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Abstract. By using a linear operator associated with the λ-generalized Hurwitz-
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1 Main remarks

Let Σ denote the class of meromorphic functions f(z) normalized by

f(z) =
1

z
+

∞∑

k=1

akz
k, (1)

which are analytic in the punctured unit disk

U
∗ = {z : z ∈ C and 0 < |z| < 1} = U \ {0},

C being (as usual) the set of complex numbers. We denote by ΣS∗(β) and ΣK(β)
(β ≧ 0) the subclasses of Σ consisting of all meromorphic functions which are,
respectively, starlike of order β and convex of order β in U∗ (see also the recent
works [1] and [2]).

For functions fj(z) (j = 1, 2) defined by

fj(z) =
1

z
+

∞∑

k=1

ak,jz
k (j = 1, 2), (2)

we denote the Hadamard product (or convolution) of f1(z) and f2(z) by

(f1 ∗ f2)(z) =
1

z
+

∞∑

k=1

ak,1ak,2z
k. (3)
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Let us consider the function φ̃(α, β; z) defined by

φ̃(α, β; z) =
1

z
+

∞∑

k=0

(α)k+1

(β)k+1
akz

k (4)

(
β ∈ C \ Z

−

0 ; α ∈ C
)
,

where
Z
−

0 = {0,−1,−2, · · · } = Z
− ∪ {0}.

Here, and in the remainder of this paper, (λ)κ denotes the general Pochhammer
symbol defined, in terms of the Gamma function, by

(λ)κ :=
Γ(λ + κ)

Γ(λ)
=

{
λ(λ + 1) · · · (λ + n − 1) (κ = n ∈ N; λ ∈ C)

1 (κ = 0; λ ∈ C \ {0}),
(5)

it being understood conventionally that (0)0 := 1 and assumed tacitly that the Γ-
quotient exists (see, for details,[3, p. 21 et seq.]), N being the set of positive integers.

It is easy to see that, in the case when ak = 1 (k = 0, 1, 2, · · · ), the following rela-
tionship holds true between the function φ̃(α, β; z) and the Gaussian hypergeometric
function [4]:

φ̃(α, β; z) =
1

z
2F1(1, α;β; z). (6)

Recently, Ghanim ([5]; see also [6] and [7]) made use of the Hadamard product
for functions f(z) ∈ Σ in order to introduce a new linear operator Ls

a(α, β), which
is defined on Σ by

Ls
a(α, β)(f)(z) = φ̃(α, β; z) ∗ Gs,a(z)

=
1

z
+

∞∑

k=1

(α)n+1

(β)n+1

(
a + 1

a + k

)s

akz
k

(
z ∈ U

∗
)
, (7)

where

Gs,a(z) := (a + 1)s
[
Φ(z, s, a) − as +

1

z(a + 1)s

]

=
1

z
+

∞∑

k=1

(
a + 1

a + k

)s

zk
(
z ∈ U

∗
)

(8)

and the function Φ(z, s, a) is the well-known Hurwitz-Lerch zeta function defined by
(see, for example,[8, p. 121 et seq.]; see also [9] and [10, p. 194 et seq.])

Φ(z, s, a) :=
∞∑

n=0

zn

(n + a)s
(9)
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(a ∈ C \ Z
−

0 ; s ∈ C when |z| < 1; ℜ(s) > 1 when |z| = 1).

We recall that the following new family of the λ-generalized Hurwitz-Lerch zeta
functions was introduced and investigated systematically by Srivastava [11] (see
also [12–16] ):

Φ
(ρ1,··· ,ρp,σ1,··· ,σq)
λ1,··· ,λp;µ1,··· ,µq

(z, s, a; b, λ) =
1

λ Γ(s)

·

∞∑

n=0

p∏
j=1

(λj)nρj

(a + n)s ·
q∏

j=1
(µj)nσj

H
2,0
0,2


(a + n)b

1
λ

∣∣∣∣
(s, 1),

(
0, 1

λ

)


 zn

n!
(10)

(
min{ℜ(a),ℜ(s)} > 0; ℜ(b) > 0; λ > 0

)

(
λj ∈ C (j = 1, · · · , p) and µj ∈ C \ Z

−

0 (j = 1, · · · , q); ρj > 0 (j = 1, · · · , p);

σj > 0 (j = 1, · · · , q); 1 +

q∑

j=1

σj −

p∑

j=1

ρj ≧ 0

)
,

where the equality in the convergence condition holds true for suitably bounded
values of |z| given by

|z| < ∇ :=




p∏

j=1

ρ
−ρj

j


 ·




q∏

j=1

σ
σj

j


 .

Definition 1. The H-function involved in the right-hand side of (10) is the well-
known Fox’s H-function [17, Definition 1.1] (see also [3, 18]) defined by

H
m,n
p,q (z) = H

m,n
p,q


z

∣∣∣∣
(a1, A1), · · · , (ap, Ap)

(b1, B1), · · · , (bq, Bq)




=
1

2πi

∫

L

Ξ(s)z−s ds
(
z ∈ C \ {0}; | arg(z)| < π

)
, (11)

where

Ξ(s) =

m∏
j=1

Γ(bj + Bjs) ·
n∏

j=1
Γ(1 − aj − Ajs)

p∏
j=n+1

Γ(aj + Ajs) ·
q∏

j=m+1
Γ(1 − bj − Bjs)

,

an empty product is interpreted as 1, m,n, p and q are integers such that

1 ≦ m ≦ q and 0 ≦ n ≦ p,
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Aj > 0 (j = 1, · · · , p) and Bj > 0 (j = 1, · · · , q),

aj ∈ C (j = 1, · · · , p) and bj ∈ C (j = 1, · · · , q)

and L is a suitable Mellin-Barnes type contour separating the poles of the gamma
functions

{Γ(bj + Bjs)}
m
j=1

from the poles of the gamma functions

{Γ(1 − aj + Ajs)}
n
j=1.

We choose to mention here that, by using the fact that [11, p. 1496, Remark 7]

lim
b→0

{
H

2,0
0,2

[
(a + n)b

1
λ

∣∣∣∣ (s, 1),
(
0, 1

λ

)
]}

= λ Γ(s) (λ > 0), (12)

the equation (8) reduces to the following form:

Φ
(ρ1,··· ,ρp,σ1,··· ,σq)
λ1,··· ,λp;µ1,··· ,µq

(z, s, a; 0, λ) := Φ
(ρ1,··· ,ρp,σ1,··· ,σq)
λ1,··· ,λp;µ1,··· ,µq

(z, s, a)

=

∞∑

n=0

p∏
j=1

(λj)nρj

(a + n)s ·
q∏

j=1
(µj)nσj

zn

n!
. (13)

Definition 2. The function Φ
(ρ1,··· ,ρp,σ1,··· ,σq)
λ1,··· ,λp;µ1,··· ,µq

(z, s, a) involved in (13) is the multi-

parameter extension and generalization of the Hurwitz-Lerch zeta function Φ(z, s, a)
introduced by Srivastava et al.[16, p. 503, Eq. (6.2)] defined by

Φ
(ρ1,··· ,ρp,σ1,··· ,σq)
λ1,··· ,λp;µ1,··· ,µq

(z, s, a) :=
∞∑

n=0

p∏
j=1

(λj)nρj

(a + n)s ·
q∏

j=1
(µj)nσj

zn

n!
(14)

(
p, q ∈ N0; λj ∈ C (j = 1, · · · , p); a, µj ∈ C \ Z

−

0 (j = 1, · · · , q);

ρj, σk ∈ R
+ (j = 1, · · · , p; k = 1, · · · , q);

∆ > −1 when s, z ∈ C;

∆ = −1 and s ∈ C when |z| < ∇∗;

∆ = −1 and ℜ(Ξ) >
1

2
when |z| = ∇∗

)
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with

∇∗ :=




p∏

j=1

ρ
−ρj

j


 ·




q∏

j=1

σ
σj

j


 , (15)

∆ :=

q∑

j=1

σj −

p∑

j=1

ρj and Ξ := s +

q∑

j=1

µj −

p∑

j=1

λj +
p − q

2
. (16)

By applying this new family of the λ-generalized Hurwitz-Lerch zeta functions,
Srivastava and Gaboury [19] introduced a new linear operator which provides a
generalization of the largely- (and widely-) studied Srivastava-Attiya operator [20]
(see also [21–23]). This new operator contains, as its special cases, the operators
investigated earlier by Prajapat and Bulboacǎ [24, p. 571, Eq. (1.8)], Noor and
Bukhari [25, p. 2, Eq. (1.3)], Choi et al. [26], Cho and Srivastava [27], Jung et al.
[28], Bernardi [1], Carlson and Shaffer [29], Owa and Srivastava [30] and by Dziok
and Srivastava [31,32]. The Dziok-Srivastava convolution operator studied by Dziok
and Srivastava [31, 32] is, in turn, a generalization of the Hohlov operator [33] and
the Ruscheweyh operator [34]. In fact, the Dziok-Srivastava convolution operator is
itself a special case of the Srivastava-Wright operator (see, for details, [35] and [36];
see also the other closely-related works cited in each of these recent publications).

In this paper, we consider the following linear operator:

J
s,a,λ,α,β

(λp),(µq),b
f (z) : Σ → Σ,

which is defined by

J
s,a,λ,α,β

(λp),(µq),bf (z) = G
s,a,λ

(λp),(µq),b(z) ∗ φ̃(α, β; z),

where ∗ denotes the Hadamard product (or convolution) of analytic functions and

the function G
s,a,λ
(λp),(µq),b(z) is given by

G
s,a,λ

(λp),(µq),b
(z) := (a + 1)s ·

[
Φ

(1,··· ,1,1,··· ,1)
λ1,··· ,λp;µ1,··· ,µq

(z, s, a; b, λ)

−
a−s

λ Γ(s)
Λ (a, b, s, λ) +

(a + 1)−s

z

]

=
1

z
+

∞∑

k=1

p∏
j=1

(λj)k

q∏
j=1

(µj)k

(
a + 1

a + k

)s Λ (a + k, b, s, λ)

λ Γ(s)

zk

k!
(17)

with

Λ (a, b, s, λ) := H
2,0
0,2

[
ab

1
λ

∣∣∣∣ (s, 1),
(
0, 1

λ

)
]

.
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By combining (17) and (4), we obtain

J
s,a,λ,α,β
(λp),(µq),bf (z) =

1

z

+
∞∑

k=1

(α)k+1

p∏
j=1

(λj)k

(β)k+1

q∏
j=1

(µj)k

(
a + 1

a + k

)s Λ (a + k, b, s, λ)

λ Γ(s)
ak

zk

k!
(18)

(
z ∈ U

∗; α, λj ∈ C (j = 1, · · · , p); β, µj ∈ C \ Z
−

0 (j = 1, · · · , q); p ≦ q + 1

)

with
min{ℜ(a),ℜ(s)} > 0, λ > 0 if ℜ(b) > 0

and
s ∈ C and a ∈ C \ Z

−

0 if b = 0.

Clearly, upon setting p−1 = q = 0 and λ1 = 1 in (18) and taking the limit as b → 0,
we obtain the operator Ls

a(α, β)(f)(z) studied earlier by Ghanim [5].

It is easily observed from (18) that

z
(
J

s,a,λ,α,β
(λp),(µq),bf (z)

)′

= α
(
J

s,a,λ,α+1,β
(λp),(µq),b f (z)

)
− (α + 1)

(
J

s,a,λ,α,β
(λp),(µq),bf (z)

)
(19)

and

z
(
J

s,a,λ,α,β+1
(λp),(µq),b f (z)

)′

= β
(
J

s,a,λ,α,β
(λp),(µq),bf (z)

)
− (β + 1)

(
J

s,a,λ,α,β+1
(λp),(µq),b f (z)

)
. (20)

Now, with the help of the linear operator J
s,a,λ,α,β
(λp),(µq),bf (z), we introduce the fol-

lowing subclass:
Σs,a,λ,α,β

(λp),(δq),b (µ) = Σ (α, β, µ)

of meromorphic functions as follows:

Definition 3. For fixed parameters A,B (−1 ≦ B < A ≦ 1) and 0 ≦ µ < 1 , the
function f (z) ∈ Σ is said to be in the class Σ (α, β, µ) if it satisfies the following
subordination condition:

1

1 − µ


−

z
(
J

s,a,λ,α,β
(λp),(µq),bf (z)

)′

J
s,a,λ,α,β
(λp),(µq),bf (z)

− µ


 ≺

1 + Az

1 + Bz
(z ∈ U

∗) (21)

or, equivalently,

Σ (α, β, µ) =





f : f (z) ∈ Σ and

∣∣∣∣∣∣∣∣∣∣∣

z

(
J

s,a,λ,α,β

(λp),(µq),b
f(z)

)
′

J
s,a,λ,α,β

(λp),(µq),b
f(z)

+ 1

B
z

(
J

s,a,λ,α,β

(λp),(µq),b
f(z)

)
′

J
s,a,λ,α,β

(λp),(µq),b
f(z)

+ B + (A − B) (1 − µ)

∣∣∣∣∣∣∣∣∣∣∣

< 1





.

(22)
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2 A Set of Lemmas

To establish our main results, we shall need each of the following lemmas:

Lemma 1 (see [37]). If −1 ≦ B < A ≦ 1, ν 6= 0 and the complex number τ satisfies
the inequality:

ℜ{τ} ≧ −
ν(1 − A)

1 − B
,

then the following differential equation:

q(z) +
zq′(z)

νq(z) + τ
≺

1 + Az

1 + Bz
(z ∈ U),

has a univalent solution in U given by

q (z) =





zν+τ (1+Bz)ν(A−B)/B

ν
∫ z
0 tν+τ−1(1+Bt)ν(A−B)/B dt

− τ
ν

(B 6= 0)

zν+τ exp(νAz)
ν

∫ z

0
tν+τ−1 exp(νAt) dt

− τ
ν

(B = 0).

(23)

If the function φ given by

φ (z) = 1 + c1z + c2z + · · ·

is analytic in U and satisfies the following subordination:

φ (z) +
zφ′ (z)

νφ (z) + τ
≺

1 + Az

1 + Bz
(z ∈ U) , (24)

then

φ (z) ≺ q (z) ≺
1 + Az

1 + Bz
(z ∈ U)

and q(z) is the best dominant of (24).

Lemma 2 (see [38]). Let v be a positive measure on [0, 1]. Let h be a complex-valued
function defined on U× [0, 1] such that h(., t) is analytic in U for each t ∈ [0, 1] and
h(z, .) is v-integrable on [0, 1] for all z ∈ U. Suppose also that ℜ{h (z, t)} > 0,
h(−r, t) is real and

ℜ

{
1

h (z, t)

}
≧

1

h (−r, t)
(|z| ≦ r < 1; t ∈ [0, 1]) .

If

h (z) =

∫ 1

0
h (z, t) dv (t),

then

ℜ

{
1

h (z)

}
≧

1

h (−r)
(|z| ≦ r < 1) .
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Lemma 3 (see [39]). For real numbers a, b and c (c 6= 0,−1,−2, · · ·) , it is asserted
that ∫ 1

0
tb−1 (1 − t)c−b−1 (1 − zt)−a dt =

Γ (b) Γ (c − b)

Γ (c)
2F1 (a, b; c; z) (25)

(
ℜ{c} > ℜ{b} > 0; z ∈ U

)
.

Moreover,

2F1 (a, b; c; z) = 2F1 (b, a; c; z) (26)

and

2F1 (a, b; c; z) = (1 − z)−α
2F1

(
a, c − b; c;

z

z − 1

)
(27)

(
c 6= 0,−1,−2, · · · ; | arg(1 − z)| < π

)
.

Inclusion properties of various classes of analytic and meromorphic functions
were studied earlier by several different methods (see, for example, [40–43] and [44]).
In this paper, we find two inclusion theorems for the meromorphic function class
Σ (α, β, µ). In particular, we show that, if we increase the parameter α by one,
the overall size of the meromorphic function class Σ (α, β, µ) would get smaller.
On the other hand, by increasing the parameters β by one, the overall size of the
meromorphic function class Σ (α, β, µ) would get bigger.

3 Main Results

Unless otherwise mentioned, we assume throughout the remainder of the paper
that

−1 ≦ B < A ≦ 1, 0 ≦ µ < 1, α, β > 0, a ∈ C \ Z
−

0 , s ∈ C and z ∈ U.

We begin with some inclusion relationships concerning the parameter α of the class
Σ (α, β, µ).

Theorem 1.

(i) If f (z) ∈ Σ (α + 1, β, µ) and

α − µ + 1 ≧
(1 − µ) (1 − A)

(1 − B)
, (28)

then

1

1 − µ


 −

z
(
J

s,a,λ,α,β
(λp),(µq),bf (z)

)′

J
s,a,λ,α,β

(λp),(µq),bf (z)
− µ


 ≺

1

1 − µ

(
(α − µ + 1) −

1

Q1 (z)

)

= q1 (z) ≺
1 + Az

1 + Bz
(z ∈ U), (29)
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where

Q1(z) =





∫ 1
0 uα−1

(
1+Bzu
1+Bz

)−(1−µ)(A−B)/B

du (B 6= 0)

∫ 1
0 uα−1e−(1−µ)A(u−1)z du (B = 0)

and q1(z) is the best dominant of (29). Moreover,

Σ (α + 1, β, µ) ⊆ Σ (α, β, µ) . (30)

(ii) If the additional constraints 0 < B < 1 and

α + 1 ≧
(1 − µ) (A − B)

B
(31)

are satisfied, then

1 − |A|

1 − |B|
<

1

1 − µ


 −ℜ





z
(
J

s,a,λ,α,β
(λp),(µq),bf (z)

)′

J
s,a,λ,α,β
(λp),(µq),bf (z)





− µ


 < ρ1, (32)

where

ρ1 =
1

1 − µ



(α − µ + 1) −

α

2F1

(
1, (1−µ)(A−B)

B
;α + 1; B

B−1

)



 . (33)

The bound ρ1 is the best possible.

Proof. Let f (z) ∈ Σ (α + 1, β, µ) and set

φ (z) =
1

1 − µ


 −

z
(
J

s,a,λ,α,β
(λp),(µq),bf (z)

)′

J
s,a,λ,α,β
(λp),(µq),bf (z)

− µ


 . (34)

Then it is clear that φ (z) is analytic in U and φ (0) = 1. An application of the
identity (19) in (34) yields

− (1 − µ)φ (z) + (α − µ + 1) = α
J

s,a,λ,α+1,β
(λp),(µq),b f (z)

J
s,a,λ,α,β
(λp),(µq),bf (z)

. (35)

By using the logarithmic differentiation of both sides of (35) with respect to z, we
obtain

φ (z) +
z φ′ (z)

(α − µ + 1) − (1 − µ)φ (z)
=

1

1 − µ


−

z
(
J

s,a,λ,α+1,β

(λp),(µq),b
f (z)

)′

J
s,a,λ,α+1,β
(λp),(µq),b f (z)

− µ




≺
1 + Az

1 + Bz
(z ∈ U) .
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Therefore, by applying Lemma 1 with

ν = −(1 − µ) and τ = α − µ + 1,

we have

φ (z) ≺ q1 (z) ≺
1 + Az

1 + Bz
(z ∈ U) ,

where the best dominant q1(z) is defined by (29). The proof of Theorem 1 (i) is
completed.

In order to establish (32) of Theorem 1 (ii), we observe that an application of
the principle of subordination in (21) gives

1 − |A|

1 − |B|
<

1

1 − µ


−ℜ





z
(
J

s,a,λ,α,β
(λp),(µq),bf (z)

)′

J
s,a,λ,α,β
(λp),(µq),bf (z)





− µ


 ,

which is precisely the left-hand inequality in (32). Also, by the principle of subor-
dination in (29), we have

1

1 − µ


−ℜ





z
(
J

s,a,λ,α,β
(λp),(µq),bf (z)

)′

J
s,a,λ,α,β
(λp),(µq),bf (z)





− µ


 ≦ sup

z∈U∗

ℜ{q1 (z)}

= sup
z∈U

[
1

1 − µ

(
α − µ + 1 −ℜ

{
1

Q1 (z)

})]

=
1

1 − µ

(
α − µ + 1 − inf

z∈U

ℜ

{
1

Q1 (z)

})
.

(36)

The rest of the proof is devoted to find

inf
z∈U

ℜ

{
1

Q1 (z)

}
.

By hypothesis, B 6= 0. Therefore, by using (29), we have

Q1 (z) = (1 + Bz)δ
∫ 1

0
uα−1 (1 − u)γ−α−1 (1 + Bzu)−δ du,

where

δ =
(1 − µ) (A − B)

B
and γ = α + 1.

Also, since γ > α > 0, by successively using (25) to (27) of Lemma 3, we obtain

Q1 (z) =
Γ (α)

Γ (γ)
2F1

(
1, δ; γ;

Bz

Bz + 1

)
. (37)
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Furthermore, the condition:

α + 1 >
(1 − µ) (A − B)

B
(0 < B < 1)

implies that γ > δ > 0. Another application of (27) of Lemma 3 to (37) gives

Q1 (z) =

∫ 1

0
h (z, u) dv(u),

where

h (z, u) =
1 + Bz

1 + (1 − u)Bz
(0 ≦ u ≦ 1)

and

dv(u) =
Γ (α)

Γ (δ) Γ (γ − δ)
uδ−1 (1 − u)γ−δ−1 du

is a positive measure on u ∈ [0, 1]. We note that

ℜ{h (z, u)} > 0 and h (−r, u)

is real for 0 ≦ r < 1 and u ∈ [0, 1]. Therefore, by using Lemma 2, we get

ℜ

{
1

Q1 (z)

}
≧

1

Q1 (−r)
(|z| ≦ r < 1) ,

so that

inf
z∈U

ℜ

{
1

Q1 (z)

}
= sup

0≦r<1

1

Q1 (−r)

= sup
0≦r<1

1
∫ 1
0 h (−r, u) dv

=
1

∫ 1
0 h (−1, u) dv

=
1

Q1 (−1)

=
α

2F1

(
1, (1−µ)(A−B)

B
, α + 1, B

B−1

) . (38)

Hence, in view of (36), the right-hand inequality of (32) follows from (38).

The result is the best possible as the function q1(z) is the best dominant of (29).
This completes the proof of Theorem 1.

The next theorem gives the corresponding results involving the parameter β.

Theorem 2.

(i) If f (z) ∈ Σ (α, β, µ) and

β − µ + 1 ≧
(1 − µ) (1 − A)

(1 − B)
, (39)
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then

1

1 − µ


−

z
(
J

s,a,λ,α,β+1
(λp),(µq),b

f (z)
)′

J
s,a,λ,α,β+1
(λp),(µq),b f (z)

− µ


 ≺

1

1 − µ

(
(β − µ + 1) −

1

Q2 (z)

)

= q2 (z) ≺
1 + Az

1 + Bz
(z ∈ U), (40)

where

Q2(z) =





∫ 1
0 uβ−1

(
1+Bzu
1+Bz

)−(1−µ)(A−B)/B

du (B 6= 0)

∫ 1
0 uβ−1 e−(1−µ)A(u−1)zdu (B = 0)

and q2(z) is the best dominant of (40). It is also asserted that

Σ (α, β, µ) ⊆ Σ (α, β + 1, µ) . (41)

(ii) If the additional constraints 0 < B < 1 and

β + 1 ≧
(1 − µ) (A − B)

B
, (42)

are satisfied, then

1 − |A|

1 − |B|
<

1

1 − µ


−ℜ





z
(
J

s,a,λ,α,β+1
(λp),(µq),b f (z)

)′

J
s,a,λ,α,β+1
(λp),(µq),b f (z)





− µ


 < ρ2, (43)

where

ρ2 =
1

1 − µ


(β + 1 − µ) −

β

2F1

(
1, (1−µ)(A−B)

B
;β + 1; B

B−1

)


 . (44)

The bound ρ2 is the best possible.

Proof. Let f (z) ∈ Σ (α, β, µ) and set

φ (z) =
1

1 − µ


−

z
(
J

s,a,λ,α,β+1
(λp),(µq),b f (z)

)′

J
s,a,λ,α,β+1
(λp),(µq),b f (z)

− µ


 . (45)

Then, by using (17) and logarithmic differentiation for (45) with respect to z, we
get

φ (z) +
z φ′ (z)

−(1 − µ)φ (z) + (β + 1 − µ)
=

1

1 − µ


−

z
(
J

s,a,λ,α,β
(λp),(µq),bf (z)

)′

J
s,a,λ,α,β
(λp),(µq),bf (z)

− µ



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≺
1 + Az

1 + Bz
(z ∈ U) .

Therefore, by an application of Lemma 1 with

ν = −(1 − µ) and τ = β − µ + 1,

we have

φ (z) ≺ q2 (z) ≺
1 + Az

1 + Bz
(z ∈ U) ,

where the best dominant q2(z) is defined by (40). The proof of Theorem 2 (i) is
completed.

In order to establish (43) of Theorem 2 (ii), we apply the principle of subordina-
tion in (21) and use the same technique which was used in the proof of Theorem 1.
We thus find that

Q2 (z) = (1 + Bz)δ
∫ 1

0
uβ−1 (1 − u)γ−β−1(1 + Bzu)−δ du

=
Γ (β)

Γ (γ)
2F1

(
1, δ; γ;

Bz

Bz + 1

)
(46)

where δ = (1−µ)(A−B)
B

and γ = β + 1.
Furthermore, the condition:

β + 1 >
(1 − µ) (A − B)

B
(0 < B < 1)

implies that γ > δ > 0. Another application of (27) of Lemma 3 to (46) gives

Q2 (z) =

∫ 1

0
h (z, u) dv(u),

where

h (z, u) =
1 + Bz

1 + (1 − u)Bz
, (0 ≦ u ≦ 1)

and

dv(u) =
Γ (β)

Γ (γ) Γ (γ − δ)
uδ−1 (1 − u)γ−δ−1 du.

Using Lemma 2 implies that

inf
z∈U

ℜ

{
1

Q2 (z)

}
=

β

2F1

(
1, (1−µ)(A−B)

B
;β + 1; B

B−1

) . (47)

The right-hand inequality of (43) follows from (47).

The bound ρ2 is sharp by the principle of subordination. The proof of Theorem
2 is thus completed.
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4 Concluding Remarks and Observations

In our present sequel to an earlier work (see [5, 6, 14] and [15]), we have inves-
tigated several further properties of the linear operator defined by (18), which is
associated with Hurwitz-Lerch zeta function:

J
s,a,λ,α,β
(λp),(µq),bf (z) =

1

z
+

∞∑

k=1

(α)k+1

p∏
j=1

(λj)k

(β)k+1

q∏
j=1

(µj)k

(
a + 1

a + k

)s Λ (a + k, b, s, λ)

λ Γ(s)
ak

zk

k!
,

as given by (8) and with the notation used with (17). The various properties and
results, which we have presented in this paper, are related to a certain subclass of the
class of (normalized) meromorphically univalent functions in the punctured unit disk
U
∗, which is defined here by means of the Hadamard product (or convolution). Many

interesting results (asserted by Theorems 1 and 2 above) have also been deduced
in this paper. In addition, there are more extensions and ideas that can be found
based on these results.
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[23] Srivastava H.M., Răducanu D., Sălăgean G. S. A new class of generalized close-to-

starlike functions defined by the Srivastava-Attiya operator, Acta Math. Sinica (English Ser.),
2013, 29, 833–840.
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