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Factorizations in the rings of the block matrices

Vasyl’ Petrychkovych, Nataliia Dzhaliuk

Abstract. The factorizations in the rings of the block triangular and the block
diagonal matrices over an integral domain of finitely generated principal ideals are
described. Conditions for existence and uniqueness up to the association of the fac-
torizations in such rings are established. The construction of the factorizations of
matrices is reduced to the factorizations of diagonal blocks of the block triangular
matrices and the solving of the linear Sylvester matrix equations.
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1 Introduction

Let R be an integral domain of finitely generated principal ideals. We will
denote the ring of n × n matrices by M(n,R), the set of n × m matrices by
M(n,m,R), the group of invertible n×n matrices over R by GL(n,R), the subring
of the block upper triangular matrices

T = triang(T11, . . . , Tkk) =




T11 T12 . . . T1k

0 T22 . . . T2k

· · · · · · · · · · · ·
0 0 · · · Tkk


 ,

where Tii ∈M(ni, R), i = 1, . . . , k, by BT (n1, . . . , nk, R). Factorizations T = AB

and T = A1B1 of the matrix T ∈M(n,R) are called associate if A1 = AV and
B1 = V −1B, where V ∈ GL(n,R). We will consider the factorizations of matrices
in the ring M(n,R) and in its subring BT (n1, . . . , nk, R) of the block triangular
matrices. We will describe the factorizations of matrices up to the association.
We would like to note that the block matrices arise in various problems, such as
in [10,16].

The theory of factorization of the polynomial matrices, which are matrices over
the polynomial ring, has been well developed. Such factorizations of the polynomial
matrices have been used in the theory of matrix and differential equations [4,7,14],
in the theory of operator pencils [9] and in other applied problems [8]. In [1],
conditions for uniqueness up to the association of the factorizations of matrices over
the principal ideal rings have been formulated.
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In this article, conditions for existence and uniqueness up to the association of
the factorizations in the ring of the block triangular matrices have been obtained.
We have established such classes of the block triangular matrices, where each fac-
torization is associated to its factorization in the ring BT (n1, . . . , nk, R) of the
block triangular matrices. We should note that the block matrices are connected
with the matrix linear bilateral equations. It is known that such equation is solvable
if and only if the block triangular and the block diagonal matrices composed of the
equation coefficients are equivalent [3,5,6,15]. Hence, the factorization of the block
triangular matrices is reduced to the factorization of the diagonal blocks and the
solving of the matrix linear equations. Similar results for matrices over the ring of
polynomials have been obtained in [13].

2 Preliminaries

Let A ∈ M(n,m,R), n ≤ m, dA
n 6= 0 and the matrix A have the factorization

A = BC, B ∈ M(n,R), C ∈ M(n,m,R). Let us write the matrices in the block
form



A1
...
Ak


 =



B1
...
Bk


C, Ai, Bi ∈M(ni,m,R), ni ≥ 1, i = 1, . . . , k. (1)

Further, we will denote r-th determinantal divisor of the matrix A by dA
r , the

greatest common divisor of elements a and b by (a, b) = d. Let (dAi
ni
, d

Aj
nj ) = d(Ai,Aj)

and (detB, dC
n ) = d(B,C).

Lemma 1. Let (detB, dAi
ni

) = ϕi, i = 1, . . . , k. If

(d(B,C), dA
n−1) = 1, (2)

then dBi
ni

= ϕi, i = 1, . . . , k.

Proof. Let k = 2. From A1 = B1C and (detB, dA1
n1

) = ϕ1 it follows that dB1
n1

|dA1
n1

and dB1
n1

|ϕ1, that is ϕ1 = dB1
n1
g. We assume that dB1

n1
6= ϕ1. This means that

g 6∈ U(R), where U(R) is the group of units of the ring R.

Let p be an irreducible element from the ring R such that p|g. We suppose
that p|d(B,C). The matrix B1 can be written as

B1 = GF1, G ∈M(n1, R), F1 ∈M(n1, n,R), detG = dB1
n1
, dF1

n1
= 1.

Hence, A1 = GH1, H1 ∈M(n1, n,R). So, from (1) we obtain

[
H1

A2

]
=

[
F1

B2

]
C.
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For matrix F1 there exists such a matrix W ∈ GL(n,R) that F1W =
[
In1 0

]
,

where In1 is an identity matrix. Therefore

[
H1

A2

]
=

[
In1 0

B̃21 B̃22

]
C̃, C̃ = W−1C, B̃21 ∈M(n2, n1, R), B̃22 ∈M(n2, R).

So, for the matrix

V =

[
In1 0

−B̃21 In2

]

we obtain

V

[
H1

A2

]
=

[
H1

H2

]
=

[
In1 0

0 B̃22

][
C̃11 C̃12

C̃21 C̃22

]
= B̃C̃.

Since p|det B̃22, we obtain p|dH2
n2
. On the other hand p|dH1

n1
, hence p|dA

n−1, which
contradicts the condition (2) of the lemma. Thus, g ∈ U(R) and dB1

n1
= ϕ1.

In the same way, we can prove that dB2
n2

= ϕ2.

If p ∤ d(B,C) (does not divide), the proof of the lemma is similar.

For an arbitrary k, we prove the lemma by induction.

Lemma 2. Let ((dAl
nl
, d

Al+1
nl+1 ), d(B,C)) = 1, l = 1, . . . , k − 1. If dA

n = dA1
n1

· · · dAk
nk
,

then detB = dB1
n1

· · · dBk
nk
.

Proof. Following the same procedure as in the proof of Lemma 1, we obtain that
(detB, dAi

ni
) = dBi

ni
, i = 1, . . . , k. We suppose that detB = dB1

n1
· · · dBk

nk
f, f 6∈ U(R).

The matrices Bi and Ai from (1) can be written as Bi = GiFi, Ai = GiHi, Gi ∈
M(ni, R), Fi, Hi ∈M(ni,m,R), detGi = dBi

ni
, dFi

ni
= 1, i = 1, . . . , k.

From (1) we obtain 

H1
...
Hk


 =



F1
...
Fk


C (3)

or else H = FC. Let q be an irreducible element from the ring R such that
q|f. It is obvious that q|detH. Since detH = dH1

n1
· · · dHk

nk
, q|dHi

ni
for a certain i.

We assume that q|dH1
n1
. Then from (3) we have H1 = F1C. Since dF1

n1
= 1, q|dC

n .

So, from Hj = FjC we obtain q|d
Hj
nj , j = 1, . . . , k. Thus q|d(Al,Al+1) for all

l = 1, . . . , k − 1.

Hence, we get q|d(B,C). Since ((dAl
nl
, d

Al+1
nl+1 ), d(B,C)) = 1, l = 1, . . . , k−1, q = 1.

So f ∈ U(R) and thus, detB = dB1
n1

· · · dBk
nk
.

Corollary 1. Let A ∈M(n,R) and detA = ϕ1 · · ·ϕk. Then the matrix A is the
right equivalent to the block diagonal matrix, that is AV = diag(D1, . . . ,Dk), Di ∈
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M(ni, R), detDi = ϕi, i = 1, . . . k, if and only if the matrix A can be written in
the form

A =



A1
...
Ak


 , Ai ∈M(ni,m,R), dAi

ni
= ϕi, i = 1, . . . , k.

Lemma 3. Let C ∈M(n,m,R), n ≤ m and dC
n 6= 0. Let A =

[
cj1 . . . cjn

]
be a

submatrix which is composed of j1, . . . , jn columns of the matrix C and such that
detA = dC

n . Then there exists a matrix Q ∈ GL(m,R) such that CQ =
[
A 0

]
.

Proof. Using the elementary column operations, we reduce the matrix C to the
form CP =

[
A B

]
= C1, where P ∈ GL(m,R). For the matrices A and B

there exist matrices V1 ∈ GL(n,R) and V2 ∈ GL(m− n,R) such that AV1 = A1,

BV2 = B1 and they are lower triangular matrices.

Put m− n ≥ n. Then

[
A B

] [
V1 0
0 V2

]
=

[
A1 B1

]
=




a1 0 · · · 0 b1 0 · · · 0 0 · · · 0
a21 a2 · · · 0 b21 b2 · · · 0 0 · · · 0
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
an1 an2 · · · an bn1 bn2 · · · bn 0 · · · 0


 = C2.

It is obvious that dC2
n = detA1 = detA. Therefore all the n-th order minors of

the matrix C2 are divided by detA1 = a1 · · · an. Hence, the element bi of the
matrix C2 is divided by ai for all i = 1, . . . , n.

Using the elementary column operations, we reduce the matrix C2 to the form




a1 0 · · · 0 0 0 · · · 0 0 0 · · · 0

a21 a2 · · · 0 b
′

21 0 · · · 0 0 0 · · · 0
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

an1 an2 · · · an b
′

n1 b
′

n2 · · · b
′

n,n−1 0 0 · · · 0


 = C3.

Continuing this way, we obtain that C1W =
[
A1 0

]
, where W ∈ GL(m,R).

Hence, the matrix C is the right equivalent to the matrix
[
A 0

]
.

If m− n < n, the proof of the lemma is similar.

Corollary 2. Let C =
[
A B

]
, C ∈ M(n,m,R), A ∈ M(n,R), dC

n 6= 0. If

detA = dC
n , then there exists such a unitriangular matrix S =

[
In S12

0 Im−n

]
that

[
A B

]
S =

[
A 0

]
.
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3 Factorizations of the block matrices

We suppose that the nonsingular matrix T = triang(T11, . . . , Tkk) has the fac-
torization in the ring BT (n1, . . . , nk, R) :

T = BC =




B11 B12 . . . B1k

0 B22 . . . B2k

· · · · · · · · · · · ·
0 0 · · · Bkk







C11 C12 . . . C1k

0 C22 . . . C2k

· · · · · · · · · · · ·
0 0 · · · Ckk


 , (4)

where Bii, Cii ∈M(ni, R), Bij , Cij ∈M(ni, nj, R), i, j = 1, . . . , k, i < j. Then
the diagonal blocks Tii and their determinants detTii of the matrix T have such
factorizations

Tii = BiiCii, i = 1, . . . , k, (5)

and
detTii = ϕiψi, ϕi = detBii, ψi = detCii, i = 1, . . . , k. (6)

Definition 1. We will call the factorization (4) of the matrix T the corresponding
one to the factorization (5) of its diagonal blocks Tii and the parallel one to the
factorization (6 ) of the determinants detTii of their diagonal blocks or briefly, the
parallel factorization of the matrix T in the ring BT (n1, . . . , nk, R).

It should be highlighted that there does not exist the corresponding factorization
of the matrix T, that is its factorization in the ring BT (n1, . . . , nk, R), for every
factorization (5) of the diagonal blocks Tii.

For each factorization

detT = ϕψ, ϕ =

k∏

i=1

ϕi, ψ =

k∏

i=1

ψi, i = 1, . . . , k, (7)

of the determinant of the matrix T there exists the parallel factorization T = BC

of the matrix T in the ring M(n,R), that is the factorization is such that detB =
ϕ, detC = ψ. However, there does not exist the parallel factorization (4) in the
ring BT (n1, . . . , nk, R) for every factorization detTii = ϕiψi of the determinants
of the diagonal blocks Tii of the matrix T.

Further, we describe the factorizations of the matrices in the ring
BT (n1, . . . , nk, R). We have established some conditions, under which the factor-
izations of the matrices T ∈ BT (n1, . . . , nk, R) are the same block triangular
form up to the association, that is when they are the factorizations in the ring
BT (n1, . . . , nk, R). We have proved the uniqueness criteria of such factorizations.

Theorem 1. Let T ∈ BT (n1, . . . , nk, R) be a nonsingular matrix and its diago-
nal blocks Tii, i = 1, . . . , k, have the factorizations of the form (5). Then there
exists a unique up to the association factorization of the matrix T in the ring
BT (n1, . . . , nk, R), that is T = triang(B11, . . . , Bkk)triang(C11, . . . , Ckk) if and only
if

(detBss,detCs+t,s+t) = 1, for all s = 1, . . . , k − 1, t = 1, . . . , k − s. (8)
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Proof. The matrix T has the factorization (4) corresponding to the factorizations
(5) of the diagonal blocks Tii, i = 1, . . . , k, if and only if the system of the linear
matrix equations

BiiXij + YijCjj +

j−1∑

l=i+1

YilXlj = Tij, 1 ≤ i < j ≤ k, (9)

has solutions. The system solutions are Xij = Cij , Yij = Bij , i < j, i, j =
1, . . . , k. The solving of the system is reduced to the solving of the linear Sylvester
matrix equations in the form

BiiXij + YijCjj = Tij , 1 ≤ i < j ≤ k. (10)

From (8) it follows that (detBii,detCjj) = 1, 1 ≤ i < j ≤ k. Then every
linear matrix equation (10) has a solution [12]. Therefore, the system of the matrix
equations (9) has a solution. Consequently, the matrix T has the factorization of
the form (4) corresponding to the factorizations (5) of its diagonal blocks.

For the matrix T there exist such invertible matrices U and V over R that
TU = F, BV = HB , V −1CU = D are upper triangular matrices. The matrix
HB has the Hermite normal form [11]. It follows from (4) that F = HBD:



F11 F12 . . . F1k

0 F22 . . . F2k

· · · · · · · · · · · ·
0 0 · · · Fkk


 =




HB11 G12 . . . G1k

0 HB22 . . . G2k

· · · · · · · · · · · ·
0 0 · · · HBkk







D11 D12 . . . D1k

0 D22 . . . D2k

· · · · · · · · · · · ·
0 0 · · · Dkk


 (11)

where HBpp = BppVpp = [h
(p)
ij ]

np

1 is the Hermite normal form of the block Bpp.

Each element of the i−th row of the matrix Gpq = [g
(pq)
ij ]

np,nq

1 lies in a prescribed

complete set of residues modulo the diagonal element h
(p)
ii of the matrix HBpp ,

that is g
(pq)
ij ∈ R

h
(p)
ii

, i = 1, . . . , np, j = 1, . . . , nq, 1 ≤ p < q ≤ k.

It follows from the factorization (11) that the matrices Xpq = Dpq, Ypq =
Gpq, 1 ≤ p < q ≤ k, are the solutions of the system of the linear matrix equations

HBppXpq + YpqDqq +

q−1∑

l=p+1

YplXlg = Fpq, 1 ≤ p < q ≤ k. (12)

The solving of this system of the matrix equations is reduced to the solving of the
linear Sylvester matrix equations in the form

HBppXpq + YpqDqq = Fpq, 1 ≤ p < q ≤ k. (13)

It follows from [2] that the solution Xpq = Dpq, Ypq = Gpq = [g
(pq)
ij ]

np,nq

1 of the

equation (13), where g
(pq)
ij ∈ R

h
(p)
ii

, i = 1, . . . , np, j = 1, . . . , nq, 1 ≤ p < q ≤ k,

is unique if and only if (detHBii ,detDjj) = 1, i, j = 1, . . . , k, i < j. These
conditions hold if the conditions (8) are true. The factorizations (11) and (4) of the
matrix T are associate.
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Corollary 3. Let the determinants detTii of the diagonal blocks Tii, i = 1, . . . , k,
of the matrix T ∈ BT (n1, . . . , nk, R) have the factorizations

detTii = ϕiψi, i = 1, . . . , k, and

k∏

i=1

ϕi = ϕ,

k∏

i=1

ψi = ψ. (14)

Let at least one of the following conditions hold:

(i) (
∏s

i=1 ϕi, ψs+1) = 1, s = 1, . . . , k − 1, and ((ϕ,ψ), dT
n−1) = 1,

(ii) (detTii, (ϕ,ψ)) = 1, i = 1, . . . , k − 1.

Then there exist the factorizations

Tii = BiiCii, detBii = ϕi, detCii = ψi, p = 1, . . . , k (15)

of the diagonal blocks Tii and the factorization of the matrix T

T = BC, detB = ϕ, detC = ψ, (16)

in the ring BT (n1, . . . , nk, R). This factorization of the matrix T is unique up to
the association.

Theorem 2. Let T = triang(T11, . . . , Tkk) be a nonsingular matrix and the deter-
minants of the diagonal blocks Tii, i = 1, . . . , k, have the factorizations in the form
(14). If at least one of the following conditions holds:

(i) (
∏s

i=1 ϕi, ψs+1) = 1, and ((ϕ,ψ), dT
n−1) = 1, s = 1, . . . , k − 1,

(ii) (detTii, (ϕ,ψ)) = 1, i = 1, . . . , k − 1,

then there exists the parallel factorization of the matrix T in the
ring BT (n1, . . . , nk, R): T = BC, B,C ∈ BT (n1, . . . , nk, R), that is
B = triang(B11, . . . , Bkk), C = triang(C11, . . . , Ckk), Bii, Cii ∈ M(ni, R) and
detBi = ϕi, detCi = ψi, i=1, . . . , k. Each parallel factorization T = BC, B,C ∈
M(n,R), detB = ϕ, detC = ψ of the matrix T in the ring M(n,R) is asso-
ciate to the parallel factorization T = B̃C̃, where B̃ = triang(B̃11, . . . , B̃kk), C̃ =
triang(C̃11, . . . , C̃kk) and det B̃ii = ϕi, det C̃ii = ψi, i = 1, . . . , k, in the ring
BT (n1, . . . , nk, R).

Proof. Let k = 2, that is T = triang(T11, T22). It follows from the conditions (7)
that there exists such a factorization T = BC of the matrix T that detB = ϕ,
detC = ψ. We write it in an appropriate block form

triang(T11, T22) =

[
B11 B12

B21 B22

]
C, (17)

Bij ∈M(ni, nj, R), C ∈M(n,R), i, j = 1, 2. It follows from the conditions (i) of
the theorem that (detB,detT22) = ϕ2.
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According to Lemma 1 dB2
n2

= ϕ2, where B2 =
[
B21 B22

]
, there exists such a

matrix V ∈ GL(n,R) that B2V =
[
0 B̃22

]
, where B̃22 ∈ M(n2, R) and det B̃22 =

ϕ2. So, from (17) we get

triang(T11, T22) = triang(B̃11, B̃22)triang(C̃11, C̃22) = B̃C̃,

where B̃ = BV , C̃ = V −1C, V ∈ GL(n,R), Bij, Cij ∈ M(ni, nj, R) and det B̃ii =

ϕi, det C̃ii = ψi, i = 1, 2.

Similarly, the theorem can be proved under the condition (ii).

For an arbitrary k, we prove the theorem by induction.

Corollary 4. Let the determinants detTii of the diagonal blocks Tii, i = 1, . . . , k,
of the matrix T ∈ BT (n1, . . . , nk, R) have the factorizations in the form (14). If
at least one of the following conditions holds:

(i) (
∏s

i=1 ϕi, ψs+1) = 1, s = 1, . . . , k − 1, and ((ϕ,ψ), dT
n−1) = 1,

(ii) (detTii, (ϕ,ψ)) = 1, i = 1, . . . , k − 1,

then there exist factorizations (15) of the diagonal blocks Tii and the factorization
of matrix T (16) in the ring BT (n1, . . . , nk, R). This factorization of the matrix
T is unique up to the association.

Theorem 3. Let the determinants of the diagonal blocks Tii, i = 1, . . . , k, of the
matrix T ∈ BT (n1, . . . , nk, R) have the factorizations in the form (14). Then
there exists the factorization of the matrix T parallel to the factorization (14) of
the determinants of the diagonal blocks if and only if the following conditions hold:

(i) ((ϕi, ψi), d
Tii

ni−1) = 1, i = 1, . . . , k,

(ii) (ϕs, ψs+t) = 1 for all s = 1, . . . , k − 1, t = 1, . . . , k − s.

This factorization of the matrix T is unique up to the association.

Proof. It follows from the factorizations (14) of the determinants detTii of the
diagonal blocks Tii of the matrix T that there exist the parallel factorizations
of the diagonal blocks Tii. When the condition (i) holds, these factorizations of
the blocks Tii are parallel to the factorizations of their determinants up to the
association and they are unique. From Theorem 1 we conclude that there exists the
factorization of the matrix T corresponding to the factorizations (5) of its diagonal
blocks Tii and parallel to the factorizations (14) of the determinants of the diagonal
blocks Tii, i = 1, . . . , k, and it is unique up to the association.

It should be highlighted that there does not exist the parallel factorization in the
ring BT (n1, . . . , nk, R) for every factorization of the determinants of the diagonal
blocks Tii, i = 1, . . . , k, of the matrix T.

We establish the matrices having such a property in the following corollary.
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Corollary 5. Let the determinants of the diagonal blocks Tii, i = 1, . . . , k,
of the matrix T ∈ BT (n1, . . . , nk, R) be pairwise relatively prime, that is
(detTii,detTjj) = 1. Then for each factorization (14) of the determinants detTii

of the diagonal blocks Tii, i = 1, . . . , k, there exists the parallel factorization of the
matrix T, that is the matrix T has the maximum number of the parallel factoriza-
tions.

The block diagonal matrices D = diag(D11, . . . ,Dkk), Dii ∈ M(ni, R), i =
1, . . . , k, form the subring BD(n1, . . . , nk, R) of the ring of the block triangular ma-
trices. We consider the factorizations of the matrices in the ring BD(n1, . . . , nk, R).

Definition 2. Let the determinants of the diagonal blocks Dii ∈ M(ni, R), i =
1, . . . , k, of the matrix D = diag(D11, . . . ,Dkk) have the factorizations

detDii = ϕiψi, i = 1, . . . , k. (18)

The factorization D = BC, B = diag(B11, . . . , Bkk), C = diag(C11, . . . , Ckk), of
the matrix D is such that detBii = ϕi, detCii = ψi, i = 1, . . . , k, and is called the
parallel factorization to the factorizations (18) of the determinants of the diagonal
blocks Dii, i = 1, . . . , k, or briefly, the parallel factorization of the matrix D in the
ring BD(n1, . . . , nk, R) of the block diagonal matrices.

Theorem 4. Let D ∈ BD(n1, . . . , nk, R), that is D = diag(D11, . . . ,Dkk), Dii ∈
M(ni, R), i = 1, . . . , k, and the determinants of its diagonal blocks Dii have the
factorizations:

detDii = ϕiψi,

k∏

i=1

ϕi = ϕ,

k∏

i=1

ψi = ψ, i = 1, . . . , k. (19)

If ((detDii,detDjj), (ϕ,ψ)) = 1, i, j = 1, . . . , k, i 6= j, then for the ma-
trix D there exists the factorization D = BC, B,C ∈ M(n,R), detB =
ϕ, detC = ψ, in the ring M(n,R) and each of such factorizations is associate
to the parallel factorization of the matrix D in the ring BD(n1, . . . , nk, R), that is
D = B̃C̃, where B̃ = BV = diag(B̃11, . . . , B̃kk), C̃ = V −1C = diag(C̃11, . . . , C̃kk),
V ∈ GL(n,R), B̃ii, C̃ii ∈M(ni, R), det B̃ii = ϕi, det C̃ii = ψi, i = 1, . . . , k.

Proof. Let k = 2. It follows from (19) that there exists such a factorization D = BC

of the matrix D that detB = ϕ, detC = ψ. We write it in the block form

[
D1 0
0 D2

]
=

[
B11 B12

B21 B22

]
C, (20)

where Bii ∈ M(ni, R), C ∈ M(n,R), i = 1, 2. Then, from (19) we have that
(detB,detDi) = ϕi, i = 1, 2.

Based on Lemma 2, detB = dB1
n1
dB2

n2
, where Bi =

[
Bi1 Bi2

]
, i = 1, 2. Since

dBi
ni
|ϕi, i = 1, 2, and detB = ϕ1ϕ2, it follows that dBi

ni
= ϕi, i = 1, 2. For the matrix
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B2 there exists such a matrix U ∈ GL(n,R) that B2U =
[
0 B̃22

]
, B̃22 ∈

M(n2, R), det B̃22 = ϕ2.

Then from the equality (20) we obtain:

[
D1 0
0 D2

]
=

[
B̃11 B̃12

0 B̃22

]
C̃, where

[
B̃11 B̃12

0 B̃22

]
=

[
B11 B12

B21 B22

]
U, C̃ = U−1C.

According to Corollary 2 there exists such a matrix Q =

[
In1 Q12

0 In2

]
that

[
B̃11 B̃12

]
Q =

[
B̃11 0

]
.

Thus, we get D = B̃C̃, B̃ = BW = diag(B̃11, B̃22), C̃ = W−1C =
diag(C̃11, C̃22), W = UQ, B̃ii, C̃ii ∈ M(ni, R), det B̃ii = ϕi, det C̃ii =
ψi, i = 1, 2.

For an arbitrary k, we prove the theorem by induction.

Corollary 6. If the determinants of the diagonal blocks Dii of the matrix
D ∈ BD(n1, . . . , nk, R) are pairwise relatively prime, then each factorization
D = BC, B,C ∈ M(n,R) of the matrix D in the ring M(n,R) is associate
to a certain parallel factorization of the matrix D in the ring BD(n1, . . . , nk, R).

References

[1] Borevich Z. I. On factorizations of matrices over a principal ideal ring. Proceedings of the
Third All-Union Symposium on the Theory of Rings, Algebras and Modules: Abstracts of
talks. Tartu, University Press, 1976, 19 (in Russian)

[2] Dzhaliuk N. S., Petrychkovych V. M. The matrix linear unilateral and bilateral equations

with two variables over commutative rings. International Scholarly Research Network, ISRN
Algebra, Volume 2012, Article ID 205478, 14 pages, doi: 10.5402/2012/205478.

[3] Feinberg R.B. Equivalence of partitioned matrices. J. Res. Bur. Stand. Sect., 1976, 80,
No. 1, 89–97.

[4] Gohberg I., Lancaster P., Rodman L. Matrix polynomials. New York, Academic Press,
1982.

[5] Gustafson W.H. Roth’s theorem over commutative rings. Linear Algebra Appl., 1979, 23,
245–251.

[6] Gustafson W.H., Zelmanowitz J. M. On matrix equivalence and matrix equations. Linear
Algebra Appl., 1979, 27, 219–224.

[7] Kazimirs’kii P. S. Factorization of matrix polynomials. L‘viv, Pidstryhach Institute for Ap-
plied Problems of Mechanics and Mathematics of the NAS of Ukraine, 2015 (in Ukrainian).

[8] Lancaster P. Lambda-matrices and vibrating systems. Reprint of the 1966 original [New
York, Pergamon Press], Mineola, NY, Dover Publications, nc., 2002.

[9] Markus A. S. Introduction to the spectral theory of polynomial operator pencils. Transl. from
the Russian by H.H. McFaden. Translations of Mathematical Monographs, 71. Providence,
RI: American Mathematical Society (AMS), 1988.

[10] Martines F., Pereira E. Block matrices and stability theory. Tatra Mt. Math. Publ., 2007,
38, 147–162.



FACTORIZATIONS IN THE RINGS OF THE BLOCK MATRICES 33

[11] Newman M. Integral matrices. New York, Academic Press, 1972.

[12] Newman M. The Smith normal form of a partitioned matrix. J. Res. Bur. Stand. Sect., 1974,
78B, No. 1, 3–6.

[13] Petrychkovych V.M. Cell-triangular and cell-diagonal factorizations of cell-triangular and

cell-diagonal polynomial matrices. Math. Notes, 1985, 37, No. 6, 431–435.

[14] Petrychkovych V. M. Generalized Equivalence of Matrices and its Collections and Factor-

ization of Matrices over Rings. L‘viv, Pidstryhach Inst. Appl. Probl. Mech. and Math. of the
NAS of Ukraine, 2015 (in Ukrainian).

[15] Roth W. E. The equations AX − Y B = C and AX − XB = C in matrices. Proc. Amer.
Math. Soc., 1952, 3, 392–396.

[16] Yang Y., Holtti H. The factorization of block matrices with generalized geometric progres-

sion rows. Linear Algebra Appl., 2004, 387, 51–67.

Vasyl’ Petrychkovych

Nataliia Dzhaliuk

Pidstryhach Institute for Applied Problems of Mechanics
and Mathematics of the NAS
of Ukraine Department of Algebra
3b Naukova Str., 79060, L’viv, Ukraine

E-mail: vas petrych@yahoo.com

E-mail: nataliya.dzhalyuk@gmail.com

Received January 10, 2017


