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Post-quantum No-key Protocol

N.A.Moldovyan, A.A.Moldovyan, V.A. Shcherbacov

Abstract. There is proposed three-pass no-key protocol that is secure to hypothetic
attacks based on computations with using quantum computers. The main operations
are multiplication and exponentiation in finite ground field GF (p). Sender and receiver
of secret message also use representation of some value c ∈ GF (p) as product of two
other values R1 ∈ GF (p) and R2 ∈ GF (p) one of which is selected at random. Then
the values R1 and R2 are encrypted using different local keys.
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1 Introduction

An open problem of cryptography is design of post-quantum cryptographic algo-
rithms and protocols [1, 2]. The most practical public-key cryptoschemes are based
on difficulty of discrete logarithm [3–5] and of factoring integers containing two
large prime factors [6,7]. The three-pass no-key encryption protocol [3] based on the
first problem represents significant practical interest, for example, to perform secure
encryption with short shared keys [8].

Quantum computations are in progress and it is expected that in observable
future it will be possible to implement polynomial algorithms solving the discrete
logarithm and factoring problems [9]. Therefore researchers are looking for new
cryptographic primitives and designs of cryptoschemes, for example, the hidden con-
jugacy search problem in finite non-commutative groups was proposed as primitive
for designing post-quantum cryptoschemes [10–12].

In the present communication we propose post-quantum implementation of the
three-pass no-key encryption protocol. In the proposed protocol there is used expo-
nentiation in the finite ground field GF (p), where p is a sufficiently large prime, like
in the known no-key encryption protocol. However it is additionally used represen-
tation of some element of the field GF (p) as product of two other elements one of
which is selected at random and serves as an additional local key. Due to such rep-
resentation performed independently on the side of the message sender and on the
side of the receiver, solving the discrete logarithm problem (DLP) cannot be used to
break the proposed protocol. No key encryption protocol [3] exploits commutative
ciphers.
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Encryption function E is called commutative if it satisfies the following condition

EK [EQ(M)] = EQ[EK(M)],

where K and Q are encryption keys and M is some plaintext, for arbitrary keys K

and Q 6= K.
The appropriate commutative encryption function is provided by the exponen-

tiation encryption method by Pohlig and Hellman [13] that is described as follows.
Suppose p is a 2048-bit prime such that number p − 1 contains a large prime

divisor q the size of which is |q| ≥ 256 bits, for example, p = 2q + 1.
To select an encryption/decryption key (e, d) one needs to generate a random

number e that is mutually prime with p − 1 and has size |e| ≥ 256 bits and then to
compute d = e−1 mod p − 1.

The encryption procedure is described with the formula

C = Me mod p.

Decryption of the ciphertext C is performed as computing the value

M = Cd mod p.

Suppose Alice wishes to send the secret message M to Bob, using a public channel
and no shared key. For this purpose they can use the following no key protocol:

(i) Alice chooses a random key (eA, dA) and encrypts the message M using the
formula C1 = MeA mod p. Then she sends the ciphertext C1 to Bob;

(ii) Bob chooses a random key (eB , dB) and encrypts the ciphertext C1 as follows:
C2 = C

eB

1
mod p and sends the ciphertext C2 to Alice;

(iii) Alice decrypts the ciphertext C2 obtaining the ciphertext C3 : C3 =
C

dA

2
mod p. Then she sends the ciphertext C3 to Bob;

(iv) Bob computes the message M = C
dB

3
mod p.

This three-pass protocol provides security to passive attacks (potential adversary
only intercepts the values sent via public channel, but does not masquerade as sender
or receiver of secret message), since the used exponentiation cipher is as secure as
discrete logarithm problem is hard.

However, the described protocol is not secure against attacks using hypothetic
quantum computers.

We propose the following post-quantum implementation of the no-key protocol.

1. Alice generates two local keys in the form of two pairs of numbers (eA1, dA1)
and (eA2, dA2) such that dA1 = e−1

A1
mod p − 1 and dA2 = e−1

A2
mod p − 1, and forms

the pair of random numbers R1 < p and R2 < p such that M = R1R2 mod p,
where M is some secret message. Then she encrypts the numbers R1 and R2, using
formulas C ′

1
= R

eA1
1

mod p and C ′′

1
= R

eA2
2

mod p, and sends the ciphertexts C ′

1
and

C ′′

1
to Bob.
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2. Bob generates his two local keys (eB1, dB1) and (eB2, dB2) and represents each
of the numbers C ′

1
and C ′′

1
as product of the pair of random numbers (R11, R12),

where R11 < p and R12 < p, and (R21, R22), where R21 < p and R22 < p, respec-
tively: R1 = R11R12 mod p; R2 = R21R22 mod p.

Then he generates two random values L1 < p and L2 < p and encrypts the
numbers R11, R12, R21, and R22 as follows:

C ′

2
= R

eB1
11

L
dB2
1

mod p; C ′′′

2
= R

eB1
21

L
dB2
2

mod p;

C ′′

2
= R

eB2
12

L
−dB1
1

mod p; C2 = R
eB2
22

L
−dB1
2

mod p,

and sends the ciphertexts C ′

2
, C ′′

2
, C ′′′

2
, and C2 to Alice.

3. Alice generates random numbers N1 < p and N2 < p and decrypts the
ciphertexts C ′

2
, C ′′

2
, C ′′′

2
, and C2 as follows:

C ′

3
= (C ′

2
)dA1N1 mod p; C ′′′

3
= (C ′′′

2
)dA2N−1

1
mod p;

C ′′

3
= (C ′′

2
)dA1N2 mod p; C3 = (C2)

dA2N−1

2
mod p,

and sends the ciphertexts C ′

3
, C ′′

3
, C ′′′

3
, and C3 to Bob.

4. Bob recovers the secret message M from the values C ′

3
, C ′′

3
, C ′′′

3
, and C3

multiplying the numbers S′, S′′, S′′′ and S that are computed as follows: S′ =
(C ′

3
)dB1 mod p; S′′ = (C ′′

3
)dB2 mod p; S′′′ = (C ′′′

3
)dB1 mod p; S = (C3)

dB2 mod p;
M = S′S′′S′′′S mod p.

A correctness proof of the protocol is as follows:

S′ ≡ (C ′

3
)dB1 ≡ (C ′

2
)dB1dA1N

dB1
1

≡ R
dB1dA1eB1
11

L
dB1dA1dB2
1

N
dB1
1

≡

R
dA1
11

L
dB1dA1dB2
1

N
dB1
1

mod p;

S′′ ≡ (C ′′

3 )dB2 ≡ (C ′′

2 )dB2dA1N
dB2
2

≡ R
dB2dA1eB2
12

L
−dB2dA1dB1
1

N
dB2
2

≡

R
dA1
12

L
−dB2dA1dB1
1

N
dB2
2

mod p;

S′′′ ≡ (C ′′′

3
)dB1 ≡ (C ′′′

2
)dB1dA2N

−dB1
1

≡ R
dB1dA2eB1
21

L
dB1dA1dB2
2

N
−dB1
1

≡

R
dA2
21

L
dB1dA2dB2
2

N
−dB1
1

mod p;

S ≡ (C3)
dB2 ≡ (C2)

dB2dA2N
−dB2
2

≡ R
dB2dA2eB2
22

L
−dB2dA2dB1
2

N
−dB2
2

≡

R
dA2
22

L
−dB2dA2dB1
2

N
−dB2
2

mod p.

Multiplying the numbers S′ and S′′ one gets

S′S′′ ≡ R
dA1
11

L
dB1dA1dB2
1

N
dB1
1

R
dA1
12

L
−dB2dA1dB1
1

N
dB2
2

≡

(R11R12)
dA1N

dB1
1

N
dB2
2

≡ (C ′

1)
dA1N

dB1
1

N
dB2
2

≡

(R1)
dA1eA1N

dB1
1

N
dB2
2

≡ R1N
dB1
1

N
dB2
2

mod p.

Multiplying the numbers S′′′ and S one gets
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S′′′S ≡ R
dA2
21

L
dB1dA2dB2
2

N
−dB1
1

R
dA2
22

L
−dB2dA2dB1
2

N
−dB2
2

≡

(R21R22)
dA2N

−dB1
1

N
−dB2
2

≡ (C ′

2
)dA2N

−dB1
1

N
−dB2
2

≡ (R2)
dA2eA2N

−dB1
1

N
−dB2
2

≡ R2N
−dB1
1

N
−dB2
2

mod p.

Thus, we have

S′S′′S′′′S ≡ R1N
dB1
1

N
dB2
2

R2N
−dB1
1

N
−dB2
2

≡ R1R2 mod p.

Therefore, M = S′S′′S′′′S mod p.

We invite the reader to participate in security analysis of the proposed protocol.
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