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Semi-symmetric isotopic closure of some group

varieties and the corresponding identities
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Abstract. Four families of pairwise equivalent identities are given and analyzed.
Every identity from each of these families defines one of the following varieties: 1) the
semi-symmetric isotopic closure of the variety of all Boolean groups; 2) the semi-
symmetric isotopic closure of the variety of all Abelian groups; 3) the semi-symmetric
isotopic closure of the variety of all groups; 4) the variety of all semi-symmetric quasi-
groups. It is proved that these varieties are different and form a chain. Quasigroups
belonging to these varieties are described. In particular, quasigroups from 1) and
2) varieties are medial and in addition, they are either groups or non-commutative
semi-symmetric quasigroups.
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1 Introduction

It is well known that the class of all semi-symmetric quasigroups is described by

xy · x = y. (1)

According to A. Sade [26], a groupoid or a quasigroup (Q; ·) satisfying the identity
(1) for all x, y of Q is called semi-symmetric. He also established properties and
structure of semi-symmetric quasigroups. Semi-symmetric quasigroups have also
been described as ‘3-cyclic’. They were studied by J.M. Osborn [21], A. Sade [26–
29], N. S.Mendelsohn [19], G. Grätzer and R.Padmanabhan [15], A.Mitschke and
H.Werner [20], J.W. DiPaola and E.Nemeth [9]. The use of semi-symmetric quasi-
groups for reducing homotopies to homomorphisms first appeared in [32], inspired
by work of Gvaramiya and Plotkin that interpreted homotopies as homomorphisms
of heterogeneous algebras [32]. The classical approach to studying properties of
a quasigroup invariant under isotopy was geometrical, through the concept of a
3-net, as presented in A. A.Albert [2], V. D. Belousov [6], H. O.Pflugfelder [23],
V.A. Shcherbacov [30], J.D. H. Smith [33] and A.B. Romanowska [34].

F. Sokhatsky [38] proposed a symmetry concept for parastrophes of quasigroup
varieties and their quasigroups. This concept is used for the investigation of the
parastrophes of quasigroup varieties and, in particular, quasigroups and their paras-
trophes. F. Sokhatsky’s symmetry concept generalizes the symmetry known as tri-
ality which was investigated by J.D. H. Smith [31]. If a σ-parastrophe coincides
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with a quasigroup itself, then σ is called a symmetry of the quasigroup. The set
of all symmetries of a binary quasigroup forms a group, which is a subgroup of the
symmetry group S3. According to the symmetry group, there are six classes of quasi-
groups: commutative (middle symmetric), left-, right-, semi-, totally symmetric and
asymmetric (which consists of quasigroups with a unitary symmetry group).

We consider semi-symmetric isotopic closures of some group varieties. The nec-
essary and sufficient conditions for a group isotope to be semi-symmetric are well-
known. For example, F. Radó [25] found the necessary and sufficient conditions for
existence of the semi-symmetric group isotopes of prime order. The first author of
the article [16] established the criterion for the semi-symmetry of group isotopes.
The second author [42] gave a variety of Abelian group isotopes containing semi-
symmetric medial quasigroups. I. M.H. Etherington [11] and A. Sade [26] showed
that every semi-symmetric groupoid is necessarily a semi-symmetric quasigroup.
V.V. Iliev [14] studied a construction of the semi-symmetric algebras over a com-
mutative ring with the unit. V. D. Belousov [5] has found a quadratic identity in
five variables describing the isotopic closure of all groups. F. M. Sokhatsky [36] has
established an identity in four variables which also describes this variety but his
identity is not quadratic. The isotopic closure of some group varieties was studied
by G. B. Belyavskaya [7], A. Drapal [10], A. Kh.Tabarov [41].

In this article, we have found families of identities: 1) nine quadratic identities
in three variables (11); 2) nine quadratic identities in four variables (12); 3) one
non-quadratic identity in four variables (15); 4) ten quadratic identities in two vari-
ables (Corollary 11). Identities (11) are pairwise equivalent (Lemma 2) and describe
the variety Bss of the semi-symmetric isotopic closure of all Boolean groups (Corol-
lary 14 from Theorem 8). Identities (12) are pairwise equivalent (Theorem 9) and
describe the variety Ass of the semi-symmetric isotopic closure of all Abelian groups
(Corollary 18). The identity (15) describes the variety Gss of the semi-symmetric
isotopic closure of all groups (Theorem 10). All identities from Corollary 11 are
pairwise equivalent and describe the variety S of all semi-symmetric quasigroups
(Lemma 1). Every identity from (11), (12), (15) and from Corollary 11 implies
semi-symmetry (see corresponding Theorems 6, 7, and Corollaries 12, 22).

The quasigroups belonging to varieties Bss and Ass are medial (Corollary 19).
Moreover, they are either groups or non-commutative semi-symmetric quasigroups
(Corollaries 16, 19). All varieties Bss, Ass, Gss and S are totally symmetric, that is
every parastrophe of a quasigroup of the variety belongs to this variety (Corollar-
ies 10, 13, 17, 23). It is proved that these varieties are different and form a chain
(Theorem 11).

2 Preliminaries

A quasigroup is a natural generalization of the concept of a group. Quasigroups
differ from groups in that they need not be associative. A quasigroup is a group if
and only if it satisfies the associativity [6].
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As usual, whenever unambiguous, a term like x · y is shortened to xy. The word
‘iff’ stands for ‘if and only if’.

An algebra (Q; ·,
ℓ
·,

r
· ) with identities

(x · y)
ℓ
· y = x, (x

ℓ
· y) · y = x, x

r
· (x · y) = y, x · (x

r
· y) = y (2)

is called a quasigroup [6,12]. In [3], an equational quasigroup is defined as an algebra

with three binary operations (Q; ·,
ℓ
·,

r
· ) that fulfill the following six identities: (2)

and x
ℓ
· (y

r
· x) = y, (x

ℓ
· y)

r
· x = y. The triples of identities composed of these

six, emphasizing those that axiomatize the variety of quasigroups, are investigated
in [22].

The main operation of a quasigroup is denoted by (·). A quasigroup operation

(·) is often considered together with its inverse operations: left (
ℓ
·) and right (

r
·)

divisions which are defined by: x · y = z ⇔ x
r
· z = y ⇔ z

ℓ
· y = x. Both inverse

operations are also quasigroups.
Such quasigroups are called equational quasigroups (equasigroups, earlier primi-

tive quasigroups). The equational definition of quasigroups is due to T. Evans [13].
The equational definition of twisted quasigroups is due to A. Krapež [18].

The operations (2) and their duals which are defined by

x
s
· y := y · x, x

sℓ
· y := y

ℓ
· x, x

sr
· y := y

r
· x (3)

are called parastrophes of (·). The defining identities (2) and (3) are called primary.

2.1 On symmetry of an arbitrary proposition

The relationships (3) imply that each identity of the signature (· ,
ℓ
· ,

r
· ,

s
· ,

sℓ
· ,

sr
· )

can be written in the signature (·,
ℓ
·,

r
·). Nevertheless throughout the article, we

consider identities on quasigroups of signature (· ,
ℓ
· ,

r
· ,

s
· ,

sℓ
· ,

sr
· ). All parastrophes

of (·) can be defined by

x1σ

σ
· x2σ = x3σ :⇔ x1 · x2 = x3, (4)

where σ ∈ S3 := {ι, ℓ, r, s, sℓ, sr}, ℓ := (13), r := (23), s := (12). It is easy to verify
that

σ( τ
·

)

=
(

στ
·

)

holds for all σ, τ ∈ S3.

F. Sokhatsky [38, 39] has shown that a mapping (σ; (·)) 7→ (
σ
·) is an action on

the set ∆ of all quasigroup operations defined on Q. A stabilizer Ps(·) is called a
parastrophic symmetry of (·). Thus, the number of different parastrophes of a quasi-
group operation (·) depends on its group of parastrophic symmetry Ps(·). Since Ps(·)
is a subgroup of the symmetric group S3, then there are six classes of quasigroups.
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If Ps(·) ⊇ A3, then a quasigroup is called semisymmetric. The class of all semi-
symmetric quasigroups is described by x · yx = y. It means that

(·) = (
sℓ
· ) = (

sr
· ), (

s
·) = (

ℓ
·) = (

r
·). (5)

If Ps(·) = S3, then a quasigroup is called totally symmetric. The class of all
totally symmetric quasigroups is described by xy = yx and xy ·y = x, it means that
all parastrophes coincide.

Let P be an arbitrary proposition in a class of quasigroups A. The proposition
σP is said to be a σ-parastrophe of P , if it can be obtained from P by replacing

every (
τ
·) with (

τσ−1

· ); σA denotes the class of all σ-parastrophes of quasigroups from
A.

Theorem 1 (see [38,39]). Let A be a class of quasigroups, then a proposition P is
true in A iff σP is true in σA.

Corollary 1 (see [38, 39]). Let P be true in a class of quasigroups A, then σP is
true in A for all σ ∈ S3.

Corollary 2 (see [38,39]). Let P be true in a totally symmetric class A, then σP is
true in A for all σ.

Definition 1. Transition of the identity id to the identity σid is called a parastrophic
transformation (σ-parastrophic transformation) if σid can be obtained by replacing
the main operation with its σ−1-parastrophe.

Two identities are called:

1) equivalent if they define the same variety;

2) primarily equivalent if one of them can be obtained from the other in a finite
number of applications of primary identities (2) – (3) (primary equivalent
identities are equivalent);

3) σ-parastrophic if one of them can be obtained from the other by σ-parastrophic
transformation;

4) σ-parastrophically equivalent if they define σ-parastrophic varieties (according
to Theorem 1, σ-parastrophically equivalent identities define σ-parastrophic
varieties);

5) σ-parastrophically primarily equivalent if one of them can be obtained in a
finite number of applications of primary identities and σ1 -, σ2 -, . . ., σk -
parastrophic transformations such that σ1σ2 . . . σk = σ for some k ∈ N.

In a generalized case σ will be omitted. For example, two identities are called
parastrophically equivalent if they are σ-parastrophically equivalent for some σ ∈ S3.
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2.2 On group isotopes

A groupoid (Q; ·) is called an isotope of a groupoid (Q; +) iff there exists a
triplet of bijections (α, β, γ), which is called an isotopism, such that the relationship
x · y := γ−1(αx + βy) holds. An isotope of a group is called a group isotope.

Definition 2 (see [36]). Let (Q; ·) be a group isotope and 0 be an arbitrary element
of Q, then the right side of the formula

x · y = αx + a + βy (6)

is called a 0-canonical decomposition if (Q; +) is a group, 0 is its neutral element
and α0 = β0 = 0.

In this case, we say: the element 0 defines the canonical decomposition; (Q; +)
is its decomposition group; α, β are its coefficients and a is its free member.

Theorem 2 (see [36]). An arbitrary element of a group isotope uniquely defines a
canonical decomposition of the isotope.

Corollary 3 (see [36]). The isotopic closure of the variety of all groups is a variety
of quasigroups which is described by the following identity:

(x(u
r
· y)

ℓ
· u)z = x(u

r
· (y

ℓ
· u)z). (7)

Corollary 4 (see [35]). If a group isotope (Q; ·) satisfies the identity

w1(x) · w2(y) = w3(y) · w4(x)

and the variables x, y are quadratic, then (Q; ·) is isotopic to a commutative group.

Recall that a variable is quadratic in an identity if it has exactly two appearances
in this identity. An identity is called quadratic if all variables are quadratic. If a
quasigroup (Q; ·) is isotopic to a parastrophe of a quasigroup (Q; ◦), then (Q; ·) and
(Q; ◦) are called isostrophic.

Theorem 3 (see [37]). Let four pairwise isostrophic operations connected by a
quadratic identity satisfy the conditions:

1) an arbitrary subterm of the length two has two different variables;

2) an arbitrary subterm of the length three has three different variables.

Then all these operations are isotopic to the same group.

Belousov’s theorem on four quasigroups [1, 4, 40] implies the following corollary.

Corollary 5. If four quasigroups are connected by the generalized associativity law,
then each of these quasigroups is isotopic to the same group.
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Theorem 4 and its Corollary 7 below are well known and can be found in many
articles, for example, in [6, 36].

Theorem 4. A triple (α, β, γ) of permutations of a set Q is an autotopism of a
group (Q,+) iff there exists an automorphism θ of (Q,+) and elements b, c ∈ Q

such that
αx = c + θx − b, βx = b + θx, γx = c + θx.

Corollary 6. (6) is a canonical decomposition of a group iff α = β = ι.

Proof. Let (6) be a canonical decomposition of a group (Q; ·). Therefore, the groups
(Q; +) and (Q; ·) are isotopic, consequently they are isomorphic and let ϕ be the
corresponding isomorphism. Then

ϕ(ϕ−1x + ϕ−1y) = αx + a + βy

holds. Theorem 4 implies the existence of an automorphism θ and an element b from
(Q; +) such that ϕx = b + θx. Therefore,

x − b + y = αx + a + βy

holds. The left and the right sides of the equality are canonical decomposition of
the same group isotope. Its uniqueness implies α = β = ι.

Corollary 7. Let α, β1, β2, β3, β4 be permutations of a set Q. Besides, α is a
unitary transformation of a group (Q,+) and let

α(β1x + β2y) = β3u + β4v,

where {x, y} = {u, v} holds for all x, y ∈ Q. Then the following statements are true:

1) α is an automorphism of (Q,+) if u = x, v = y;

2) α is an anti-automorphism of (Q,+) if u = y, v = x.

Systematizing all criteria on symmetry, the first author [16] gave a classification
of group isotopes according to their groups of parastrophic symmetry and formulated
the corollary on the classification of isotopes of Abelian groups.

Theorem 5 (see [16]). Let (Q; ·) be a group isotope and (6) be its canonical decom-
position, then (Q; ·) is

1) commutative iff (Q; +) is Abelian and β = α;

2) left symmetric iff (Q; +) is Abelian and β = −ι;

3) right symmetric iff (Q; +) is Abelian and α = −ι;

4) semi-symmetric iff α is an anti-automorphism of (Q; +),
β = α−1, α3 = −I−1

a , αa = −a, where Ia(x) := −a + x + a;
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5) totally symmetric iff (Q; +) is Abelian and α = β = −ι;

6) asymmetric iff (Q; +) is not Abelian or −ι 6= α 6= β 6= −ι and at least one
of the following conditions is true: α is not an anti-automorphism, β 6= α−1,
α3 6= −I−1

a , αa 6= −a.

Theorem 5 implies Corollary 8.

Corollary 8 (see [16]). Let (Q; ·) be an isotope of an Abelian group and (6) be its
canonical decomposition, then (Q; ·) is

1) commutative iff β = α;

2) left symmetric iff β = −ι;

3) right symmetric iff α = −ι;

4) semi-symmetric iff α is an automorphism of (Q; +),
β = α−1, α3 = −ι, αa = −a;

5) totally symmetric iff α = β = −ι;

6) asymmetric iff −ι 6= α 6= β 6= −ι and at least one of the following conditions
is true: α is not an automorphism, β 6= α−1, α3 6= −ι, αa 6= −a.

3 Identities implying semi-symmetry

In this section, we find the relations among identities specifying semi-symmetric
quasigroups. We systematize some well-known results for identities in two variables
for using them in our further investigation. A semi-symmetry can be defined by
different conditions. We consider some of them. We find nine quadratic identities in
three variables and nine quadratic identities in four variables each of them implies
semi-symmetry.

3.1 Identities in two variables

A quasigroup (Q; ·) is called semi-symmetric if the identity (1) holds for all x,
y from Q. Using the definition of the left division, we have the equivalent identity

y
ℓ
· x = xy. We apply the definition of s-parastrophe to the left and to the right

sides of the identity separately:

x
sℓ
· y = xy, y

ℓ
· x = y

s
· x. (8)

These identities mean that (
sℓ
· ) = (·) and (

ℓ
·) = (

s
·) hold. That is why each identity

from (8) is equivalent to (1). The equality (
sℓ
· ) = (·) means that sℓ ∈ Ps(·).

Similarly, one can show that the identity

x · yx = y (9)
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is equivalent to

y
sr
· x = yx, x

r
· y = x

s
· y. (10)

Therefore, (
sr
· ) = (·) and (

r
·) = (

s
·) hold and the equality (

sr
· ) = (·) means that

sr ∈ Ps(·). As a result, we obtain the following lemma.

Lemma 1. In an arbitrary quasigroup (Q; ·) the following statements are equivalent:

1) (Q; ·) is semi-symmetric;

2) A3 is a subgroup of Ps(·);

3) (Q; ·) satisfies (9).

Proof. 1) ⇔ 2). As we have shown above, (1) is equivalent to sℓ ∈ Ps(·). But sℓ

generates the group A3, then A3 is a subgroup of Ps(·). The inverse statement is
evident. 2) ⇔ 3) can be proved in the same way.

Corollary 9. If a semi-symmetric variety contains s-parastrophe of each of its
quasigroups, then it is totally symmetric.

Proof. The proof follows from item 1) of Lemma 1.

Corollary 10. The variety of all semi-symmetric quasigroups is totally symmetric.

Proof. Let S be the variety of semi-symmetric quasigroups. Therefore, S contains
sℓ-parastrophe of an arbitrary quasigroup from S. s-Parastrophe of a quasigroup

from S satisfies s-parastrophe of the identity (1), i. e., (x
s
· y)

s
· x = y. The identity

is equivalent to x · yx = y which defines S. Thus, sℓ and s belong to the group
Ps(S), that is why Ps(S) = S3. It means that S is totally symmetric.

Corollary 11. The identities (1), (8), (9), (10) and x(x
ℓ
· y) = y, (x

r
· y)y = x,

x
ℓ
· xy = y, xy

r
· y = x, x

ℓ
· y = yx, x

r
· y = yx are equivalent.

Proof. Using the definitions of the left and right divisions, the proof is evident.

The equivalency of the identities (1), (9) and the last two identities from Corol-
lary 11 is shown in [31, Proposition 1.2]. The equivalency of the identities (1), (8),
(9), (10) and the last two identities from Corollary 11 are established in [8, 24].

Thus, we have the variety of all semi-symmetric quasigroups, defined by one of
ten equivalent axioms from Corollary 11.

Corollary 12. The identities from Corollary 11 imply semi-symmetry.
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3.2 Identities in three variables

In this subsection, nine quadratic identities in three variables are investigated,
namely

(x · yz) · z = yx, (i1) x · (xy · z) = zy, (i2) xy · yz = zx, (i3)
x(y(yx · z)) = z, (i4) xy · (y · xz) = z, (i5) x(xy · yz) = z, (i6)
((x · yz)z)y = x, (i7) (xy · z) · zy = x, (i8) (xy · yz)z = x. (i9)

(11)

In this form, these identities were among 100 identities without squares, which were
listed in [17]. We establish relations among identities (11), namely, relations of
equivalency and parastrophically primary equivalency. Each quasigroup satisfying
one of the identities from (11) is semi-symmetric (Theorem 6).

Proposition 1. The identities (i4), (i5), (i6) are equivalent.

Proof. Multiply (i4) by yx from the left: yx · (x · (y · (yx · z))) = yx · z. Replacing
yx · z with z, we have yx · (x · yz) = z. Mutually relabeling x and y, we obtain
(i5). Since applied transformations are invertible, then (i4) and (i5) are equivalent.
Multiplying (i5) by x from the left and replacing xz with z, we obtain equivalency
of (i5) and (i6).

Proposition 2. The identities (i7), (i8), (i9) are equivalent.

Proof. Multiply (i7) by yz from the right: (((x · yz) · z) · y) · yz = x · yz. Replacing
x · yz with x, we obtain (xz · y) · yz = x. Mutually relabeling z and y, we obtain
(i8). Since applied transformations are invertible, then (i7) and (i8) are equivalent.

Multiplying (i8) by y from the right and replacing xy with x, we have (xz·zy)·y =
x. Mutually relabeling z and y, we obtain the equivalency of (i8) and (i9).

Theorem 6. Every identity from (11) implies semi-symmetry.

Proof. Let (Q, ·) be a quasigroup. Replacing z with x in identities (i1) and (i2), we
have

(x · yx) · x = y · x, x · (xy · x) = x · y.

Canceling out x in both sides of these identities, we obtain semi-symmetric identity
in both cases.

We put z = y
r
· x in (i3), z = yx

r
· x in (i4):

xy · y(y
r
· x) = (y

r
· x)x, x · y(yx · (yx

r
· x)) = yx

r
· x.

Apply (2):

xy · x = (y
r
· x) · x, x · yx = yx

r
· x.

Canceling out x in the first identity and replacing yx with x in the second identity,

we obtain xy = y
r
· x in both cases. According to the right division, we obtain

semi-symmetric identity y · xy = x.
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By Proposition 1, the identities (i4), (i5), (i6) are equivalent. Then the identities
(i5), (i6) imply semi-symmetry.

We replace x with x
ℓ
· yz in (i7): ((x

ℓ
· yz) · yz)z · y = x

ℓ
· yz.

Apply (2): xz · y = x
ℓ
· yz.

Putting x = y, we obtain semi-symmetric law yz · y = z. Proposition 2 implies
that semi-symmetric law follows from (i8) and (i9).

3.3 Identities in four variables

In this subsection, nine quadratic identities in four variables

(xy · u) · xv = y · uv, (m1) xy · (u · vy) = xu · v, (m2)
(x · (yu · v)) · y = xu · v, (m3) x · ((y · ux) · v) = y · uv, (m4)
xy · (ux · vy) = uv, (m5) (xy · uv) · xu = yv, (m6)
xy · (ux · v) = u · yv, (m7) (x · yu) · vy = xv · u, (m8)

x · ((y · xu)
ℓ
· v) = uv · y (m9)

(12)

are considered. It is proved that each of these identities implies semi-symmetry.

Theorem 7. Every identity from (12) implies semi-symmetry.

Proof. Put u = x in (m1) and u = y in (m2):

(xy · x) · xv = y · xv, xy · (y · vy) = xy · v.

Canceling out xv in the first identity and xy in the second one, we receive semi-
symmetry from each of these identities.

When we put v = y in (m3) and y = x in (m4), then

(x · (yu · y)) · y = xu · y, x · ((x · ux) · v)) = x · uv.

Cancel out y in the first identity and x in the second one:

x · (yu · y) = xu, (x · ux) · v = uv.

Canceling out x and v respectively in these identities, we receive semi-symmetry in
both cases.

Put v = x in (m5) and u = y in (m6):

xy · (ux · xy) = ux, (xy · yv) · xy = yv.

Replace xy with y and ux with u in the first identity, xy with x and yv with v in
the second one. We obtain semi-symmetric law in both cases.

Putting ux = y and u = y
ℓ
· x in (m7), we have xy · yv = (y

ℓ
· x) · yv. Canceling

out yv in both sides of the identity and using the definition of the left division, we
receive the semi-symmetric identity.
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Put yu = v and u = y
r
· v in (m8), then xv ·vy = xv · (y

r
· v). Divide both sides of

this identity by xv. According to Corollary 11, the obtained identity is equivalent
to semi-symmetry.

Put xu = v and x = v
ℓ
· u in (m9):

(v
ℓ
· u) · (yv

ℓ
· v) = uv · y.

According to the first identity from (2), we have (v
ℓ
· u) ·y = uv ·y. Divide both sides

of this identity by y on the right. According to Corollary 11, the obtained identity
is equivalent to semi-symmetry.

4 The varieties of semi-symmetric isotopic closures of some groups

V.D. Belousov [5] has found a quadratic identity in five variables describing the
isotopic closure of all groups:

(x(y
r
· z)

ℓ
· u)v = x(y

r
· (z

ℓ
· u)v).

F. M. Sokhatsky [36] has established an identity (7) in four variables, which also
describes isotopic closure of all groups, but it is not quadratic.

In this section, we find the semi-symmetric isotopic closure of all Boolean groups,
the semi-symmetric isotopic closure of all Abelian groups and the semi-symmetric
isotopic closure of all groups.

4.1 The variety of semi-symmetric isotopes of all Boolean groups

In this subsection, we consider the semi-symmetric isotopic closure of Boolean
groups. We find nine identities (11) which describe the variety of semi-symmetric
isotopes of all Boolean groups. This variety is totally symmetric, that is every
parastrophe of a quasigroup from the variety belongs to it. These quasigroups are
medial and they are either groups or non-commutative semi-symmetric quasigroups.

Lemma 2. The identities (11) are equivalent and define a totally symmetric variety.

Proof. To obtain (i3) we use semi-symmetry law:

• multiply (i9) by z from the left;

• multiply (i6) by x from the right;

• replace z with yz in (i2) and multiply the obtained identity by x from the
right;

• replace x with xy in (i1) and multiply the obtained identity by z from the left.
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Taking into account Proposition 1 and Proposition 2, we obtain equivalency of all
identities from (11).

Consider s-parastrophe of (i1): (x
s
· (y

s
· z))

s
· z = y

s
· x. By the definition of

s-parastrophe of the operation (·), we obtain z · (zy ·x) = xy. This identity coincides
with (i2) after mutual relabeling of x and z. This means that s-parastrophe of
(i1) defines the same variety. Since the variety is semi-symmetric, then it is totally
symmetric.

Theorem 8. In an arbitrary quasigroup (Q; ·) the following statements are equiva-
lent:

1) (Q; ·) is a semi-symmetric isotope of a Boolean group;

2) (Q; ·) satisfies an arbitrary identity from (11);

3) there exists a Boolean group (Q; +), its automorphism α and an element a ∈ Q

such that
x · y = αx + a + α2y, α3 = ι, αa = a. (13)

Proof. Since all identities from (11) are equivalent by virtue of Lemma 2, then they
define the same variety. Therefore, it is enough to prove the theorem for one of
them.

1) ⇔ 3). Let (Q; ·) be a semi-symmetric isotope of a Boolean group (G; ∗).
Then all groups being isotopic to (Q; ·) are Boolean. Therefore, according to item 5)
of Theorem 5, item 1) and item 3) of the theorem are equivalent.

2) ⇒ 1). Let (Q; ·) be a quasigroup satisfying the identity (i1) from (11). By
Theorem 6, (Q; ·) is a semi-symmetric quasigroup. According to Theorem 3 and
Corollary 5, this quasigroup is isotopic to a group, so (Q; ·) is a semi-symmetric
group isotope.

3) ⇒ 2). Let (13) hold for a quasigroup (Q; ·). Prove that the identity (i1) is
true. Indeed,

(x · yz) · z = α(αx + a + α2(αy + a + α2z)) + a + α2z.

Because α is an automorphism, then

(x · yz) · z = α2x + αa + αy + a + α2z + a + α2z.

Since (Q; +) is a Boolean group and αa = a, then 2a = 0 and 2α2z = 0. Conse-
quently,

(x · yz) · z = αy + a + α2x = y · x.

Theorem 8 implies several corollaries.

Corollary 13. The variety of quasigroups being defined by one of the identities (11)
is totally symmetric.
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Proof. The proof follows from Lemma 2 and from Theorem 8.

Corollary 14. The semi-symmetric isotopic closure of all Boolean groups is defined
by pairwise equivalent identities (11).

Proof. The proof is evident, taking into account Theorem 8.

Corollary 15. The semi-symmetric isotopic closure of all Boolean groups is the
intersection of the variety of all semi-symmetric quasigroups and the variety of all
Boolean groups.

Proof. The proof immediately follows from Theorem 8 and Corollary 14.

Corollary 16. Every quasigroup satisfying one of the identities (11) is either a
Boolean group or a non-commutative semi-symmetric quasigroup.

Proof. Let (Q; ·) be a quasigroup satisfying the identity (i1). Then by Theorem 8,
its canonical decomposition has the form (13), where α is some automorphism and
a ∈ Q.

If (Q; ·) is commutative, then according to Theorem 5, α2 = α, i.e., α = ι. The
equality x ·y = x+a+y means that La is an isomorphism between (Q; ·) and (Q; +).
Thus, (Q; ·) is a Boolean group.

If (Q; ·) is non-commutative, then according to Theorem 5 α2 6= α. Therefore,
α 6= ι and according to Corollary 6, (Q; ·) is not a group, but by Theorem 6, it is
semi-symmetric.

Example 1. Consider the group Z
2
2 := Z2 ×Z2. Define the transformation α of the

set Z
2
2:

α(x) := x ·

(

0 1
1 1

)

.

Since α3 = ι, then α is an automorphism of the group Z
2
2. By Theorem 8, a

quasigroup (Z2
2; ◦) defined by the equation x◦y := αx+α2y satisfies the identity (i1).

Because α 6= α2, then (Q, ◦) is non-commutative. By Corollary 16, the quasigroup
(Q, ◦) is semi-symmetric and not a group.

4.2 The variety of semi-symmetric isotopes of all Abelian groups

In this subsection, the variety being defined by identities (12) is considered. Each
of these identities determines the totally symmetric variety of all semi-symmetric me-
dial quasigroups. This variety is the semi-symmetric isotopic closure of all Abelian
groups. Quasigroups belonging to this variety are either Boolean groups or non-
Boolean totally symmetric quasigroups or non-commutative semi-symmetric quasi-
groups.

Theorem 9. The identities (12) are equivalent and define the variety of all medial
semi-symmetric quasigroups.
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Proof. According to Theorem 7, semi-symmetry follows from any identity in (12).
Using semi-symmetry, further it will be shown that each of the identities from (12)
is equivalent to mediality.

Put yx instead of y in (m1) and yv instead of v in (m2):

((x · yx) · u) · xv = yx · uv, xy · (u · (yv · y)) = xu · yv.

Using semi-symmetry, we receive mediality in both cases.
Replace y with uy in (m3) and use semi-symmetry: (x·yv)·uy = xu·v. Replacing

v with vy and applying semi-symmetry to the last identity, we get mediality.
Change x by xu in (m4) and apply the semi-symmetric identity: xu · (yx · v) =

y ·uv. Put y instead of xy in the obtained identity. Using semi-symmetry, we receive
xu · yv = xy · uv, that is the medial law holds for every x, u, y, v.

Multiply (m6) by xu on the left and (m5) by xy on the right:

xu · ((xy · uv) · xu) = xu · yv, (xy · (ux · vy)) · xy = uv · xy.

Applying semi-symmetry to these identities, we obtain medial identity in the first
case and ux · vy = uv · xy in the second one. The last identity means that the
mediality holds for all u, x, v, y.

Substitute u with xu in (m7), u with uy in (m8) and apply semi-symmetry to
the received identities, as a result we obtain mediality in both cases.

Consider (m9). Since (·) is semi-symmetric, then (
ℓ
·) = (

s
·), that is x

ℓ
· y = yx.

Then (m9) can be written as follows: x · (v · (y · xu)) = uv · y. Replace x with ux in
this identity and use semi-symmetry: ux · (v · yx) = uv · y. Substituting y with xy

and using semi-symmetry law, we have ux ·vy = uv ·xy. It means that the mediality
holds for all u, x, v, y.

Thus, a quasigroup satisfying an arbitrary identity from (12) is semi-symmetric
and medial simultaneously. This means that identities (12) define the same variety
of semi-symmetric medial quasigroups.

Corollary 17. The variety of all semi-symmetric medial quasigroups is totally sym-
metric.

Proof. It is well known that the variety of all medial quasigroups is totally sym-
metric, according to Corollary 10, the variety of all semi-symmetric quasigroups
is totally symmetric as well. Therefore, the variety of all semi-symmetric medial
quasigroups is totally symmetric, since it is the intersection of two totally symmet-
ric varieties.

Corollary 18. The semi-symmetric isotopic closure of all Abelian groups is defined
by pairwise equivalent identities (12).

Proof. By virtue of Theorem 9, all identities from (12) are equivalent, then it is
enough to prove this theorem for one of them. Let (Q; ·) be an arbitrary quasigroup.
Let us prove that (Q; ·) is semi-symmetric isotope of Abelian groups iff it satisfies
the identity (m1).
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Let (Q; ·) satisfy (m1), then according to Theorem 9, (Q; ·) is medial and Toyoda-
Bruck theorem implies that (Q; ·) is an isotope of an Abelian group. By Theorem 7,
(Q; ·) is semi-symmetric. Thus, (Q; ·) is semi-symmetric isotope of an Abelian group.

Vice versa, let (Q; ·) be an arbitrary semi-symmetric isotope of an Abelian group.
Then by item 4) of Corollary 8, its canonical decomposition is the following:

x · y = αx + a + α−1y, α3 = −ι, αa = −a, (14)

where (Q; +) is an Abelian group, α is its automorphism and an element a ∈ Q. Let
us show that conditions (14) satisfy the identity (m1).

(xy · u) · xv
(14)
= α(α(αx + a + α−1y) + a + α−1u) + a + α−1(αx + a + α−1v).

Because α and α−1 are automorphisms, then

(xy · u) · xv = α3x + α2a + αy + αa + u + a + x + α−1a + α−2v.

Since (Q; +) is an Abelian group and α3 = −ι, αa = −a, then

(xy · u) · xv = −x + a + αy − a + u + a + x + α−1a + α−2v =

= αy + a + α−1αu + α−1a + α−2v = αy + a + α−1(αu + a + α−1v) = y · uv.

Corollary 19. The semi-symmetric isotopic closure of all Abelian groups is the in-
tersection of the variety of semi-symmetric quasigroups and the variety of all medial
semi-symmetric quasigroups.

Proof. The proof immediately follows from Theorem 9 and Corollary 18.

Corollary 20. Every quasigroup satisfying one of the identities (12) is either a
Boolean group or a non-Boolean totally symmetric quasigroup, or a non-commutative
semi-symmetric quasigroup.

Proof. Let (Q; ·) be a quasigroup satisfying the identity (m1), then according to the
proof of Corollary 18, (14) is its canonical decomposition.

If α = ι, then Corollary 6 implies that (Q; ·) is a Boolean group.
If α = −ι, then according to item 5) of Corollary 8, the quasigroup (Q; ·) is

totally symmetric. There is at least one totally symmetric quasigroup which is non-
Boolean group. For example, the quasigroup (Z3; •) defined by x•y := −x+1−y is
totally symmetric quasigroup and is a non-Boolean group, since 2 · (−1) = −2 6= 0.

Consider the case α 6= ι and α 6= −ι. Since condition α3 = −ι from (14) implies
α 6= α−1, then quasigroup (Q; ·) is non-commutative. But canonical decomposition
(14) satisfies semi-symmetry. Indeed,

x · yx
(14)
= αx + a + α−1(αy + a + α−1x) = αx + a + y + α−1a + α−2x.

Since conditions α3 = −ι and αa = −a imply α−2 = −α and α−1a = −a, then
x · yx = αx + a + y − a − αx = y. The corollary has been proved.
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Example 2. The quasigroup (Z9; ∗), x ∗ y = 2x + 3 + 5y, belongs to the variety
Ass and does not belong to the variety Bss. Indeed, this quasigroup satisfies the
canonical decomposition (14), since α3 = 23 = −ι, αa = 2 · 3 = 6 = −3 and does
not satisfy conditions (13), because α3 6= ι. Thus, taking into account Corollary 20,
(Z9; ∗) is a non-commutative semi-symmetric quasigroup.

4.3 The variety of semi-symmetric isotopes of all groups

In this subsection, we find an identity which describes the semi-symmetric iso-
topic closure of all groups.

Theorem 10. In an arbitrary quasigroup (Q; ·) the following statements are equiv-
alent:

1) (Q; ·) is a semi-symmetric group isotope;

2) (Q; ·) satisfies

u(x · yu) = z(x · (uy · z)u); (15)

3) there exists a group (Q; +), its anti-automorphism α, an element a ∈ Q such
that x ·y = αx+a+α−1y and α3 = −I−1

a , αa = −a, where Ia(x) := −a+x+a.

Proof. 2) ⇒ 1). Let a quasigroup (Q; ·) satisfy (15). Put z = u in (15):

u(x · yu) = u(x · (uy · u)u).

Cancelling out u, x, u, we obtain identity (1). Hence, (Q; ·) is semi-symmetric.
Multiply (15) by z from the right and use the identity of semi-symmetry:

u(x · yu) · z = x · (uy · z)u. (16)

Since (Q; ·) is semi-symmetric, then (5) hold. Replacing the operation (·) with its
patasrophes in (16), we have (7). Corollary 3 implies that (Q; ·) is isotopic to a
group.

1) ⇒ 2). Let (Q; ·) be a semi-symmetric group isotope, then the equalities (5)
are true and (7) can be written as (16). Multiply (16) by z from the left and apply
the identity (1). As a result we obtain (15).

3) ⇔ 1). It follows from item 5) of Theorem 5.

Corollary 21. The semi-symmetric isotopic closure of all groups is defined by (15).

Proof. It is evident from Theorem 10.

Corollary 22. The identity (15) implies semi-symmetry.

Proof. The proof follows from Theorem 10.

Corollary 23. The variety of quasigroups being defined by (15) is totally symmetric.
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Proof. Let Q be the variety defined by (15). It means that each quasigroup (Q; ·)
from Q satisfies the identity x·yx = y. This identity is equivalent to xy·x = y. Define

the operation (◦) := (
s
·). Then the last identity can be written as x ◦ (y ◦ x) = y,

i.e., s-parastrophe of an arbitrary quasigroup from Q is in Q. Thus, for all σ ∈ S3

the relation σQ = Q. Therefore, this variety is totally symmetric.

5 Main results

In this article, we have found families (11), (12) and (15) of identities. Namely:

1) identities (11) are pairwise equivalent and describe the variety Bss of the semi-
symmetric isotopic closure of all Boolean groups;

2) identities (12) are pairwise equivalent and describe the variety Ass of the semi-
symmetric isotopic closure of all Abelian groups;

3) the identity (15) describes the variety Gss of the semi-symmetric isotopic clo-
sure of all groups;

4) the identities from Corollary 11 are pairwise equivalent and describe the variety
S of all semi-symmetric quasigroups.

To establish a relationship among these varieties we give the following examples.

Example 3. In the symmetric group (S3; ·), where (·) denotes the composition of
permutations, we define a transformation α by α(x) := sℓ · x−1 · sr. Here α is
anti-automorphism of the group (S3; ·) and α3 = I. Indeed,

α(x · y) = sℓ · (xy)−1 · sr = sℓ · y−1x−1 · sr = sℓy−1sr · sℓx−1sr = α(y) · α(x),

α3(x) = α
(

sℓ(sℓx−1sr)−1sr
)

= α(sℓsℓxsrsr) = (sℓ)3x−1(sr)3 = I.

According to item 5) of Theorem 5, the groupoid (S3; ◦) is defined by

x ◦ y := α(x) · α−1(y)

and it is a semi-symmetric group isotope. Therefore, S3 is a semi-symmetric isotope
of a non-commutative group.

Example 4. Let Q := {1, 2, 3, 4, 5}. On the set Q we define the operation (·):

(·) 1 2 3 4 5

1 1 4 5 3 2

2 5 2 4 1 3

3 4 5 3 2 1

4 2 3 1 5 4

5 3 1 2 4 5

(◦) 1 2 3 4 5

1 1 2 3 4 5

2 2 4 5 3 1

3 3 5 4 1 2

4 4 1 2 5 3

5 5 3 1 2 4
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It is easy to verify that (Q; ·) is a semi-symmetric quasigroup. Permuting rows
by the cycle (2534) and columns by the cycle (2435), we obtain the loop (Q; ◦).
Suppose, the quasigroup (Q; ·) is isotopic to a group (G; ⋄). (Q; ◦) and (Q; ·) are
isotopic according to construction of (Q; ◦). Then the loop (Q; ◦) and the group
(G; ⋄) are isotopic, therefore they are isomorphic. (Q; ◦) is commutative as a prime
order group. But this statement is false, because 4◦2 = 1 6= 3 = 2◦4. Consequently,
the assumption is false and the quasigroup (Q; ·) is not a group isotope.

Theorem 11. The varieties Bss, Ass, Gss and Sss are different and form the fol-
lowing chain: Bss ⊂ Ass ⊂ Gss ⊂ S.

Proof. Nonstrict inclusion of these varieties follows from their definitions. To prove
strict inclusion, we consider some examples of quasigroups which belong to a wider
variety and do not belong to the smaller variety. The total symmetry of each of the
varieties Bss, Ass, Gss, S is provided by Corollaries 10, 13, 17, 23.

In Example 2, the groupoid (Z9; ∗) is a semi-symmetric quasigroup and it is
isotopic to the cyclic group (Z9; +), which is not Boolean. Hence, (Z9; ∗) belongs to
the variety Ass and does not belong to Bss.

The quasigroup (S3; ◦) from Example 3 belongs to the variety Gss and does not
belong to Ass, because the group S3 is non-commutative.

The quasigroup (Q; ·) from Example 4 belongs to the variety Sss and does not
belong to Gss, because the quasigroup (Q; ·) is not isotopic to a group.
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