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Interpolating Bézier spline surfaces with local control

A.P.Pobegailo

Abstract. This paper presents an approach to construct interpolating spline surfaces
over a bivariate network of curves with rectangular patches. Patches of the interpolat-
ing spline surface are constructed by means of blending their boundaries with special
polynomials. In order to ensure a necessary parametric continuity of the designed
surface the polynomials of the corresponding degree are used. The constructed inter-
polating spline surfaces have local shape control. If the surface frame is determined
by means of Bézier curves then patches of the interpolating spline surface are Bézier
surfaces.

Mathematics subject classification: 65D05, 65D07, 65D17.
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1 Introduction

Interpolating spline surfaces play important role in different geometric appli-
cations. This paper presents an approach to construction of interpolating spline
surfaces which have local shape control. Patches of the interpolating spline surface
are constructed by means of blending their boundaries with special polynomials.
In order to ensure a necessary parametric continuity of the constructed surface the
polynomials of the corresponding degree must be used. The presented approach is
aimed at construction of interpolating spline surface over the bivariate network of
curves with rectangular patches. Interpolation with Bézier patches over the bivari-
ate network of Bézier curves is considered as application of the general approach.
A classification of algorithms for local smooth surface interpolation with piecewise
polynomials is given in the paper of Peters [14]. A survey of blending methods that
use parametric surfaces can be found in the paper of Vida, Martin, Várady [20].
Construction of surface patches by linear blending of its boundaries was firstly in-
troduced by Coons [5]. Contemporary representation of the patches was given by
Forrest [8] and considered by Faux and Pratt [7]. Spline-blended surface interpola-
tion through curve networks was proposed by Gordon [10]. The presented approach
can be considered as generalization of the techniques. Another approach to surface
interpolation by means of linear blending is considered in the paper of Juhásza and
Hoffmann [12].
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2 Construction of a rectangular patch by blending its boundaries

Construction of a surface patch by means of linear blending of its boundaries was
introduced by Coons [5]. The presented approach can be considered as generalization
of the technique.

Consider four parametric curves p0(u), p1(u), u ∈ [0, 1], and q0(v), q1(v), v ∈
[0, 1], which have the following boundary points:

p0(0) = q0(0) = r0,0, p0(1) = q1(0) = r1,0, (1)

p1(0) = q0(1) = r0,1, p1(1) = q1(1) = r1,1. (2)

The problem is to construct a rectangular patch r(u, v), (u, v) ∈ [0, 1]× [0, 1], which
has the considered parametric curves as boundaries, that is

r(u, 0) = p0(u), r(u, 1) = p1(u), (3)

r(0, v) = q0(v), r(1, v) = q1(v) (4)

and partial derivatives of the patch r(u, v) satisfy the following conditions at the
corner points:

∂mr(u, v)

∂um
(0, 0) = (p

(m)
0 (u))(0),

∂mr(u, v)

∂vm
(0, 0) = (q

(m)
0 (v))(0), (5)

∂mr(u, v)

∂um
(0, 1) = (p

(m)
1 (u))(0),

∂mr(u, v)

∂vm
(0, 1) = (q

(m)
0 (v))(1), (6)

∂mr(u, v)

∂um
(1, 0) = (p

(m)
0 (u))(1),

∂mr(u, v)

∂vm
(1, 0) = (q

(m)
1 (v))(0), (7)

∂mr(u, v)

∂um
(1, 1) = (p

(m)
1 (u))(1),

∂mr(u, v)

∂vm
(1, 1) = (q

(m)
1 (v))(1), (8)

for all m ∈ {1, 2, ..., n} where s + r = m and n ∈ N. In order to solve the problem
define the following parametric surface:

r(u, v) = s(u, v) − r̃(u, v), u, v ∈ [0, 1], (9)

where

s(u, v) = (1 − wn+1(v))p0(u) + wn+1(v)p1(u)+

+(1 − wn+1(u))q0(u) + wn+1(u)q1(u),

r̃(u, v) = (1 − wn+1(u))(1 − wn+1(v))r0,0 + wn+1(u)(1 − wn+1(v))r1,0+

+(1 − wn+1(u))wn+1(v)r0,1 + wn+1(u)wn+1(v)r1,1

and the polynomials wn(u) are defined as follows:

wn(u) =

2n−1
∑

i=n

b2n−1,i(u), u ∈ [0, 1],
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where bn,m(u) denotes a Bernstein polynomial

bn,m(u) =
n!

m!(n − m)!
(1 − u)n−mum, u ∈ [0, 1].

Detailed considerations of the polynomials wn(u) can be found in the paper of Pobe-
gailo [15] where it is shown that the polynomials have the following boundary values:

wn(0) = 0, wn(1) = 1 (10)

and satisfy the following boundary conditions:

w(m)
n (0) = w(m)

n (1) = 0 (11)

for all m ∈ {1, 2, ..., n − 1} .
Show that the parametric curves p0(u), p1(u) and q0(v), q1(v) are boundaries

of the patch r(u, v). Substitution of boundary values of the polynomials wn+1(u)
from Equations (10) and parametric curves from Equations (1) and (2) in Equation
(9) yields that

s(u, 0) = p0(u) + (1 − wn+1(u))r0,0 + wn+1(u)r1,0,

r̃(u, 0) = (1 − wn+1(u))r0,0 + wn+1(u)r1,0

and therefore
r(u, 0) = s(u, 0) − r̃(u, 0) = p0(u).

Then
s(0, v) = (1 − wn+1(v))r0,0 + wn+1(v)r0,1 + q0(v),

r̃(0, v) = (1 − wn+1(v))r0,0 + wn+1(v)r0,1

and therefore
r(0, v) = s(u, 0) − r̃(u, 0) = q0(v).

Analogously it can be shown that

r(u, 1) = p1(u), r(1, v) = q1(v).

Thus Equations (3) and (4) are fulfilled.
Show that the patch r(u, v) has necessary partial derivatives at the corner points,

that is Equations (5-8) are also fulfilled. For this purpose compute partial derivatives
of the parametric surface r(u, v). It is obtained that

∂mr(u, v)

∂um
=

∂ms(u, v)

∂um
−

∂mr̃(u, v)

∂um

where

∂ms(u, v)

∂um
= (1 − wn+1(v))p

(m)
0 (u) + wn+1(v)p

(m)
1 (u)+
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+(1 − wn+1(u))(m)q0(v) + w
(m)
n+1(u)q1(v),

∂mr̃(u, v)

∂um
= (1 − wn+1(u))(m)(1 − wn+1(v))r0,0 + w

(m)
n+1(u)(1 − wn+1(v))r1,0+

+(1 − wn+1(u))(m)wn+1(v)r0,1 + w
(m)
n+1(u)wn+1(v)r1,1

and analogously
∂mr(u, v)

∂vm
=

∂ms(u, v)

∂vm
−

∂mr̃(u, v)

∂vm

where

∂ms(u, v)

∂vm
= (1 − wn+1(v))(m)p0(u) + w

(m)
n+1(v)p1(u)+

+(1 − wn+1(u))q
(m)
0 (v) + wn+1(u)q

(m)
1 (v),

∂mr̃(u, v)

∂vm
= (1 − wn+1(u))(1 − wn+1(v))(m)r0,0 + wn+1(u)(1 − wn+1(v))(m)r1,0+

+(1 − wn+1(u))w
(m)
n+1(v)r0,1 + wn+1(u)w

(m)
n+1(v)r1,1

for all m ∈ {1, 2, ..., n}, n ∈ N. Substituting boundary values of the polynomials
wn+1(u) and their derivatives from Equations (10) and (11) in these equations, it is
obtained that

∂mr(0, 0)

∂um
=

∂ms(0, 0)

∂um
−

∂mr̃(0, 0)

∂um
= p

(m)
0 (u)

and
∂mr(u, v)

∂vm
=

∂ms(u, v)

∂vm
−

∂mr̃(u, v)

∂vm
= q

(m)
0 (v).

Thus Equations (5) are fulfilled. Analogously it can be proven that Equations (6)-(8)
are also fulfilled.

Now compute mixed partial derivatives of the parametric surface r(u, v) at the
corner points. It is obtained that

∂mr(u, v)

∂ur∂vs
=

∂ms(u, v)

∂ur∂vs
−

∂mr̃(u, v)

∂ur∂vs

where

∂ms(u, v)

∂ur∂vs
= (1 − wn+1(v))(s)p

(r)
0 (u) + w

(s)
n+1(v)p

(r)
1 (u)+

+(1 − wn+1(u))(r)q
(s)
0 (v) + w

(r)
n+1(u)q

(s)
1 (v),

∂mr̃(u, v)

∂ur∂vs
= (1 − wn+1(u))(r)(1 − wn+1(v))(s)r0,0 + w

(r)
n+1(u)(1 − wn+1(v))(s)r1,0+

+(1 − wn+1(u))(r)w
(s)
n+1(v)r0,1 + w

(r)
n+1(u)w

(s)
n+1(v)r1,1
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for all m ∈ {1, 2, ..., n} where s+r = m and n ∈ N. Substituting values of derivatives
which are defined by Equations (11) in these equations, it is obtained that

∂ms(u, v)

∂ur∂vs
= 0,

∂mr̃(u, v)

∂um
= 0

and therefore
∂mr(0, 0)

∂ur∂vs
=

∂ms(0, 0)

∂ur∂vs
−

∂mr̃(0, 0)

∂ur∂vs
= 0.

Analogously it can be proven that the other mixed partial derivatives at the corners
of the patch r(u, v) are also equal to zero. Thus it is obtained that

∂mr(u, v)

∂ur∂vs
(0, 0) =

∂mr(u, v)

∂ur∂vs
(0, 1) =

∂mr(u, v)

∂ur∂vs
(1, 0) =

∂mr(u, v)

∂ur∂vs
(1, 1) = 0 (12)

for all m ∈ {1, 2, ..., n} where s + r = m and n ∈ N. These values of mixed partial
derivatives are natural because the patch r(u, v) is defined only by the boundary
curves.

3 Construction of spline surfaces by blending frame curves

Spline-blended surface interpolation through curve networks was proposed by
Gordon [10]. Then Gregory [11] introduced a smooth interpolation scheme without
twist constraints. G1 smoothness conditions for rectangular and triangular Gregory
patches are discussed by Farin and Hansford [6]. Another approach to surface in-
terpolation of control point mesh was proposed by Comninos [4]. The surface is
generated by piecewise bicubic interpolation and is derived from a classical Coons
patch. This paper presents an approach to interpolating bivariate network of curves
by means of patches which are constructed by blending frame curves. The pre-
sented approach provides Cn continuity of the constructed surface. Another ap-
proach to surface interpolation by means of linear blending is considered in the
paper of Juhásza and Hoffmann [12].

Consider a rectangular grid of points ri,j, i ∈ {0, 1, ..., k}, j ∈ {0, 1, ..., l}, k, l ∈ N.
Suppose that the rectangular grid is framed by parametric curves pi,j(u), u ∈ [0, 1],
and qi,j(v), v ∈ [0, 1], where i ∈ {0, 1, ..., k − 1}, j ∈ {0, 1, ..., l − 1}, which satisfy
the following boundary conditions:

pi,j(0) = qi,j(0) = ri,j,

pi,j(1) = pi+1,j(0) = ri+1,j,

qi,j(1) = qi,j+1(0) = ri,j+1.

(13)

Besides the considered parametric curves are Cn continuously joined at the common
grid points, that is

(p
(m)
i,j (u))(1) = (p

(m)
i+1,j(u))(0), (q

(m)
i,j (v))(1) = (q

(m)
i,j+1(v))(0) (14)
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for all m ∈ {1, 2, ..., n}, n ∈ N. The problem is to construct a Cn continuous
parametric surface r(u, v) which interpolates the points of this grid and the para-
metric curves pi,j(u) and qi,j(v) are boundaries of rectangular patches which form
the surface. Using Equation (9) define rectangular patches of the surface r(u, v) as
follows:

ri,j(u, v) = si,j(u, v) − r̃i,j(u, v), (u, v) ∈ [0, 1] × [0, 1], (15)

where

si,j(u, v) = (1 − wn+1(v))pi,j(u) + wn+1(v)pi,j+1(u)+

+(1 − wn+1(u))qi,j(u) + wn+1(u)qi+1,j(u),

r̃i,j(u, v) = (1 − wn+1(u))(1 − wn+1(v))ri,j + wn+1(u)(1 − wn+1(v))ri+1,j+

+(1 − wn+1(u))wn+1(v)ri,j+1 + wn+1(u)wn+1(v)ri+1,j+1

for all i ∈ {0, 1, ..., k−1}, j ∈ {0, 1, ..., l−1}. It follows from Equations (10) and (13)
that the parametric curves pi,j(u), pi,j+1(u), qi,j(v) and qi+1,j(v) are boundaries of
the patch ri,j(u, v).

Show that the parametric surface r(u, v) is Cn continuous. The surface r(u, v) is
Cn continuous at the knot points ri,j because the frame curves are Cn continuous at
the knot points and taking into consideration Equations (12). Then it is necessary
to show that the patches of the parametric surface r(u, v) are smoothly joined along
their common boundaries. For this purpose compute partial derivatives of the ad-
justment patches along their common boundaries. It is obtained taking into account
Equations (14) that

∂mri,j(u, v)

∂um
(1, v) = (1 − wn+1(v))(p

(m)
i,j (u))(1) + wn+1(v)(p

(m)
i,j+1(u))(1) =

= (1 − wn+1(v))(p
(m)
i+1,j(u))(0) + wn+1(v)(p

(m)
i+1,j+1(u))(0) =

∂mri+1,j(u, v)

∂um
(0, v)

and analogously
∂mri,j(u, v)

∂vm
(u, 1) =

∂mri,j+1(u, v)

∂vm
(u, 0)

for all m ∈ {1, 2, ..., n}. Now determine mixed partial derivatives across boundaries
of the patches. It is obtained using Equation (14) that

∂mri,j(u, v)

∂ur∂vs
(1, v) = (1 − wn+1(v))(s)(p

(r)
i,j (u))(1) + w

(s)
n+1(v)(p

(m)
i,j+1(u))(1) =

= (1 − wn+1(v))(s)(p
(m)
i+1,j(u))(0) + w

(s)
n+1(v)(p

(m)
i+1,j+1(u))(0) =

∂mri,j(u, v)

∂ur∂vs
(0, v)

and analogously
∂mri,j(u, v)

∂ur∂vs
(u, 1) =

∂mri,j+1(u, v)

∂ur∂vs
(u, 0)
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for all m ∈ {1, 2, ..., n} where s + r = m. Thus the spline surface r(u, v) constructed
by means of Equation (19) is Cn continuous.

It is obvious that a shape of the interpolating surface constructed by the proposed
method is mainly dependent on boundary curves of the patches. But two features
of the interpolating surface shape which are common for all surfaces constructed by
the approach can be mentioned.

Firstly it follows from Equations (12) that the twist vector ru,v is equal to zero
at all knot points of the interpolating spline surface. Therefore the proposed method
can lead to local flattening of the generated surface near patch corners. There are
more elaborated methods which use geometric specifications along the patch bound-
aries and at the corner points or the surface can be constructed with optimal twist
vectors as a tool for interpolating a network of curves with a minimum energy sur-
face, for example, see the paper of Kallay and Ravani [13]. But these methods can
be used only for offline processing because it is difficult to adjust additional geomet-
ric specifications or global computation procedures for online data point processing.
The old problem of specifying the mixed partial derivatives or twist vectors at the
grid points for an interpolating surface over a rectangular network of curves is con-
sidered in detail by Barnhill, Brown, Klucewicz [1]; Faux, Pratt [7]; Barnhill, Farin,
Fayard, Hagen [2].

Secondly it follows from the extremum property of the polynomials wn(u) that
patches of interpolating surfaces are generated with energy minimizing polynomials.
It can be seen from profiles of the polynomials that the higher degree of continuity
of the interpolating surface the shape of patches closes to shape of frame curves at
knot points and an inflection of the shape moves from knot points to a parametric
center of the patch.

4 Interpolating Bézier spline surfaces with local control

A translation of the Gordon scheme into a Bézier-like form was carried out
by Chiyokura and Kimura [3]. Local surface interpolation with Bézier patches for
meshes of cubic curves is described by Shirman, Sequin [18-19]. The method is local
and provides G1 continuity between patches. In this section construction of spline
surfaces using blending of Bézier frame curves is presented.

Suppose that frame curves of a rectangular grid are constructed by means of
Cn continuous spline Bézier curves. Since the proposed approach is aimed at local
interpolation of the framed grid, the Bézier curves must also have a local control.
In order to ensure this property Bézier curves, which are segments of the curve net,
must have at least 2n+1 order. Such a net of spline curves can be constructed by
the approach considered in the paper of Pobegailo [17]. In this case boundaries of



58 A.P.POBEGAILO

the patch ri,j(u, v) can be described by the following Bézier curves:

pi,j(u) =
2n+1
∑

k=0

b2n+1,k(u)pi,j,k, u ∈ [0, 1],

qi,j(v) =

2n+1
∑

l=0

b2n+1,l(v)qi,j,l, v ∈ [0, 1]

(16)

where boundary points of the Bézier curves pi,j(u) and qi,j(v) are knot points of
the grid, that is

pi,j(0) = pi,j,0 = ri,j, pi,j(1) = pi,j,2n+1 = ri+1,j,

qi,j(0) = qi,j,0 = ri,j, qi,j(1) = qi,j,2n+1 = ri,j+1.

Then the patch ri,j(u, v) can be described using Equations (15) and (16) as follows:

ri,j(u, v) = si,j(u, v) − r̃i,j(u, v) =

=

n
∑

l=0

b2n+1,l(v)

2n+1
∑

k=0

b2n+1,k(u)pi,j,k +

2n+1
∑

l=n+1

b2n+1,l(v)

2n+1
∑

k=0

b2n+1,k(u)pi,j+1,k+

+

n
∑

k=0

b2n+1,k(u)

2n+1
∑

l=0

b2n+1,l(v)qi,j,l +

2n+1
∑

k=n+1

b2n+1,k(u)

2n+1
∑

l=0

b2n+1,l(v)qi+1,j,l−

−

n
∑

k=0

b2n+1,k(u)

n
∑

l=0

b2n+1,l(v)ri,j −

2n+1
∑

k=n+1

b2n+1,k(u)

n
∑

l=0

b2n+1,l(v)ri+1,j−

−

n
∑

k=0

b2n+1,k(u)

2n+1
∑

l=n+1

b2n+1,l(v)ri,j+1 −

2n+1
∑

k=n+1

b2n+1,k(u)

2n+1
∑

l=n+1

b2n+1,l(v)ri+1,j+1.

Combination of the similar terms yields that

ri,j(u, v) =

n
∑

k=0

b2n+1,k(u)

n
∑

l=0

b2n+1,l(v)(pi,j,k + qi,j,l − ri,j)+

+

n
∑

k=0

b2n+1,k(u)

2n+1
∑

l=n+1

b2n+1,l(v)(pi,j+1,k + qi,j,l − ri,j+1)+

2n+1
∑

k=n+1

b2n+1,k(u)

n
∑

l=0

b2n+1,l(v)(pi,j,k + qi+1,j,l − ri+1,j)+

2n+1
∑

k=n+1

b2n+1,k(u)

2n+1
∑

l=n+1

b2n+1,l(v)(pi,j+1,k + qi+1,j,l − ri+1,j+1).

This is a Bézier representation of the patch ri,j(u, v) for a Cn continuous Bézier
spline surface. It can be seen from the last equation that the knot and control
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points of the Bézier patch ri,j(u, v) can be arranged in a square block matrix

Pk,l =

[

B0,0 B0,1

B1,0 B1,1

]

.

where every internal block corresponds to a term of the patch equation.

In geometric applications surfaces of C1 and C2 continuity are usually used. A
patch ri,j(u, v) of the C1 continuous surface has the following Bézier representations:

ri,j(u, v) =
3

∑

k=0

b2n+1,k(u)
3

∑

l=0

b2n+1,l(v)pk,l

where points pk,l are corresponding elements of the following matrix:

Pk,l =









ri,j qi,j,1 qi,j,2 ri,j+1

pi,j,1 pi,j,1 + qi,j,1 − ri,j pi,j+1,1 + qi,j,2 − ri,j+1 pi,j+1,1

pi,j,2 pi,j,2 + qi+1,j,1 − ri+1,j pi,j+1,2 + qi+1,j,2 − ri+1,j+1 pi,j+1,2

ri+1,j qi+1,j,1 qi+1,j,2 ri+1,j+1









.

A patch ri,j(u, v) of the C2 continuous surface has the following Bézier representa-
tion:

ri,j(u, v) =

5
∑

k=0

b2n+1,k(u)

5
∑

l=0

b2n+1,l(v)pk,l

where points pk,l are corresponding elements of the following matrix blocks:

B0,0 =





ri,j qi,j,1 qi,j,2

pi,j,1 pi,j,1 + qi,j,1 − ri,j pi,j,1 + qi,j,2 − ri,j

pi,j,2 pi,j,2 + qi,j,1 − ri,j pi,j,2 + qi,j,2 − ri,j



 ,

B0,1 =





qi,j,3 qi,j,4 ri,j+1

pi,j+1,1 + qi,j,3 − ri,j+1 pi,j+1,1 + qi,j,4 − ri,j+1 pi,j+1,1

pi,j+1,2 + qi,j,3 − ri,j+1 pi,j+1,2 + qi,j,4 − ri,j+1 pi,j+1,2



 ,

B1,0 =





pi,j,3 pi,j,3 + qi,j,1 − ri+1,j pi,j,3 + qi,j,2 − ri+1,j

pi,j,4 pi,j,4 + qi+1,j,1 − ri+1,j pi,j,4 + qi+1,j,2 − ri+1,j

ri+1,j qi+1,j,1 qi+1,j,2



 ,

B1,1 =





pi,j+1,3 + qi+1,j,3 − ri+1,j+1 pi,j+1,3 + qi+1,j,4 − ri+1,j+1 pi,j+1,3

pi,j+1,4 + qi+1,j,3 − ri+1,j+1 pi,j+1,4 + qi+1,j,4 − ri+1,j+1 pi,j+1,4

qi+1,j,3 qi+1,j,4 ri+1,j+1



 .
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5 Rational Bézier spline surfaces with local control

Now suppose that frame curves of the rectangular grid are constructed by means
of Cn continuous rational spline Bézier curves with a local shape control. In order
to ensure this property rational Bézier curves, which are segments of the net, must
have at least 2n+1 order. In this case boundaries of the patch ri,j(u, v) can be
described by the following rational Bézier curves:

pi,j(u) =

2n+1
∑

k=0

b2n+1,k(u)wi,j,kpi,j,k

2n+1
∑

k=0

b2n+1,k(u)wi,j,k

, u ∈ [0, 1],

qi,j(v) =

2n+1
∑

l=0

b2n+1,l(u)wi,j,lqi,j,l

2n+1
∑

l=0

b2n+1,l(u)wi,j,l

, v ∈ [0, 1]

where boundary points of the rational Bézier curves pi,j(u) and qi,j(u) are knot
points of the grid. Such a net of spline curves can be constructed by the approach
considered in the paper of Pobegailo [16]. Introduce the following denotations for
numerators and denominators of the rational Bézier curves pi,j(u) and qi,j(u):

Pi,j(u) =
2n+1
∑

k=0

b2n+1,k(u)wi,j,kpi,j,k, u ∈ [0, 1],

Qi,j(v) =

2n+1
∑

l=0

b2n+1,l(v)wi,j,lqi,j,l, v ∈ [0, 1],

Pi,j(u) =

2n+1
∑

k=0

b2n+1,k(u)wi,j,k, u ∈ [0, 1],

Qi,j(v) =

2n+1
∑

l=0

b2n+1,l(v)wi,j,l, v ∈ [0, 1].

Then by analogy with non-rational case, see Equation (15), define the following
rational patches:

ri,j(u, v) =
Si,j(u, v) − R̃i,j(u, v)

Si,j(u, v) − R̃i,j(u, v)
, (u, v) ∈ [0, 1] × [0, 1]

where

Si,j(u, v) = (1 − wn+1(v))Pi,j(u) + wn+1(v)Pi,j+1(u)+

+(1 − wn+1(u))Qi,j(u) + wn+1(u)Qi+1,j(u),
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R̃i,j(u, v) = (1 − wn+1(u))(1 − wn+1(v))wi,jri,j+

wn+1(u)(1 − wn+1(v))wi+1,jri+1,j+

+(1 − wn+1(u))wn+1(v)wi,j+1ri,j+1+

wn+1(u)wn+1(v)wi+1,j+1ri+1,j+1,

Si,j(u, v) = (1 − wn+1(v))Pi,j(u) + wn+1(v)Pi,j+1(u)+

+(1 − wn+1(u))Qi,j(u) + wn+1(u)Qi+1,j(u),

R̃i,j(u, v) = (1 − wn+1(u))(1 − wn+1(v))wi,j+

wn+1(u)(1 − wn+1(v))wi+1,j+

+(1 − wn+1(u))wn+1(v)wi,j+1+

wn+1(u)wn+1(v)wi+1,j+1

for all i ∈ {0, 1, ..., k − 1}, j ∈ {0, 1, ..., l − 1}. By transition to homogeneous
coordinates and using Grassmann algebra of weighted points, see Goldman [9], it can
be proven that the constructed rational spline surfaces are Cn continuous. It should
be noted that rational spline surface provides more opportunities for modification
of its shape by changing weights of knot points.

6 Conclusions

The approach to construction of Cn continuous interpolating spline surfaces by
means of blending boundaries of the surface patches is introduced. The considered
spline surfaces are constructed locally over bivariate networks of curves. This ap-
proach ensures local control of the interpolating surface shape. If the surface frame
is determined by means of Bézier curves then patches of the interpolating spline
surface are represented by Bézier surfaces. General properties of the interpolating
surface shape are considered. The proposed approach can be used for sketching and
fast prototyping of spline surfaces in geometric design. Besides local control of the
constructed interpolating surfaces makes the approach useful in on-line geometric
applications.
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