
BULETINUL ACADEMIEI DE ŞTIINŢE
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Viscous flow through a porous medium filled

by liquid with varying viscosity
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Abstract. The paper deals with study of a Stokes-Brinkman system with varying
viscosity that describes the fluid flow along an ensemble of partially porous cylindrical
particles using the cell approach. We have proved the existence and uniqueness of the
solutions as well as derived some uniform estimates.
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1 Introduction

Pressure driven membrane processes (reverse osmosis, nano-, ultra and micro-
filtration), sedimentation, flows of underground water and crude oil are important
examples of flow through porous media. Usually porous medium was modeled by a
dense set of rigid impermeable (colloid) particles [4]. For now to achieve effective
use of a porous medium in the above-mentioned areas, the structure of a porous
layer should be viewed from different points of view. For example, it is not neces-
sary that the particles always have a smooth homogeneous surface but also have a
rough surface or a surface covered by a porous shell. The hydrodynamic models of
colloid particle changed considerably over last decades. The latter attracts itself in
terminology too: soft particles [8], i. e. particles with porous hydrodynamically per-
meable surface layer, draw now more attention than hard impermeable particles [4].
There has been also considerable recent interest in the use of beds of porous particles
for biological applications such as perfusion chromatography for purifying proteins
and other biomolecules and cell or enzyme immobilization. Therefore a number of
technologies require the development of modeling of porous media. The mentioned
porous media are frequently modeled as aggregates of particles and/or fibers. The
cell model [4] has been very effectively used for investigation of the mentioned above
flows. The basic principle of the cell model is to replace a system of randomly ori-
ented particles by a periodic array of spheres or cylinders embedded in a center of
spherical or cylindrical liquid cells. Appropriate boundary conditions on the cell
boundary are supposed to take into account the influence of surrounding particles
on the flow inside the cell and the force applied to the particle in the center of the
cell. The four variants of these conditions are known as the Happel (the absence
of tangential stresses on the cell surface), Kuwabara (the absence of vortexes - the
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flow potentiality), Kvashnin (the cell symmetry), and Cunningham (the flow on the
surface of cell is assumed to be uniform) models [15]. In the course of filtration pro-
cesses the structure of the membrane can change due to (i) dissolution of particles,
(ii) adsorption of polymers on the surfaces of the particles usually referred to as a
poisoning. Both the above mentioned processes result in a formation of a porous
shell (in the form of a colloidal layer or a gel layer) on the solid particles surface,
which are usually hard to remove. The presence of porous shell on solid particles
has a clear impact on the drag force exerted by the flow on the particles. Another
situation where the slip velocity is of interest is flow over polymer brushes. Polymer
chains attached to the surface of a particle create a porous shell around the particle,
effectively increasing its diameter. Penetration of the outer flow into the polymer
brush determines the transport of ions and other chemical species between the outer
flow and the surface of the particle. Hence, the knowledge of the flow field at the in-
terface between a highly porous medium and a liquid is of a substantial importance.
Flow through porous shells is frequently modeled by Brinkman’s equation [2], which
is a modified form of the Darcy’s equation. However, it has been observed that the
results obtained based on the Brinkman’s equations do not agree with the experi-
mental data for non-homogeneous porous media. A modification of the Brinkman’s
equation was suggested in [14] for the media having non-homogeneous porosity. To
overcome this problem it is possible also to use ”variable viscosity model” for the
liquid/porous boundary region. We assume below that porous shells under con-
sideration have a uniform porosity but variable liquid viscosity inside porous layer
in accordance with power or exponential law. The membranes under investigation
below are supposed to be built by either non-porous particles with a rough surface
or particles covered by a porous shell. The latter shells also have a rough surface,
and a scale of roughness is equal or even bigger than the average pore size inside
the shell. The important problem is a correct selection of boundary conditions on
surfaces of non-porous but rough surfaces of particles or porous shell of particles.
We use bellow the condition of ”tangential stresses slippage” which is a jump of
tangential stresses at the porous-liquid interface [6, 7]. The aim of this paper is to
prove the existence and uniqueness of the solutions of boundary value problems as
well as derive some uniform estimates which will be useful for numerical simulations.

2 Statement of the problem

Describe the viscous flow through a porous medium, modeled as a set of parallel
composite cylindrical particles, and filled by liquid with varying viscosity by two
systems: the Stokes one

{
∇̃p̃o = µ̃0∆̃ṽ

0,

d̃ivṽo = 0
(1)
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Figure 1. The flow parallel to the cylinders

outside the porous layer ã ≤ r̃ ≤ b̃ and in the porous layer R̃ ≤ r̃ ≤ ã by the
Brinkman’s system {

∇̃p̃i = d̃iv(µ̃iD̃ṽ
i) − µ̃o

k̃
ṽ

i,

d̃ivṽi = 0.
(2)

Here the tilde denotes dimensional variables, indices o and i refer to the external
and porous zones respectively; µ̃i and µ̃o are the viscosities of the liquids inside
Brinkman’s layer and in liquid shell, correspondingly. The variable k̃ is the specific
permeability of the porous layer. We suppose that viscosity of clear liquid µ̃o is
constant over region ã < r̃ < b̃ and viscosity of Brinkmans liquid µ̃i = µ̃o

(
ã
r̃

)α
increases according to power law from µ̃o at porous media-clear liquid interface to

µ̃o

(
ã

R̃

)α

at the interface between solid core and porous layer. Parameter α is needed in order
to get necessary viscosity of Brinkmans liquid in the vicinity of the solid core. The
unknown functions are ṽ

o, ṽi− the velocity field and the pressure p̃o, p̃i.

Also the boundary conditions as follows are set:

ṽ
i = 0, as r̃ = R̃, (3)

the continuity condition:

ṽ
i = ṽ

o, σ̃o
rr = σ̃i

rr, as r̃ = ã. (4)

The condition for a jump of tangential stresses at the interface between porous layer
and clear liquid reads,

σ̃i
rz − σ̃o

rz =
βµ̃o

√
k̃

ṽo
z , as r̃ = ã. (5)
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Here −∞ < β <
√

µ̃i

µ̃0 is the dimensionless parameter which should be found

from a physical experiment [3]. In case of flow which is parallel to the cylinders all
four known conditions at the outer cell boundary are reduced to the scalar one [12]:

dṽo
z

dr̃
= 0, as r̃ = b̃. (6)

For the convenience of the analysis we pass to the dimensionless operators and
variables by the following substitutions:

b̃

ã
=

1

γ
, r =

r̃

ã
, z =

z̃

ã
, ∇ = ∇̃ · ã, ∆ = ∆̃ · ã2, δ =

δ̃

ã
, R =

R̃

ã
= 1 − δ,

v =
ṽ

Ũ
p =

p̃

p̃0
, p̃0 =

Ũ · µ̃o

ã
, k =

k̃

ã2
> 0 , ω =

dp

dz
,

(7)

where Ũ is the cell (filtration) velocity Ũ = −L̃11
dp̃
dz̃

, where L̃11 is the hydrodynamic
permeability of the membrane [13].

Denote by Bγ the layer

Bγ = {1 ≤ r ≤ 1

γ
, ϕ ∈ [0, 2π], z ∈ [0,∞)}

and by BR the set

BR = {R ≤ r ≤ 1, ϕ ∈ [0, 2π], z ∈ [0,∞)}.

In the dimensionless notations the systems (1) and (2) read as





∇po = µo∆v
o in Bγ ,

divvo = 0 in Bγ ,
dvo

z

dr
= 0 on r = 1

γ
, vo

z = vi
z on r = 1,

(8)

where v
i is given by





∇pi = div(r−αDv
i) − v

i

k
in BR,

divvi = 0 in BR,

vz
i = 0 on r = R,

dvi
z

dr
= dvo

z

dr
+ β√

k
vz

o as r = 1.

(9)

The problems (8) and (9) are linked to each other via the boundary condition v
i = v

o

on the common boundary r = 1 which physically means the continuous flow regime.

Our goal is to investigate the qualitative properties of the obtained systems: exis-
tence and uniqueness of the solution as well as to derive some apriori estimates.
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2.1 The flow parallel to cylinders. The case µ
i = µ

o
r

−α

Rewrite the problems (8) and (9) in cylindric coordinates (r, ϕ, z) with help of
formulas

∇p =

(
∂p

∂r
,
1

r

∂p

∂ϕ
,
∂p

∂z

)
,

divv =

(
1

r

∂

∂r
(rvr) +

1

r

∂vϕ

∂ϕ
+

∂vz

∂z

)
,

∆v =
1

r

∂

∂r
(rv) +

1

r2

∂2v

∂ϕ2
+

∂2v

∂z2
,

(10)

and consider the case when the flow is parallel to the cylinders, i. e. the components
of the solution satisfy vi

r = vo
r = vi

ϕ = vo
ϕ = 0, while nonzero are vi

z as well as vo
z .

We show now that in such case the divergence free property of the velocity implies

independence of velocity and ∂pj

∂z
on z-variable. Here index j is o or i. Indeed, for

j = o or j = i the equation

divvj = 0 ⇔
(

1

r

∂

∂r
(rvj

r) +
1

r

∂v
j
ϕ

∂ϕ
+

∂v
j
z

∂z

)
= 0 ⇔ ∂v

j
z

∂z
= 0

implies independence v
j
z on z-variable. For an arbitrary µi(r) when the flow is

parallel to z-direction, the term div(µiDv) becomes

1

r

d

dr

(
µi

(
r
dvz

dr

))
=

dvz

dr

(
dµi

dr
+

µi

r

)
+ µi d

2vz

dr2

in the polar coordinates. Having in mind that dpj

dz
= const = ω, j = o, i, we

arrive at the following one-dimensional Stokes and Brinkman’s equations, where for
the simplicity we omit the sub-index z (i. e. the notation vj should be understood
as v

j
z):

d2vo

dr2
+

1

r

dvo

dr
= ω, 1 < r <

1

γ
, (11)

d2vi

dr2
− α − 1

r

dvi

dr
= rα

(
vi

k
+ ω

)
, R < r < 1 (12)

with boundary conditions

vi = 0 as r = R,

vo = vi as r = 1,
dvi

dr
− dvo

dr
=

β√
k
vo, r = 1.

dvo

dr
= 0 as r =

1

γ
.

(13)
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3 On the existence and uniqueness of the solution

3.1 Preliminaries

We recall some basic definitions of Sobolev spaces. The Sobolev space H1(Ω)
is defined as the completion of the set of functions from the space C∞(Ω) by the

norm ‖u‖H1(Ω) =
√∫

Ω

(u2 + |∇u|2) dx; the space H−1(Ω) denotes the dual space

to H1, i. e. the set of functionals defined on the elements in H1(Ω). Following the
traditions, we denote by H the set of functions u from H1(Ω) such that divu = 0.

Finally,
◦

L2(Ω) consists of functions u ∈ L2 satisfying the condition
∫
Ω

u dx = 0. In

our analysis the following classical theorem will be used (see [1] and [5]):

Theorem 1 (Lions-Lax-Milgram Lemma). Let U and V be two real Hilbert spaces
and let B : U × V → R be a continuous bilinear functional, where V is continuously
embedded in U (‖u‖U ≤ c‖u‖V ). Suppose also that B is coercive in the following
sense: for some constant c > 0 and all u ∈ U , |B[u, u]| ≥ c‖u‖2

U . Then, for all
f ∈ V ∗, there exists a unique solution u = uf ∈ U to the weak problem B[uf , v] =
〈f, v〉 for all v ∈ V. Moreover, the solution depends continuously on the given datum:
‖uf‖U ≤ 1

c
‖f‖V ∗ .

3.2 The weak solution

Multiplying equations (11), (12) by vo, vi respectively and integrating the result
over the corresponding domains, we can define the weak solutions vo and vi.

Definition 1. The function vo ∈ H1(BR) is called the weak solution to (11) if the
following integral identity holds:

−

1
γ∫

1

(
dvo

dr

)2

dr +

1
γ∫

1

vo

r

dvo

dr
dr =

dvo

dr

∣∣∣∣
r=1

vo(1) + ω

1
γ∫

1

vo dr. (14)

The function vi ∈ H1(BR) is called the weak solution to (12) if it satisfies

1∫

R

(
dvi

dr

)2

dr + (α− 1)

1∫

R

1

r
vi dvi

dr
dr +

1

k

1∫

R

rα(vi)2 dr + ω

1∫

R

rαvi dr =
1

2

d(vi)2

dr

∣∣∣∣
r=1

.

(15)

Here we used integration by parts, the boundary conditions for vi and observation
that

vi dvi

dr
=

1

2

d(vi)2

dr
.

By using the boundary conditions

vo = vi,
dvi

dr
− dv0

dr
=

β√
k
vo, r = 1,
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one can rewrite the identity (15) to the form

1∫

R

(
dvi

dr

)2

dr + (α − 1)

1∫

R

1

r
vi dvi

dr
dr+

1

k

1∫

R

rα(vi)2 dr + ω

1∫

R

rαvi dr =

=
1

2

d(vo)2

dr

∣∣∣∣
r=1

+
β√
k
(vo(1))2.

(16)

Remark 1. Exactly in the same way one can define the weak solution to (8) and (9)
for an arbitrary viscosity µi(r) = µoµ(r). The integral identities will replace r−α by
the function µ(r).

3.3 The main result

Let us prove the existence and uniqueness of the weak solution. The following
theorem gives such result.

Theorem 2. The unique solution vi ∈ H1(BR) to (15) does exist and satisfies the
estimates

‖r α
2 vi‖2

L2(R,1) ≤ |vo(1)|kω

2

(
1 − 1

γ2

)
+

β√
k
(vo(1))2,

∥∥∥∥
dvi

dr

∥∥∥∥
2

L2(R,1)

≤ |vo(1)|kω

2

(
1 − 1

γ2

)
+

β√
k
(vo(1))2,

(17)

where vo is the unique solution satisfying (11).

Proof. Let us analyze first the solvability of equation (11). It is easy to find the
analytical solution to (11), which evidently coincides with the solution in the weak
sense. Indeed,

d

dr

(
r
dvo

dr

)
= rω ⇔ dvo

dr
=

rω

2
+

C

r
.

Boundary condition dvo

dr
= 0 at r = 1

γ
implies that C = − ω

2γ2 . Integrating the
equation once more, one derives that

vo = C1 −
ω

2γ2
ln r +

ωr2

4
, where C1 = vi(1) − ω

4
(18)

due to the condition vo = vi at r = 1. The uniqueness of vo follows directly from
formula (18) or can be derived from equations (11), assuming the existence of two
different functions vo

1 6= vo
2. This technique is quite standard so we skip the full

details.
Denote by B[vi, vi] : H1(BR) × H1(BR) → R the bilinear form

B[vi, vi] =

1∫

R

(
dvi

dr

)2

dr + (α − 1)

1∫

R

1

r
vi dvi

dr
dr +

1

k

1∫

R

rα(vi)2 dr − 1

2

d(vi)2

dr

∣∣∣∣
r=1

.
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Define the functional on the space H1(BR) :

〈f, vi〉 = −ω

1∫

R

rαvi dr,

then the question on the existence and uniqueness of the solution (15) is reduced to
solvability of

B[vi, vi] = 〈f, vi〉
for any f ∈ H−1(BR). Let us establish the coerciveness of B[vi, vi] (see Theorem 1).
Evaluating the boundary conditions

1

2

d(vi)2

dr

∣∣∣∣
r=1

=
dvo

dr

∣∣∣∣
r=1

vo(1) +
β√
k
(vo(1))2 = vo(1)

ω

2

(
1 − 1

γ2

)
+

β√
k
(vo(1))2

and using the evident inequalities

(vo)2(1) ≤
1∫

R

1

r
vi dvi

dr
dr ≤ 1

2R
(vo)2(1),

1

k

1∫

R

rα(vi)2 dr ≥ Rα

k

1∫

R

(vi)2 dr,

(vo(1))2 = (vi(1))2 =




1∫

R

dvi

dr
dr




2

≤ δ

1∫

R

(
dvi

dr

)2

dr,

we conclude that

|B[vi, vi]| ≥
∣∣∣∣

1∫

R

(
dvi

dr

)2

dr +
1

k

1∫

R

rα(vi)2 dr +

(
α − 1

2
− β√

k

)
(vo)2(1)

− vo(1)
ω

2

(
1 − 1

γ2

)∣∣∣∣ ≥ C(α, β, γ,R, k, vo(1))‖vi‖2
H1(BR),

(19)

where

C(α, β, γ,R, k, vo(1)) is a constant and ‖vi‖2
H1(BR) =

1∫

R

(
dvi

dr

)2

dr +

1∫

R

(vi)2 dr.

Hence, the unique solution vi exists due to Lions-Lax-Milgram Lemma.
Observe also that the identity (16) imply the estimates

‖r α
2 vi‖2

L2(R,1) ≤
k

2

∣∣∣∣
d(vo)2

dr

∣∣∣∣
r=1

∣∣∣∣+
β√
k
(vo(1))2,

∥∥∥∥
dvi

dr

∥∥∥∥
2

L2(R,1)

≤ k

2

∣∣∣∣
d(vo)2

dr

∣∣∣∣
r=1

∣∣∣∣+
β√
k
(vo(1))2.

(20)
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Coming back to estimates (20) and evaluating

1

2

d(vo)2

dr

∣∣∣∣
r=1

= vo(1)
ω

2

(
1 − 1

γ2

)
,

we derive the asymptotics

‖r α
2 vi‖2

L2(R,1) ≤ |vo(1)|kω

2

(
1 − 1

γ2

)
+

β√
k
(vo(1))2,

∥∥∥∥
dvi

dr

∥∥∥∥
2

L2(R,1)

≤ |vo(1)|kω

2

(
1 − 1

γ2

)
+

β√
k
(vo(1))2.

4 Exponential viscosity

Assume now that

µ̃i = µ̃oe−α( r̃
ã
−1), α > 0 (21)

and again the flow is parallel to z-axis. Making an analogous steps to come to
dimensionless form of the Brinkman’s equation, one gets the equation

d2vi

dr2
+

(
−α +

1

r

)
dvi

dr
= eα( r

a
−1)

(
vi

k
+ ω

)
, R < r < 1 (22)

with boundary conditions

vi = 0 as r = R,

vi = vo as r = 1,

dvi

dr
− dvo

dr
=

β√
k

vo, r = 1.

(23)

The weak solution to (22), (23) satisfies

1∫

R

(
dvi

dr

)2

dr +
1

k

1∫

R

eα( r
a
−1)(vi)2 dr +

α

2

1∫

R

d

dr
(vi)2 dr + ω

1∫

R

eα( r
a
−1)vi dr =

=
1

2

d(vi)2

dr

∣∣∣∣
r=1

+
1

2

1∫

R

1

r

d

dr
(vi)2 dr.

(24)
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Applying the Newton- Leibnitz formula and taking into account the boundary con-
ditions for vi, the identity (24) can be rewritten as follows:

1∫

R

(
dvi

dr

)2

dr +
1

k

1∫

R

eα( r
a
−1)(vi)2 dr +

α + 1

2
(vo(1))2−

− 1

2

1∫

R

(vi)2

r2
dr + ω

1∫

R

eα( r
a
−1)vi dr =

1

2

d(vo)2

dr

∣∣∣∣
r=1

+
β√
k
(vo(1))2.

(25)

Similarly, one can prove the following theorem on the existence and uniqueness
of the solution to (24).

Theorem 3. The solution to (24) does exist, is unique and satisfies estimates

‖eα
2 ( r

a
−1)vi‖2

L2(R,1) ≤
(

1 +
2R2(1 + δβk− 1

2 )

2R2 − δ

)∣∣∣∣v
o(1)

ωk

2

(
1 − 1

γ2

)∣∣∣∣ ,

∥∥∥∥
dvi

dr

∥∥∥∥
2

L2(R,1)

≤ 2R2

2R2 − δ

∣∣∣∣v
o(1)

ωk

2

(
1 − 1

γ2

)∣∣∣∣ .

(26)

Proof. All steps of the proof are identical to the previously considered case in
Lemma 2. We introduce the bilinear form B[vi, vi] : H1(BR) × H1(BR) → R :

B[vi, vi] =

1∫

R

(
dvi

dr

)2

dr − 1

2

1∫

R

(vi)2

r2
dr +

1

k

1∫

R

e
α
2 ( r

a
−1)(vi)2 dr−

−1

2

d(vi)2

dr

∣∣∣∣
r=1

+
1

2

1∫

R

1

r

d

dr
(vi)2 dr

and functional

〈f, vi〉 =
dvo

dr

∣∣∣∣
r=1

vo(1) −
(

α + 1

2
− β√

k

)
(vo(1))2 − ω

1∫

R

e
α
2 ( r

a
−1)vi dr.

In order to use the Lions-Lax-Milgram Lemma on the existence and uniqueness of
the solution, it is required to get the estimate |B[vi, vi]| ≥ C‖vi‖2

H1(BR). In view of
the inequality

−1

2

1∫

R

(vi)2

r2
dr ≥ −1

2

1∫

R

(vi)2 dr,
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we get the desired bound

|B[vi, vi]| ≥
1∫

R

(
dvi

dr

)2

dr +
1

k

1∫

R

(
eα( r

a
−1) − k

2

)
(vi)2 dr ≥ C(α,R, k)‖vi‖2

H1(BR).

(27)

Here the constant C(α,R, k) = min{1, |e
α(R

a −1)
k

− 1
2 |}. We note that the classical

Friedrich’s inequality
1∫

R

(vi)2 dr ≤ δ

1∫

R

(
dvi

dr

)2

dr (28)

is valid for function vi since it vanishes on the boundary r = R. Moreover, the
constant is equal to the square of the strip {R ≤ r ≤ 1} × 1 = δ. To obtain the
estimates (26) we use the integral identity in the form

1∫

R

(
dvi

dr

)2

dr +
1

k

1∫

R

eα( r
a
−1)(vi)2 dr +

α + 1

2
(vo(1))2 + ω

1∫

R

eα( r
a
−1)vi dr =

1

2

d(vo)2

dr

∣∣∣∣
r=1

+
β√
k
(vo(1))2 +

1

2

1∫

R

(vi)2

r2
dr.

(29)

It implies the following estimates:

1∫

R

(
dvi

dr

)2

dr ≤ 1

2

d(vo)2

dr

∣∣∣∣
r=1

+
β√
k
(vo(1))2 +

1

2

1∫

R

(vi)2

r2
dr,

1∫

R

eα( r
a
−1)(vi)2 dr ≤ 1

2

d(vo)2

dr

∣∣∣∣
r=1

+
β√
k
(vo(1))2 +

1

2

1∫

R

(vi)2

r2
dr.

(30)

The first term in the right-hand side is bounded as in (17):
∣∣∣∣
1

2

d(vo)2

dr

∣∣∣∣
r=1

∣∣∣∣ ≤
∣∣∣∣v

o(1)
ωk

2

(
1 − 1

γ2

)∣∣∣∣ . (31)

Applying the inequality (28), we consider the third term:

1

2

1∫

R

(vi)2

r2
dr ≤ 1

2R2

1∫

R

(vi)2 dr ≤ δ

2R2

1∫

R

(
dvi

dr

)2

dr. (32)

Now we can use this result in the first inequality of (30):

1∫

R

(
dvi

dr

)2

dr ≤
∣∣∣∣v

o(1)
ωk

2

(
1 − 1

γ2

)∣∣∣∣+
δ

2R2

1∫

R

(
dvi

dr

)2

dr. (33)
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Consequently,

1∫

R

(
dvi

dr

)2

dr ≤ 2R2

2R2 − δ

∣∣∣∣v
o(1)

ωk

2

(
1 − 1

γ2

)∣∣∣∣ . (34)

Finally, the term β√
k
(vo(1))2 can also be estimated by

1∫
R

(
dvi

dr

)2

dr with help of

Friedrichs inequality (28) and Hölder inequality

∫

Ω

|f(x)g(x)| dx ≤



∫

Ω

|f(x)|p dx




1
p


∫

Ω

|g(x)|q dx




1
q

,
1

p
+

1

q
= 1

if one apply it for Ω = (R, 1), f = dvi

dr
, g = 1 and p = q = 2 :

β√
k
(vo(1))2 =

β√
k
(vi(1))2 =

β√
k

(∫ 1

R

dvi

dr
dr

)2

≤ δβ√
k

1∫

R

(
dvi

dr

)2

dr ≤

≤ 2R2δβk− 1
2

2R2 − δ

∣∣∣∣v
o(1)

ωk

2

(
1 − 1

γ2

)∣∣∣∣ .

(35)

The results in (33), (34) and (35) can be directly used to estimate the second line
in (30):

1∫

R

eα( r
a
−1)(vi)2 dr ≤

∣∣∣∣v
o(1)

ωk

2

(
1 − 1

γ2

)∣∣∣∣+
δ

2R2

1∫

R

(
dvi

dr

)2

dr ≤

∣∣∣∣v
o(1)

ωk

2

(
1 − 1

γ2

)∣∣∣∣

(
1 +

2R2(1 + δβk− 1
2 )

2R2 − δ

)
.

(36)

5 Concluding remarks

Let us observe that estimates (17) and (26) show the continuous dependence
of the solution vi on initial data k, ω, β, γ, δ,R as well as on the solution vo at
the common boundary r = 1. Note also that factor r

α
2 in the estimate (17)

and similarly eα( r
a
−1) in (26) means the following asymptotical behaviour of vi :

vi ∼ C(vo(1), k, ω, β, γ)r−
α
2 , where the constant C(vo(1), k, ω, β, γ) depends on

vo(1), k, ω, β, γ. Analogously, vi ∼ C(vo, k, ω, β, γ, δ,R)e−
α
2 ( r

a
−1) in the second case.

Roughly speaking, the solution vi is proportional to square root of the viscosity. If
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one apply the estimate (35) to the second term in right-hand side of (17), we get
the upper bounds in the form which involves R as well:

‖r α
2 vi‖2

L2(R,1) ≤ |vo(1)|kω

2

(
1 − 1

γ2

)(
1 +

2R2δβk− 1
2

2R2 − δ

)
,

∥∥∥∥
dvi

dr

∥∥∥∥
2

L2(R,1)

≤ |vo(1)|kω

2

(
1 − 1

γ2

)(
1 +

2R2δβk− 1
2

2R2 − δ

)
.

(37)
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