_{i \in I} X_i)} = \bigcup_{i \in I} \sqrt{X_i}$. (vi) $f(\sqrt{X}) \subseteq \sqrt{f(X)}$ and if f is an isomorphism, then $f(\sqrt{X}) = \sqrt{f(X)}$. (vii) $f^{-1}(\sqrt{Z}) = \sqrt{(f^{-1}(Z))}$. (viii) $\sqrt{0} = Nil(A)$. (ix) $\sqrt{X} = \bigcup_{x \in X} \sqrt{x}$, where $\sqrt{x} = \{a \in A : a^t = x, \text{ for some } t \in \mathbb{N}\}$.

In the following, the concepts of semi-integral BL-algebras and semi-integral filters are introduced and also characterized.

Definition 4. A *BL*-algebra *A* is called semi-integral if x * y = 0, for $x, y \in A$, implies x = 0 or $y^n = 0$, for some $n \in \mathbb{N}$.

Lemma 1. Any integral BL-algebra is a semi-integral BL-algebra.

Example 2. In Example 1, A is a semi-integral *BL*-algebra; but it is not integral. Since $d^2 = 0$, but $d \neq 0$.

Definition 5. A proper filter P of BL-algebra A is called a semi-integral filter if for $x, y \in A$, $(x * y)^- \in P$ implies $x^- \in P$ or $(y^n)^- \in P$, for some $n \in \mathbb{N}$.

Example 3. (i) In Example 1, $\{1\}$, $\{a, 1\}$ and $\{a, b, c, 1\}$ are semi-integral filters. (ii) Let $A = \{0, a, b, c, d, 1\}$, where 0 < a < b, d < 1 and 0 < c < d < 1. Define * and \rightarrow as follows:

*	0	a	b	c	d	1	\rightarrow	0	a	b	c	d	1
0	0	0	0	0	0	0	0	1	1	1	1	1	1
a	0	0	a	0	0	a	a	d	1	1	d	1	1
b	0	a	b	0	a	b	b	c	d	1	c	d	1
c	0	0	0	c	c	c	c	b	b	b	1	1	1
d	0	0	a	c	c	d	d	a	b	b	d	1	1
1	0	a	b	c	d	1	1	0	a	b	c	d	1

Then $(A, \land, \lor, *, \rightarrow, 0, 1)$ is a *BL*-algebra and $\{1\}$ is not a semi-integral filter. Since $(b * c)^- = \{1\}$ and $b^n = b$, $c^n = c$, $b^- = c$, $c^- = b \notin \{1\}$, for all $n \ge 1$.

Corollary 1. In any BL-algebra, every integral filter is a semi-integral filter.

Example 4. In Example 1, $\{1\}$ is a semi-integral filter; but it is not an integral filter. Since $(d * d)^- \in \{1\}$ while $d^- = d \notin \{1\}$.

Theorem 2. Let P be a proper filter of BL-algebra A. Then A/P is a semi-integral BL-algebra if and only if P is a semi-integral filter of A.

Proof. Let A/P be a semi-integral BL-algebra and $(x * y)^- \in P$, for $x, y \in A$. Then [x] * [y] = [0]. Hence [x] = [0] or $[y^n] = [y]^n = [0]$, for some $n \in \mathbb{N}$, since A/P is semi-integral BL-algebra. Therefore $x^- \in P$ or $(y^n)^- \in P$, for some $n \in \mathbb{N}$ and so P is a semi-integral filter of A. Now let P be a semi-integral filter and [x] * [y] = [0], for $x, y \in A$. Then [x * y] = [0] and therefore $(x * y)^- \in P$. So $x^- \in P$ or $(y^n)^- \in P$, for some $n \in \mathbb{N}$. Hence [x] = [0] or $[y]^n = [y^n] = [0]$, for some $n \in \mathbb{N}$, i.e. A/P is a semi-integral BL-algebra. □

Theorem 3. Every linearly ordered BL-algebra is a semi-integral BL-algebra.

Proof. Let x * y = 0, for $x, y \in A$. As A is a linearly ordered *BL*-algebra, we have $x \leq y$ or $y \leq x$. Therefore $x^2 \leq x * y$ or $y^2 \leq x * y$, so $x^2 = 0$ or $y^2 = 0$. Thus, A is a semi-integral *BL*-algebra.

Example 5. In Example 1, A is a semi-integral *BL*-algebra; but it is not a linearly ordered *BL*-algebra, since $a \not\leq b$ and $b \not\leq a$.

Corollary 2. In any BL-algebra, every prime filter is semi-integral.

Proof. Let F be a prime filter of BL-algebra A. Then by Theorem 1, A/F is a linearly ordered BL-algebra. So by Theorem 3, A/F is a semi-integral BL-algebra. Therefore by Theorem 2, F is a semi-integral filter.

Corollary 3. In any BL-algebra, every maximal filter is semi-integral.

Example 6. In Example 1, $F = \{1\}$ is a semi-integral filter; but it is not a prime and so maximal filter. Since $a \to b \notin F$ and $b \to a \notin F$.

Lemma 2. In any BL-algebra, every semi-integral filter is primary.

Proof. Let $(x * y)^- \in P$, for $x, y \in A$. Then $x^- \in P$ or $(y^n)^- \in P$, for some $n \in \mathbb{N}$. As $x^n \leq x$, by (BL_9) , we have $(x^n)^- \in P$ or $(y^n)^- \in P$, for some $n \in \mathbb{N}$ and so P is a primary filter of A.

Open Problem. Is every primary filter semi-integral?

Proposition 3. Let P be an obstinate filter of BL-algebra A. Then A/P is semiintegral BL-algebra.

Proof. Let [x] * [y] = [0], for $x, y \in A$. So $(x * y) \to 0 \in P$. Thus by (BL_8) , $x \to (y \to 0) \in P$, (I). Similarly $y \to (x \to 0) \in P$, (II). If $x \in P$, then by (I), $y^- \in P$ and so [y] = [0]. If $y \in P$, then by (II), $x^- \in P$ and so [x] = [0]. If $x, y \notin P$, then by hypothesis $x^- \in P$ and $y^- \in P$. Therefore [x] = [y] = [0], i.e A/P is semi-integral BL-algebra.

Corollary 4. In any BL-algebra, every obstinate filter is semi-integral.

In the following example, we show that the converse of the above corollary is not true in general.

Example 7. In Example 1, $\{1\}$ is a semi-integral filter; but it is not an obstinate filter. Since $a, b \notin \{1\}$ and $a \to b, b \to a \notin \{1\}$.

Proposition 4. In any BL-algebra, every positive implicative and semi-integral filter is obstinate.

Proof. Let F be a positive implicative and semi-integral filter of BL-algebra A and $x, y \notin F$, for $x, y \in A$. As $(x^-*x)^- \in F$ and F is semi-integral, we have $(x^-)^- \in F$ or $(x^n)^- \in F$, for some $n \in \mathbb{N}$. If $(x^-)^- \in F$, then since F is normal, $(x^-)^- \to x \in F$ and so $x \in F$, which is a contradiction. Thus $(x^n)^- \in F$, for some $n \in \mathbb{N}$. As $(x^n)^- \leq x^n \to y^n$, we have $x^n \to y^n \in F$. Similarly $y^n \to x^n \in F$. Therefore $[x^n] = [y^n]$. So $[x]^n = [y]^n$ and since F is implicative, we have [x] = [y]. Hence $x \to y \in F$ and $y \to x \in F$, i.e. F is obstinate. \Box

By Propositions 4.6 [2], 4 and Corollary 4 we have:

Theorem 4. Let F be a proper filter of BL-algebra A. Then the following conditions are equivalent.

(i) F is a maximal and positive implicative filter;

(ii) F is a maximal and implicative filter;

(iii) F is an obstinate filter;

(iv) F is a semi-integral and positive implicative filter.

By Theorems 4.14 [3] and Corollary 1, we have the following theorem.

Theorem 5. Let A be a finite BL-algebra. Then any perfect filter of A is a semiintegral filter.

Proposition 5. Let F and G be proper filters of BL-algebra A such that $F \subseteq G$ and F be a semi-integral filter. Then G is a semi-integral filter of A.

Proof. Let $(x * y)^- \in G$, for $x, y \in A$. As $((x * y) * (x * y)^-)^- = 1 \in F$ and F is a semi-integral filter, we have $(x * y)^- \in F$ or $(((x * y)^-)^n)^- \in F$, for some $n \in \mathbb{N}$. If $(((x * y)^-)^n)^- \in F$, for some $n \in \mathbb{N}$, then $(((x * y)^-)^n)^- \in G$, which is contradictions with $((x * y)^-)^n \in G$. So $(x * y)^- \in F$ and as F is a semi-integral filter, we have $x^- \in F$ or $(y^n)^- \in F$, for some $n \in \mathbb{N}$. Therefore $x^- \in G$ or $(y^n)^- \in G$, for some $n \in \mathbb{N}$. Thus G is a semi-integral filter of A. □

By Lemma 2 and Theorem 3.3 [8], we have:

Proposition 6. Let F be a semi-integral filter of BL-algebra A. Then Rad(F) is a maximal filter.

Corollary 5. Let F be a prime or semi-integral filter of BL-algebra A. Then Rad(F) is a prime, semi-integral and primary filter.

Theorem 6. Let A be a BL-algebra. Then the following conditions are equivalent. (i) $\{1\}$ is a semi-integral filter;

(ii) Any filter of A is a semi-integral filter;

(iii) A is a semi-integral BL-algebra.

Proof. $(i) \Rightarrow (ii)$ By Proposition 5, the proof is easy.

 $(ii) \Rightarrow (iii)$ As {1} is a semi-integral filter, by Theorem 2, $A/\{1\}$ is semi-integral. So A is a semi-integral BL-algebra.

 $(iii) \Rightarrow (i) A/\{1\}$ is semi-integral, so by Theorem 2, $\{1\}$ is a semi-integral filter of A.

Theorem 7. Let F be a proper filter of BL-algebra A. Then F is a semi-integral filter if and only if every filter of the quotient algebra A/F is a semi-integral filter.

Proof. Let *F* be a semi-integral filter and $([x] * [y])^- \in \{[1]\}$. Then $(x * y)^- \in F$ and so $x^- \in F$ or $(y^n)^- \in F$, for some $n \in \mathbb{N}$. Thus $[x]^- \in \{[1]\}$ or $([y]^n)^- \in \{[1]\}$, for some $n \in \mathbb{N}$. Therefore $\{[1]\}$ is a semi-integral filter and by Theorem 6 $(i) \Rightarrow (ii)$, every filter of the quotient algebra A/F is a semi-integral filter. Conversely, assume that every filter of the quotient algebra A/F is a semi-integral filter. So $\{[1]\}$ is a semi-integral filter. Let $(x*y)^- \in F$, for $x, y \in A$. Then $([x]*[y])^- \in \{[1]\}$. Therefore $[x]^- \in \{[1]\}$ or $([y]^n)^- \in \{[1]\}$, for some $n \in \mathbb{N}$. Hence $x^- \in F$ or $(y^n)^- \in F$, for some $n \in \mathbb{N}$. Thus *F* is a semi-integral filter of *A*. □

Proposition 7. Let A be a Godel algebra. Then any proper filter F of A is semiintegral if and only if F is primary.

Lemma 3. A Godel algebra A is a semi-integral BL-algebra if and only if A is an Integral BL-algebra.

By Theorem 4.15 [3] and Lemma 3, we have

Corollary 6. Let A be a Godel algebra and F be a proper filter of A. The following conditions are equivalent:

(i) F is an integral filter of A;
(ii) F is a primary filter of A;
(iii) F is a semi-integral filter of A;
(iv) A/F is a local BL-algebra.

By Theorem 3.6 [8] and Proposition 5, we have:

Proposition 8. Let F be a filter of BL-algebra A. Then we have $(i) \Rightarrow (ii) \Rightarrow (iii) \Rightarrow (iv) \Rightarrow (v)$.

(i) F is a semi-integral filter.

(ii) F is a primary filter.

(iii) Rad(F) is a prime filter.

(iv) Rad(F) is a primary filter.

(v) There exists a unique maximal filter M of A containing F.

By Theorem 4.8 [3] and Lemma 1, we have

Proposition 9. If BL-algebra A has the Godel negation, then A is a semi-integral BL-algebra.

Lemma 4. Let P be a semi-integral filter of BL-algebra A and [x] * [y] = [0], for [x] and $[y] \in A/P$. Then [x] or [y] is nilpotent.

Proof. As [x] * [y] = [0], we have $(x * y)^- \in P$. By Theorem 2, A/P is a semiintegral *BL*-algebra and so [x] = [0] or $[y^n] = [0]$, for some $n \in \mathbb{N}$. Thus [x] or [y] is nilpotent.

An element $a \in A$ is called zero divisor element of A if a * b = 0, for some $0 \neq b \in A$.

Proposition 10. Let F be a proper filter of BL-algebra A. If any zero divisor element of A/F is nilpotent, then F is a semi-integral filter of A.

Proof. Let $(x * y)^- \in F$, for $x, y \in A$. So [x] * [y] = 0. Let $x^- \notin F$. If [y] = 0, then $y^- \in F$. Otherwise [x] and [y] are zero divisors. Thus there exists $n \in \mathbb{N}$ such that $[y^n] = 0$. Therefore $(y^n)^- \in F$. Hence F is a semi-integral filter.

Theorem 8. Let A be a semi-integral BL-algebra. Then $(Nil(A))^- = A - \{0\}$. The converse is true, when $(Nil(A))^-$ is a (*)-closed subset.

Proof. It is clear that $(Nil(A))^- \subseteq A - \{0\}$. Let $x \in A - \{0\}$. Then $x * x^- = 0$ and so $(x * x^-)^- = 1 \in \{1\}$. By Theorem 6 $(iii) \Rightarrow (i), \{1\}$ is a semi-integral filter of A. Thus $x^- = 1$ or $((x^-)^n)^- = 1$, for some $n \in \mathbb{N}$. If $x^- = 1$, then as $x \leq x^{--} = 1^- = 0$, we have x = 0, which is a contradiction. So $((x^-)^n)^- = 1$, for some $n \in \mathbb{N}$. Since $(x^-)^n \leq ((x^-)^n)^{--} = 1^- = 0$, we have $(x^-)^n = 0$. Therefore $x \in (Nil(A))^-$, i.e. $(Nil(A))^- = A - \{0\}$. Now assume that $(Nil(A))^-$ is a *-closed subset, $(Nil(A))^- = A - \{0\}$ and x * y = 0, for $x, y \in A$. If $x \notin (Nil(A))^-$, then x = 0. Similarly if $y \notin (Nil(A))^-$, then y = 0. If $x, y \in (Nil(A))^-$, then by hypothesis $x * y \in (Nil(A))^-$, which is a contradiction. Therefore A is semi-integral BL-algebra. □

Definition 6. Let F be a semi-integral filter of BL-algebra A. If m = Rad(F) (which by Proposition 6, is an maximal filter), then F is called a m-semi-integral filter of A

Example 8. In Example 1, $\{1\}$, $\{a, 1\}$ and $\{a, b, c, 1\}$ are $\{a, b, c, 1\}$ -semi-integral filters.

By Theorem 3.1 (1), (2) [8] and Lemma 2, we have:

Proposition 11. Let F be a semi-integral filter of BL-algebra A. Then the following conditions hold:

(i) $(x^n)^- \in F$ or $((x^-)^m)^- \in F$, for some $n, m \in \mathbb{N}$, for all $x \in A$.

(ii) $(a * b)^- \in F$ implies that $(a^m)^- \in F$ or $(b^n)^- \in F$, for some $n, m \in \mathbb{N}$, for all $a, b \in A$.

Theorem 9. Let F be a proper filter of BL-algebra A. Then the following conditions are equivalent.

(i) A/F is a semi-integral BL-algebra; (ii) For all $x \in A - \sqrt{F^-}$, $F^- = \{a \in A : (a * x)^- \in F\}$; (iii) For any subset X of A such that $X \nsubseteq \sqrt{F^-}$, $F^- = \{a \in A : (a * x)^- \in F\}$, for all $x \in X\}$.

Proof. $(i) \Rightarrow (ii)$ Assume that $x \in A - \sqrt{F^-}$. Let $a \in F^-$. So $a^- \in F$ and as $a^- \leq (a * x)^-$, we have $(a * x)^- \in F$. Now let $(a * x)^- \in F$. Thus $(a * x) \rightarrow 0 \in F$ and $0 \rightarrow (a * x) = 1 \in F$. Therefore [a] * [x] = [0] and by item (i), [a] = [0] or

 $[x^n] = [x]^n = [0]$, for some $n \in \mathbb{N}$. So $a \in F^-$ or $x^n \in F^-$, i.e. $a \in F^-$ or $x \in \sqrt{F^-}$. Hence as $x \notin \sqrt{F^-}$, we have $a \in F^-$.

 $(ii) \Rightarrow (iii)$ Assume that X is a subset of A such that $X \not\subseteq \sqrt{F^-}$. It is clear that $F^- \subseteq \{a \in A : (a * x)^- \in F, \text{ for all } x \in X\}$. Now let $(a * x)^- \in F$, for all $x \in X$. Since $X \not\subseteq \sqrt{F^-}$, there exists $y \in X - \sqrt{F^-}$. So $(a * y)^- \in F$ and by item (ii), $a \in F^-$.

 $(iii) \Rightarrow (i)$ Let [x] * [y] = [0], for $x, y \in A$. Thus $(x * y)^- \in F$. If there exists $n \in \mathbb{N}$ such that $[y]^n = [0]$, then A/F is a semi-integral *BL*-algebra. Otherwise for all $n \in \mathbb{N}, [y]^n \neq [0]$. So for all $n \in \mathbb{N}, (y^n)^- \notin F$. Hence $y \notin \sqrt{F^-}$. So $\{y\} \notin \sqrt{F^-}$ and $(x * y)^- \in F$. Therefore by item $(iii), x \in F^-$. So $x^- \in F$ and [x] = [0].

Lemma 5. Let $f : A \to B$ be a *BL*-homomorphism, *F* be a filter of *B* and $G = f^{-1}(F)$ be a filter of *A*. Then the following conditions hold:

(i) If F is an m-semi-integral filter, then G is an $f^{-1}(m)$ -semi-integral filter of A. (ii) Let f be a BL-epimorphism. Then F is an m-semi-integral filter of B if and only if G is an $f^{-1}(m)$ -semi-integral filter of A.

Proof. (i) Let F be a semi-integral filter of B and $(a * b)^- \in G$, for $a, b \in A$. Then

$$\begin{aligned} f((a * b)^{-}) \in F &\Rightarrow (f(a) * f(b))^{-} \in F, \\ &\Rightarrow (f(a))^{-} \in F \text{ or } (f(b)^{n})^{-} \in F, \text{ for some } n \in \mathbb{N}, \\ &\Rightarrow f(a^{-}) \in F \text{ or } f((b^{n})^{-}) \in F, \text{ for some } n \in \mathbb{N}, \\ &\Rightarrow (a)^{-} \in G \text{ or } (b^{n})^{-} \in G, \text{ for some } n \in \mathbb{N}, \\ &\Rightarrow G \text{ is a semi-integral filter of } A. \end{aligned}$$

Now let Rad(F) = m. Then $f^{-1}(Rad(F)) = f^{-1}(m)$ and so by Theorem 4.5 [9], $f^{-1}(Rad(F)) = Rad(f^{-1}(F))$, i.e. $Rad(G) = f^{-1}(m)$. Therefore G is a $f^{-1}(m)$ -semi-integral filter of A.

(*ii*) Let G be a semi-integral filter of A and $(a * b)^- \in F$, for $a, b \in B$. Since f is onto, then there exist $c, d \in A$, such that a = f(c) and b = f(d) and so $f((c * d)^-) = (f(c) * f(d))^- = (a * b)^- \in F$. Thus

$$(c*d)^{-} \in f^{-1}(F) = G \implies c^{-} \in G \text{ or } (d^{n})^{-} \in G, \text{ for some } n \in \mathbb{N},$$

$$\implies (f(c))^{-} \in F \text{ or } (f(d)^{n})^{-} \in F, \text{ for some } n \in \mathbb{N},$$

$$\implies (a)^{-} \in F \text{ or } (b^{n})^{-} \in F, \text{ for some } n \in \mathbb{N},$$

$$\implies F \text{ is a semi-integral filter of } B.$$

Let $Rad(G) = f^{-1}(m)$. Then by Theorem 4.5 [9],

$$Rad(F) = f(f^{-1}(Rad(F))) = f(Rad(f^{-1}(F))) = f(f^{-1}(m)) = m.$$

Therefore F is an m-semi-integral filter of B.

Let F be a filter of BL-algebra A and $x \in A$. From [8], $(F : x) = \{r \in A : r \lor x \in F\}$ is a filter of A which contains F and (F : x) is a proper filter of A, when $x \notin F$.

By Theorem 4.5(1) [8] and Proposition 5, we have:

Proposition 12. Let F be an m-semi-integral filter of BL-algebra A and $x \in A-F$. Then (i) Rad(F) = Rad((F : x)).

(ii) (F:x) is an m-semi-integral filter.

Open Problem. Is intersection of two *m*-semi-integral filters an *m*-semi-integral filter?

The following example shows that if F is an m_1 -semi-integral filter and G is an m_2 -semi-integral filter, then $F \cap G$ is not a semi-integral filter.

Example 9. Let $A = \{0, a, b, c, d, e, f, g, 1\}$, where 0 < a < b, d < e < 1 and 0 < c < d, f < g < 1. Define * and \rightarrow as follow:

*	0	a	b	c	d	e	f	g	1
0	0	0	0	0	0	0	0	0	0
a	0	0	a	0	0	a	0	0	a
b	0	a	b	0	a	b	0	a	b
c	0	0	0	0	0	0	c	c	c
d	0	0	a	0	0	a	c	c	d
e	0	a	b	0	a	b	c	d	e
f	0	0	0	c	c	c	f	f	f
g	0	0	a	c	c	d	f	f	g
1	0	a	b	c	d	e	f	g	1
\rightarrow	0	a	b	c	d	e	f	g	1
$\frac{\longrightarrow}{0}$	0	$\frac{a}{1}$	<i>b</i> 1	<u>с</u> 1	$\frac{d}{1}$	$\frac{e}{1}$	$\frac{f}{1}$	$\frac{g}{1}$	1
$\frac{\longrightarrow}{0} \\ a$								<i>g</i> 1 1	
	1	1	1	1	1	1	1	1	1
a	$\begin{array}{c c} 1 \\ g \end{array}$	1 1	1 1	$\frac{1}{g}$	1 1	1 1	$\frac{1}{g}$	1 1	1 1
$a \\ b$	$\begin{array}{c}1\\g\\f\end{array}$	1 1 g	1 1 1	$egin{array}{c} 1 \\ g \\ f \end{array}$	$egin{array}{c} 1 \\ 1 \\ g \end{array}$	1 1 1	$egin{array}{c} 1 \\ g \\ f \end{array}$	$egin{array}{c} 1 \ 1 \ g \end{array}$	1 1 1
$a\\b\\c$	$\begin{array}{c c}1\\g\\f\\e\end{array}$	$\begin{array}{c}1\\1\\g\\e\end{array}$	$\begin{array}{c}1\\1\\1\\e\end{array}$	$\begin{array}{c}1\\g\\f\\1\end{array}$	1 1 9 1	1 1 1 1	$egin{array}{c} 1 \\ g \\ f \\ 1 \end{array}$	1 1 g 1	1 1 1 1
$egin{array}{c} b \ c \ d \end{array}$	$\begin{array}{c c}1\\g\\f\\e\\d\end{array}$	$\begin{array}{c}1\\1\\g\\e\\e\end{array}$	$\begin{array}{c}1\\1\\1\\e\\e\end{array}$	$\begin{array}{c}1\\g\\f\\1\\g\end{array}$	$egin{array}{c} 1 \\ 1 \\ g \\ 1 \\ 1 \end{array}$	1 1 1 1 1	$\begin{array}{c}1\\g\\f\\1\\g\end{array}$	$egin{array}{c} 1 \\ 1 \\ g \\ 1 \\ 1 \end{array}$	1 1 1 1 1
$egin{array}{c} b \ c \ d \ e \end{array}$	$\begin{array}{c c}1\\g\\f\\e\\d\\c\end{array}$	$\begin{array}{c}1\\1\\g\\e\\e\\d\end{array}$	$\begin{array}{c}1\\1\\2\\e\\e\\e\\e\end{array}$	$\begin{array}{c}1\\g\\f\\1\\g\\f\end{array}$	$egin{array}{ccc} 1 \\ 1 \\ g \\ 1 \\ 1 \\ g \end{array}$	1 1 1 1 1 1	$\begin{array}{c}1\\g\\f\\1\\g\\f\end{array}$	$egin{array}{c} 1 \\ 1 \\ g \\ 1 \\ 1 \\ g \end{array}$	1 1 1 1 1 1 1

Then $(A, \wedge, \vee, *, \rightarrow, 0, 1)$ is a *BL*-algebra. We have $F = \{e, b, 1\}$ and $G = \{f, g, 1\}$

are semi-integral filters and also Rad(F) = F and Rad(G) = G. We get that $F \cap G$ is not a semi-integral filter, since $(b*f)^- \in F \cap G$ while $b^- \notin F \cap G$ and $(f^n)^- \notin F \cap G$, for all $n \in \mathbb{N}$.

References

- BORUMAND SAEID A., MOTAMED S. Normal filters in BL-algebras. World Applied Sci. J., (Special Issue Appl. Math.), 2009, 7, 70–76.
- [2] BORUMAND SAEID A., MOTAMED S. A new filter in BL-algebras. Journal of Intelligent and Fuzzy Systems, 2014, 27, 2949–2957.
- [3] BORZOOEI R. A., PAAD A. Integral filters and integral BL-Algebras. Italian Journal of Pure and Applied Mathematics, 2013, **30**, 303–316.
- BUSNEAG D., PICIU D. On the lattice of deductive systems of a BL-algebra. Central European Journal of Mathematics, 2003, 1(2), 221–237.
- [6] HÁJEK P. Metamathematics of Fuzzy Logic. Dordrecht: Kluwer Academic Publishers, 1998.
- [7] HAVESHKI M., BORUMAND SAEID A., ESLAMI E. Some types of filters in BL-algebras. Soft Computing, 2006, 10, 657–664.
- [8] MOTAMED S., TORKZADEH L. Primary decomposition of filters in BL-algebras. Afr. Mat., 2013, 24(4), 725–737.
- [9] MOTAMED S., TORKZADEH L., BORUMAND SAEID A., MOHTASHAMNIA N. Radical of Filters in BL-algebras. Math. Log. Quart., 2011, 57(2), 166–179.
- [10] PAAD A. Relation between (fuzzy) godel ideals and (fuzzy) boolean ideals in BL-algebras. Discussiones Mathematicae General Algebra and Applications, 2016, 36, 45–58.
- [11] TURUNEN E. BL-algebras of basic fuzzy logic. Mathware and Soft Computing, 1999, 6, 49–61.
- [12] TURUNEN E. Mathematics behind fuzzy logic. Physica-Verlag, 1999.

SOMAYEH MOTAMED Department of Mathematics, Bandar Abbas Branch Islamic Azad University, Bandar Abbas, Iran Received February 1, 2017