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Introduction

A well known theorem of L. Fuchs [7, Theorem 111.3] asserts that the endomor-
phism ring of an (abstract) abelian group X is right (respectively, left) artinian if and
only if X is the direct sum of a finite group and finitely many copies of the additive
group of rational numbers. F. Szász observed [15] that the same conclusion about
the structure of X remains true under weaker hypothesis that the endomorphism
ring of X satisfies DCC on principal right (respectively, left) ideals.

The purpose of the present paper is to extend these results to the more general
setting obtained by considering LCA groups and their rings of continuous endomor-
phisms. To be precise, let L be the class of all LCA groups. For X ∈ L, let E(X)
denote the ring of continuous endomorphisms of X, endowed with the compact-open
topology. We shall determine here the explicite structure of groups X ∈ L with the
property that the ring E(X) satisfies DCC on closed right (respectively, left) ideals,
and we shall show that the corresponding class of groups coincides with the class
of those groups X ∈ L whose ring E(X) satisfies DCC on topologically principal
right (respectively, left) ideals. We shall also determine the groups X ∈ L for which
E(X) is right (respectively, left) artinian.

1 Notation

Throughout the following, N is the set of natural numbers (including zero),
N0 = N \ {0}, and P is the set of prime numbers.

The groups in L which we shall mention frequently are the reals R, the p-adic
numbers Qp, the p-adic integers Zp (all with their usual topologies), the rationals
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Q, the quasi-cyclic groups Z(p∞) and the cyclic groups Z(pn) of order pn (all with
the discrete topology), where p ∈ P and n ∈ N.

For X ∈ L, we let 1
X

, c(X), d(X), k(X), m(X), t(X), and X∗ denote respec-
tively the identity map on X, the connected component of zero in X, the maximal
divisible subgroup of X, the subgroup of compact elements of X, the smallest closed
subgroup K of X such that the quotient group X/K is torsion-free, the torsion
subgroup of X, and the character group of X.

We denote by E(X) the ring of continuous endomorphisms of X and by H(X,Y ),
where Y is another group in L, the group of continuous homomorphisms from X to
Y, both endowed with the compact-open topology.

For n ∈ N and p ∈ P, we let nX = {nx | x ∈ X}, X[n] = {x ∈ X | nx = 0},
Xp = {x ∈ X | limk→∞ pkx = 0}, and S(X) = {q ∈ P | (k(X)/c(X))q 6= 0}.

For a ∈ X and S ⊂ X, 〈a〉 is the subgroup of X generated by a, S is the closure
of S in X, and A(X∗, S) = {γ ∈ X∗ | γ(x) = 0 for all x ∈ S}.

Also, we write X = A ⊕ B (respectively, X = A ∔ B) in case X is a topological
(respectively, an algebraic) direct sum of its subgroups A and B.

If (Xi)i∈I is a family of groups in L, we write
∏

i∈I Xi for the topological direct
product of the groups Xi and

∏

i∈I(Xi;Ui) for the topological local direct product
of the groups Xi relative to the compact open subgroups Ui ⊂ Xi. We recall that
∏

i∈I(Xi;Ui) consists of all (xi)i∈I ∈
∏

i∈I Xi with xi ∈ Ui for all but finitely many i,
topologized by declaring all neighbourhoods of zero in the topological group

∏

i∈I Ui

to be a fundamental system of neighbourhoods of zero in
∏

i∈I(Xi;Ui).
If F is a field, Mn(F ) stands for the ring of all n× n matrices with entries in F.

The symbol ∼= denotes topological group (ring) isomorphism.

2 Topological Morita context rings

In our study of groups X ∈ L with the property that E(X) satisfies DCC on
different types of closed ideals, we will frequently make use of topological Morita
context rings. Here we recall this construction and derive several facts about its
closed ideals.

Let M =
(

R,S, RPS , SQR, [·, ·]R, [·, ·]S
)

be a topological Morita context, that
is R and S are topological rings with identity, RPS is a unital topological (R,S)-
bimodule, SQR is a unital topological (S,R)-bimodule, [·, ·]R : RPS × SQR → RRR

is a continuous (R,R)-bilinear S-balanced mapping, and [·, ·]S : SQR × RPS → SSS

is a continuous (S, S)-bilinear R-balanced mapping such that

[p, q]Rp′ = p[q, p′]S and [q, p]Sq′ = q[p, q′]R

for all r ∈ R, s ∈ S, p, p′ ∈ P and q, q′ ∈ Q. By analogy with the case of abstract
Morita contexts, we can associate to M a topological ring, called the topological
Morita context ring of M. Specifically, we endow the set

M =

{(

r p
q s

)

| r ∈ R, p ∈ P, q ∈ Q, s ∈ S

}
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with the product topology of R×P ×Q×S, and define addition and multiplication
on M by setting:

(

r1 p1

q1 s1

)

+

(

r2 p2

q2 s2

)

=

(

r1 + r2 p1 + p2

q1 + q2 s1 + s2

)

and
(

r1 p1

q1 s1

)(

r2 p2

q2 s2

)

=

(

r1r2 + [p1, q2]R r1p2 + p1s2

q1r2 + s1q2 [q1, p2]S + s1s2

)

for all r1, r2 ∈ R, p1, p2 ∈ P, q1, q2 ∈ Q, and s1, s2 ∈ S. As is well known, the
algebraic properties of operations of R,S, P and Q, and of mappings [·, ·]R and
[·, ·]S ensure that, with respect to the above addition and multiplication, M is a
ring with identity. It turns out that, in the considered topological situation, these
operations on M are also compatible with the topology of M. To see this, it suffices
in view of [3, Ch. I, §4, Proposition 1] to observe that composing the mentioned
operations on M with the canonical projections on the components of M we get
continuous mappings, because of the continuity of operations on R,S, P and Q, and
of mappings [·, ·]R and [·, ·]S . Thus M becomes a topological ring with identity, which

we will denote by

(

R P
Q S

)

. We will use frequently the special cases

(

R 0
Q S

)

and
(

R P
0 S

)

corresponding respectively to P = {0} or Q = {0}.

As we will be working with closed ideals of

(

R P
Q S

)

, it is desirable to relate

them to closed subobjects of the components R,P,Q, and S. For this purpose, we
need to introduce four mappings of M. Recall that if A and B are topological rings
and if h : A → B is a continuous ring homomorphism, then any topological right
(respectively, left) B-module X can be viewed as a topological right (respectively,
left) A-module via the scalar multiplication given by xa = xh(a) (respectively, ax =
h(a)x) for all a ∈ A and x ∈ X. For example, if hR : R × S → R and hS : R × S →
S are the canonical projections, then R,S, P,Q and hence their products can be
considered as topological right (respectively, left) modules over the topological direct
product ring R × S. We will use the following continuous mappings:

ϕR,Q,P : R×S((R × Q)R × RP )S → R×S(P × S)S , ((r, q), p) → (rp, [q, p]S),

ϕP,S,Q : R×S((P × S)S × SQ)R → R×S(R × Q)R, ((p, s), q) → ([p, q]R, sq),

ϕP,Q,S : R(PS × S(Q × S))R×S → R(R × P )R×S , (p, (q, s)) → ([p, q]R, ps),

ϕQ,R,P : S(QR × R(R × P ))R×S → S(Q × S)R×S , (q, (r, p)) → (qr, [q, p]S).

It is easy to see that ϕR,Q,P is R-balanced and (R × S, S)-bilinear, ϕP,S,Q is S-
balanced and (R ×S,R)-bilinear, ϕP,Q,S is S-balanced and (R,R× S)-bilinear, and
ϕQ,R,P is R-balanced and (S,R × S)-bilinear.

We have:
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Lemma 1. Let
(

R,S, RPS , SQR, [·, ·]R, [·, ·]S
)

be a topological Morita context.

(i) The closed right ideals of

(

R P
Q S

)

are of the form

(

A B
)

=

{(

r p
q s

)

| (r, q) ∈ A, (p, s) ∈ B

}

,

where A is a closed submodule of (R × Q)R and B is a closed submodule of
(P × S)S such that ϕP,S,Q(B × Q) ⊂ A and ϕR,Q,P (A × P ) ⊂ B.

(ii) The closed left ideals of

(

R P
Q S

)

are of the form

(

C
D

)

=

{(

r p
q s

)

| (r, p) ∈ C, (q, s) ∈ D

}

,

where C is a closed submodule of R(R × P ) and D is a closed submodule of

S(Q × S) such that ϕP,Q,S(P × D) ⊂ C and ϕQ,R,P (Q × C) ⊂ D.

(iii) The closed ideals of

(

R P
Q S

)

are of the form

(

I U
V J

)

=

{(

r p
q s

)

| r ∈ I, p ∈ U, q ∈ V, s ∈ J

}

,

where I is a closed ideal of R, J is a closed ideal of S, U is a closed subbimodule
of RPS , V is a closed subbimodule of SQR, and the following conditions hold:
[U,Q]R ⊂ I, [P, V ]R ⊂ I, [Q,U ]S ⊂ J, [V, P ]S ⊂ J, IP ⊂ U, PJ ⊂ U, QI ⊂ V,
JQ ⊂ V.

Proof. (i) Let A and B be as stated in (i). Clearly, the additive group of
(

A B
)

is a

closed subgroup of the additive group of

(

R P
Q S

)

. Given any

(

r0 p0

q0 s0

)

∈
(

A B
)

and

(

r p
q s

)

∈

(

R P
Q S

)

, we also have

(r0r, q0r) ∈ A, ([p0, q]R, s0q) = ϕP,S,Q((p0, s0), q) ∈ A,

(p0s, s0s) ∈ B and (r0p, [q0, p]S) = ϕR,Q,P ((r0, q0), p) ∈ B,

so
(

r0 p0

q0 s0

)(

r p
q s

)

=

(

r0r + [p0, q]R r0p + p0s
q0r + s0q [q0, p]S + s0s

)

∈
(

A B
)

,

and hence
(

A B
)

is a closed right ideal of

(

R P
Q S

)

.
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To show the converse, we first make the following observations. Since, clearly,

r 7→

(

r 0
0 0

)

is a continuous ring homomorphism from R into

(

R P
Q S

)

,

(

R P
Q S

)

can be regarded as a topological right R-module. Then

(

R 0
Q 0

)

and

(

0 P
0 S

)

be-

come topological submodules of

(

R P
Q S

)

R, and

(

R P
Q S

)

R can be written in the

form
(

R P
Q S

)

R =

(

R 0
Q 0

)

R ⊕

(

0 P
0 S

)

R.

In particular, the mapping

πR×Q :

(

R P
Q S

)

R → (R × Q)R,

(

r p
q s

)

7→ (r, q),

is a continuous morphism of R-modules whose restriction to

(

R 0
Q 0

)

R is an iso-

morphism of topological R-modules. Similarly, by using the ring homomorfism

s 7→

(

0 0
0 s

)

from S into

(

R P
Q S

)

,

(

R P
Q S

)

can be given the structure of topolog-

ical right S-module. Then

(

R 0
Q 0

)

and

(

0 P
0 S

)

become topological submodules of
(

R P
Q S

)

S , and

(

R P
Q S

)

S can be written in the form

(

R P
Q S

)

S =

(

R 0
Q 0

)

S ⊕

(

0 P
0 S

)

S .

In particular, the mapping

πP×S :

(

R P
Q S

)

S → (P × S)S ,

(

r p
q s

)

7→ (p, s),

is a continuous morphism of S-modules whose restriction to

(

0 P
0 S

)

S is an isomor-

phism of topological S-modules.

Now, let Y be an arbitrary closed right ideal of

(

R P
Q S

)

. It is clear that YR ⊂
(

R P
Q S

)

R and YS ⊂

(

R P
Q S

)

S . Given any

(

r p
q s

)

∈ Y, we have

(

r 0
q 0

)

=

(

r p
q s

)(

1 0
0 0

)

∈ Y

and
(

0 p
0 s

)

=

(

r p
q s

)(

0 0
0 1

)

∈ Y.
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It follows that

YR =
(

Y ∩

(

R 0
Q 0

)

)

R ⊕
(

Y ∩

(

0 P
0 S

)

)

R.

and

YS =
(

Y ∩

(

R 0
Q 0

)

)

S ⊕
(

Y ∩

(

0 P
0 S

)

)

S.

In particular, A = πR×Q(Y ) = πR×Q(Y ∩

(

R 0
Q 0

)

) is a closed submodule of (R×Q)R

and B = πP×S(Y ) = πP×S(Y ∩

(

0 P
0 S

)

) is a closed submodule of (P × S)S .

It only remains for us to show that ϕP,S,Q(B×Q) ⊂ A and ϕR,Q,P (A×P ) ⊂ B.

Pick arbitrary (p, s) ∈ B and q′ ∈ Q. Then

(

0 p
0 s

)

∈ Y, so

(

[p, q′]R 0
sq′ 0

)

=

(

0 p
0 s

)(

0 0
q′ 0

)

∈ Y,

and hence ([p, q′]R, sq′) ∈ A. Since (p, s) ∈ B and q′ ∈ Q were arbitrary, we conclude

that ϕP,S,Q(B×Q) ⊂ A. Next pick arbitrary (r, q) ∈ A and p′ ∈ P. Then

(

r 0
q 0

)

∈ Y,

so
(

0 rp′

0 [q, p′]S

)

=

(

r p
q s

)(

0 p′

0 0

)

∈ Y,

and hence (rp′, [q, p′]S) ∈ B. It follows that ϕR,Q,P (A × P ) ⊂ B.
(ii) The proof of (ii) is similar to that of (i).

(iii) The fact that

(

I U
V J

)

is a closed ideal of

(

R P
Q S

)

is clear. For the converse,

pick an arbitrary closed ideal Y of

(

R P
Q S

)

. Given any

(

r p
q s

)

∈ Y, we have

(

r 0
0 0

)

=

(

1 0
0 0

)(

r p
q s

)(

1 0
0 0

)

∈ Y

(

0 p
0 0

)

=

(

1 0
0 0

)(

r p
q s

)(

0 0
0 1

)

∈ Y

(

0 0
q 0

)

=

(

0 0
0 1

)(

r p
q s

)(

1 0
0 0

)

∈ Y

and
(

0 0
0 s

)

=

(

0 0
0 1

)(

r p
q s

)(

0 0
0 1

)

∈ Y.

Set I ′ = Y ∩

(

R 0
0 0

)

, U ′ = Y ∩

(

0 P
0 0

)

, V ′ = Y ∩

(

0 0
Q 0

)

and J ′ = Y ∩

(

0 0
0 S

)

. It

follows that the additive group of Y is a topological direct sum of the additive groups
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of I ′, U ′, V ′ and J ′, proving the closeness of I = πR(I ′), U = πP (U ′), V = πQ(V ′),

and J = πS(J ′), where πR, πP , πQ, and πS are the canonical projections of

(

R P
Q S

)

onto R,P,Q, and S respectively. It is also clear that I is an ideal of R, J is an ideal
of S, U is a subbimodule of P, and V is a subbimodule of Q. Finally, the inclusions
in (iii) follow from the inclusions in (i) and (ii).

Specializing to

(

R P
0 S

)

, we obtain the following corollary.

Corollary 1. Let R and S be topological rings with identity, and let P be a unital
topological (R,S)-bimodule.

(i) The closed right ideals of

(

R P
0 S

)

are of the form

{(

r p
0 s

)

| r ∈ I, (p, s) ∈ B

}

,

where I is a closed right ideal of R and B is a closed submodule of (P × S)S
such that IP × {0} ⊂ B.

(ii) The closed left ideals of

(

R P
0 S

)

are of the form

{(

r p
0 s

)

| s ∈ J, (r, p) ∈ C

}

,

where J is a closed left ideal of S and C is a closed submodule of R(R × P )
such that {0} × PJ ⊂ C.

(iii) The closed ideals of

(

R P
0 S

)

are of the form

{(

r p
0 s

)

| r ∈ I, s ∈ J, p ∈ U

}

,

where I is a closed ideal of R, J is a closed ideal of S, and U is a closed
subbimodule of RPS such that IP + PJ ⊂ U.

Next we consider chain conditions in

(

R P
0 S

)

. In accordance with [10, (1.22)],

we have:

Lemma 2. Let R and S be topological rings with identity, and let P be a uni-

tal topological (R,S)-bimodule. The ring

(

R P
0 S

)

satisfies DCC on closed right

(respectively, left) ideals if and only if so does R (respectively, S), and the right
S-module (P × S)S (respectively, left R-module R(R × P )) satisfies DCC on closed
submodules.

The same statement is true if we replace throughout DCC by ACC.
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Proof. Assume

(

R P
0 S

)

satisfies DCC on closed right ideals, and let (In)n ⊂ RR

and (Bn)n ⊂ (P × S)S be descending chains of closed submodules. Passing to the

chain (
(

In × {0} Bn

)

)n of

(

R P
0 S

)

, we see that (In)n and (Bn)n must stabilise.

For the converse, let (Yn)n be a descending chain of closed right ideals of
(

R P
0 S

)

. For each n, we can write Yn =
(

In × {0} Bn

)

, where In ⊂ RR and

Bn ⊂ (P ×S)S are closed submodules such that In ⊃ In+1 and Bn ⊃ Bn+1. As (In)n
and (Bn)n are stationary, (Yn)n must be stationary as well.

We close this section by pointing out the specific topological Morita context
rings, which we will be working with. Let X ∈ L. To any two closed subgroups A
and B of X such that X = A ⊕ B, we associate the topological Morita context

M(A,B) =
(

E(A), E(B), E(A)H(B,A)E(B), E(B)H(A,B)E(A), [·, ·]E(A), [·, ·]E(B)

)

,

where [f, g]E(A) = f ◦ g and [g, f ]E(B) = g ◦ f for all f ∈ H(B,A) and g ∈ H(A,B).

We write

(

E(A) H(B,A)
H(A,B) E(B)

)

for the topological Morita context ring of M(A,B).

Lemma 3. Let X be a group in L which can be written in the form X = A⊕B for
some closed subgroups A and B of X. Then

E(X) ∼=

(

E(A) H(B,A)
H(A,B) E(B)

)

.

If A is topologically fully invariant in X, then

E(X) ∼=

(

E(A) H(B,A)
0 E(B)

)

.

If A and B are both topologically fully invariant in X, then

E(X) ∼= E(A) × E(B).

Proof. Let ηA : A → X, ηB : B → X and πA : X → A, πB : X → B denote
respectively the canonical injections and the canonical projections corresponding to
the above decomposition of X. Define

ξ : E(X) →

(

E(A) H(B,A)
H(A,B) E(B)

)

by setting

ξ(u) =

(

πA ◦ u ◦ ηA πA ◦ u ◦ ηB

πB ◦ u ◦ ηA πB ◦ u ◦ ηB

)

for all u ∈ E(X). It is easy to see that ξ establishes a topological ring isomorphism

between E(X) and

(

E(A) H(B,A)
H(A,B) E(B)

)

.
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If A is topologically fully invariant, then πB ◦ u ◦ ηA = 0 for all u ∈ E(X),

so im(ξ) =

(

E(A) H(B,A)
0 E(B)

)

. If B is topologically fully invariant as well, then

im(ξ) =

(

E(A) 0
0 E(B)

)

.

3 Reduction to topological p-primary groups

In this section, we establish some necessary conditions in order for the ring E(X)
of a group X ∈ L satisfy DCC on topologically principal ideals, i.e. on ideals of the
form (f) with f ∈ E(X).

We begin by recalling that for any group X ∈ L, E(X) and E(X∗) are topolog-
ically anti-isomorphic [11, (2.1)]. Recall also that the group X is called residual if
d(X) ⊂ k(X) and c(X) ⊂ m(X), and that X is called topologically torsion in case
limn∈N(n!)x = 0 for all x ∈ X.

Theorem 1. Let X be a residual group in L such that the collection

E = {nE(X) | n ∈ N0}

has a minimal element with respect to set inclusion. Then X is a topological torsion
group, and there exists a finite subset S of S(X) such that the following conditions
hold:

(i) For each p ∈ S(X) \ S, Xp is densely divisible and torsionfree;

(ii) For each p ∈ S, there exists an n(p) ∈ N such that

m(Xp) = Xp[p
n(p)] and d(Xp) = pn(p)Xp.

Proof. Let n0E(X), where n0 ∈ N0, be a minimal element of E . Then

n0E(X) = pn0E(X) (1)

for all p ∈ P. Our first objective is to show that n0X and n0X∗ are densely divisible.
Fix any q ∈ P. We show first that

n0X = qn0X and n0X∗ = qn0X∗.

To this end, pick any x ∈ X and define δx : E(X) → X by setting δx(u) = u(x) for

all u ∈ E(X). In view of the equality (1), we can find a net (u
(q)
i )i∈Iq

of elements

in E(X) such that n01X = limi∈Iq
qn0u

(q)
i . Since δx is a continuous [5, Ch. X, §3,

Theorem 3, Corollary 1] group homomorphism, it follows that

n0x = δx(n01X) = lim
i∈Iq

δx(qn0u
(q)
i ) = lim

i∈Iq

qn0u
(q)
i (x),

and so n0x ∈ qn0X. As x was arbitrarily chosen in X, this gives n0X ⊂ qn0X, so
n0X ⊂ qn0X. It follows that n0X = qn0X because the reverse inclusion is obvious.
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On the other hand, the multiplication by q being continuous, we have qn0X ⊂ qn0X

[3, Ch. I, §2, Theorem 1], whence qn0X ⊂ qn0X. As the opposite inclusion is

obvious, it follows that qn0X = qn0X = n0X. Further, since E(X) and E(X∗) are
topologically anti-isomorphic, the equality (1) also gives n0E(X∗) = pn0E(X∗) for

all p ∈ P. Applying the preceding argument to X∗, we conclude that n0X∗ = qn0X∗.
Now we show that n0X and n0X∗ are densely divisible. By [8, (24.22) and

(22.17)], we have

(n0X)∗[q] = A((n0X)∗, qn0X) = A((n0X)∗, n0X) = {0}.

Analogously, (n0X∗)∗[q] = {0}. Since q ∈ P was arbitrary, it follows that (n0X)∗

and (n0X∗)∗ are torsion-free, so n0X and n0X∗ are densely divisible by [13, (5.2)].
In particular, d(X) ⊃ n0X and d(X∗) ⊃ n0X∗, whence d(X) = n0X and d(X∗) =
n0X∗ because the opposite inclusions are obvious. By taking annihilators, we also
obtain

m(X) = A(X, d(X)) = A(X,n0X) = X[n0]

and m(X∗) = X∗[n0]. Finally, since X and X∗ are residual groups, we must have

c(X) ⊂ m(X) = X[n0] and c(X∗) ⊂ m(X∗) = X∗[n0],

so c(X) = {0} = c(X∗) because X[n0] and X∗[n0] are totally disconnected [8,
(24.21)]. This implies that X is a topological torsion group [1, (3.5)], and hence
X ∼=

∏

p∈S(X)(Xp;Up), where, for each p ∈ S(X), Up is a compact open subgroup of
Xp [1, (3.13)]. Let

n0 = pn1
1 · · · pnt

t and S = {p1, . . . , pt},

where p1, . . . , pt are the distinct prime divisors of n0 and t, n1, . . . , nt ∈ N0. We can
write

X = Xp1 ⊕ · · · ⊕ Xpt
⊕ G and X∗ = X∗

p1
⊕ · · · ⊕ X∗

pt
⊕ H,

where G =
∑

p∤n0
Xp

∼=
∏

p∤n0
(Xp;Up) and H =

∑

p∤n0
X∗

p
∼=
∏

p∤n0
(X∗

p ;A(X∗
p , Up)).

It is clear that G and H ∼= G∗ are torsion-free, so (i) holds [13, (5.2)]. For each
i = 1, . . . , t, we also have m(Xpi

) = Xpi
[pni

i ] and m(X∗
pi

) = X∗
pi

[pni

i ], so (ii) holds as
well.

In order to deal with general groups X ∈ L, we need the following lemma which
is inspired by [7, p. 236, (b)] and [9, Lemma 64.1].

Lemma 4. Let X be a group in L for which there exist two sequences (An)n∈N and
(Bn)n∈N of non-zero closed subgroups such that

X = A0 ⊕ · · · ⊕ An ⊕ Bn and Bn = An+1 ⊕ Bn+1

for all n ∈ N. Then E(X) fails to satisfy DCC on topologically principal right
(respectively, left ) ideals.
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Proof. For n ∈ N, let εn ∈ E(X) denote the canonical projection of X onto Bn. As
in the proof of [7, p. 236, (b)] or [9, Lemma 64.1], one can see that

(

εnE(X)
)

n∈N

and
(

E(X)εn

)

n∈N
are strictly descending chains of right, respectively, left ideals. It

remains to observe that, for every n ∈ N, εnE(X) and E(X)εn are closed in E(X)
because εn is idempotent.

For general groups in L, we have:

Theorem 2. Let X be a group in L such that E(X) satisfies DCC on topologically
principal ideals. Then X = U ⊕V ⊕W ⊕Y, where U ∼= Rd for some d ∈ N, V ∼= Q(µ)

and W ∼= (Q∗)ν for some cardinal numbers µ and ν, and Y is a topological torsion
group in L satisfying the following conditions:

(i) S(Y ) = S(X) is finite;

(ii) for each p ∈ S(Y ), there exists n(p) ∈ N such that

m(Yp) = Y [pn(p)] and d(Yp) = pn(p)Yp.

Proof. By [1, (9.3)], we can write X = U ⊕ V ⊕ W ⊕ Y, where U ∼= Rd for some
d ∈ N, V ∼= Q(µ) and W ∼= (Q∗)ν for some cardinal numbers µ and ν, and Y is
residual. In particular, k(X) = W ⊕ k(Y ) and c(X) ∩ k(X) = W ⊕

(

c(Y ) ∩ k(Y )
)

,
so k(X)/

(

c(X) ∩ k(X)
)

∼= k(Y )/
(

c(Y ) ∩ k(Y )
)

, and hence S(Y ) = S(X). Our first

aim is to show that the collection E = {nE(Y ) | n ∈ N0} has a minimal element
with respect to inclusion. Let Z = U ⊕ V ⊕ W, so

E(X) ∼=

(

E(Z) H(Y,Z)
H(Z, Y ) E(Y )

)

,

as it follows from Lemma 3. For n ∈ N0, let In be the closed ideal of
(

E(Z) H(Y,Z)
H(Z, Y ) E(Y )

)

generated by

(

0 0
0 n1Y

)

. We assert that

In =

(

(

H(Y,Z)H(Z, Y )
)

H(Y,Z)

H(Z, Y ) nE(Y )

)

,

where
(

H(Y,Z)H(Z, Y )
)

⊂ E(Z). To see that

In ⊂

(

(

H(Y,Z)H(Z, Y )
)

H(Y,Z)

H(Z, Y ) nE(Y )

)

,

it suffices to show that

(

(

H(Y,Z)H(Z, Y )
)

H(Y,Z)

H(Z, Y ) nE(Y )

)



DESCENDING CHAIN CONDITIONS IN E(X) 99

is a closed ideal of

(

E(Z) H(Y,Z)
H(Z, Y ) E(Y )

)

. We will show the later by applying

Lemma 1(iii). Clearly, we have

(

H(Y,Z)H(Z, Y )
)

H(Y,Z) ⊂ H(Y,Z),

H(Y,Z)nE(Y ) ⊂ H(Y,Z),

H(Z, Y )
(

H(Y,Z)H(Z, Y )
)

⊂ H(Z, Y ),

nE(Y )H(Z, Y ) ⊂ H(Z, Y ),

and
[

H(Y,Z),H(Z, Y )
]

E(Z)
⊂
(

H(Y,Z)H(Z, Y )
)

.

Further, since 1
n
1Z is a continuous endomorphism of Z, every f ∈ H(Y,Z) and

g ∈ H(Z, Y ) can be written in the form f = n( 1
n
f) and g = n( 1

n
g). Consequently,

we also have

[

H(Z, Y ),H(Y,Z)
]

E(Y )
⊂ nE(Y ).

It follows that Lemma 1(iii) is applicable, so

(

(

H(Y,Z)H(Z, Y )
)

H(Y,Z)

H(Z, Y ) nE(Y )

)

is a closed ideal of

(

E(Z) H(Y,Z)
H(Z, Y ) E(Y )

)

, and hence

In ⊂

(

(

H(Y,Z)H(Z, Y )
)

H(Y,Z)

H(Z, Y ) nE(Y )

)

.

On the other hand, given any f ∈ H(Y,Z) and g ∈ H(Z, Y ), we have

(

0 f
0 0

)

=

(

0 1
n
f

0 0

)(

0 0
0 n1Y

)

∈ In,

(

0 0
g 0

)

=

(

0 0
0 n1Y

)(

0 0
1
n
g 0

)

∈ In,

and
(

fg 0
0 0

)

=

(

0 f
0 0

)(

0 0
g 0

)

∈ In,

so

In ⊃

(

(

H(Y,Z)H(Z, Y )
)

H(Y,Z)

H(Z, Y ) nE(Y )

)

,
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and hence

In =

(

(

H(Y,Z)H(Z, Y )
)

H(Y,Z)

H(Z, Y ) nE(Y )

)

.

Now, since

(

E(Z) H(Y,Z)
H(Z, Y ) E(Y )

)

satisfies DCC on topologically principal ideals,

we conclude that the collection {In | n ∈ N0} has a minimal element, which implies
that the collection

E = {nE(Y ) | n ∈ N0}

has a minimal element as well. It follows that Theorem 1 is applicable to Y. In
particular, Y is a topological torsion group, so

Y ∼=
∏

p∈S(Y )

(Yp;Op),

where, for each p ∈ S(Y ), Op is a compact open subgroup of Yp [1, (3.13)]. It
remains to observe that if S(Y ) were infinite, say S(Y ) = {p0, p1, . . .}, then we
could construct, by setting An = Ypn

and Bn =
∑

i>n Ypi
, two sequences (An)n∈N

and (Bn)n∈N of closed subgroups of Y as in Lemma 4, a contradiction.

4 The necessary condition in case of topological p-primary groups

As we saw in the preceding section, the problem of determining the groups
X ∈ L for which the ring E(X) satisfies DCC on topologically principal right
(respectively, left) ideals reduces to the case of topological p-primary groups. In the
present section, we deal with this last type of groups.

We begin by extending and sharpening a result of L. Robertson, which asserts
that Qp is splitting in the class of torsion-free groups in L (see [1, Proposition 6.23]).

Theorem 3. Let X ∈ L and let D be a closed subgroup of X such that D ∼= Qp for
some p ∈ P. The following conditions are equivalent:

(i) D splits topologically from X.

(ii) D 6⊂
(

c(X) ∩ k(X)
)

+ m(X).

Proof. Assume (i). Then we can write X = D ⊕ G for some closed subgroup G
of X. Since X/G ∼= D is torsion-free, we have m(X) ⊂ G. Also, since X/G is totally
disconnected, we have c(X) ⊂ G. Consequently, c(X) + m(X) ⊂ G and hence (ii)
holds.

Assume (ii). By [1, (9.3)], we can write X = U ⊕ V ⊕W ⊕ Y, where U ∼= Rd for
some d ∈ N, V ∼= Q(µ) and W ∼= (Q∗)ν for some cardinal numbers µ and ν, and Y
is residual. Since D = k(D) and k(X) = W ⊕Y, we have D ⊂ W ⊕Y. Consequently,
it suffices to show that D splits topologically from W ⊕ Y.
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Now, since Y is residual, we have c(Y ) ⊂ m(Y ) = m(X), which implies

(c(X) ∩ k(X)) + m(X) = W ⊕ m(Y ).

Our assumption then gives D 6⊂ W ⊕ m(Y ), and hence W ⊕ Y \ W ⊕ m(Y ) must
contain elements of D. Denote by ϕ : W ⊕Y → (W ⊕Y )/(W ⊕m(Y )) the canonical
projection, and let f be the restriction of ϕ to D. By [8, (5.27)], we have D/ ker(f) ∼=
f(D). Since (W ⊕Y )/(W ⊕m(Y )) ∼= Y/m(Y ) is torsion-free and since every quotient
of Qp by a proper closed subgroup is torsion, we conclude that

D ∩ (W ⊕ m(Y )) = ker f = {0}.

In particular, f(D) ∼= Qp, and hence f(D) splits topologically from (W ⊕ Y )/(W ⊕
m(Y )) [1, (6.23)]. Write (W ⊕Y )/(W ⊕m(Y )) = f(D)⊕G for some closed subgroup
G of (W ⊕Y )/(W ⊕m(Y )), and set G0 = ϕ−1(G). We assert that W ⊕Y = D⊕G0.
Indeed, it is clear that G0 is a closed subgroup of W ⊕ Y. If a ∈ D ∩ G0, then
ϕ(a) ∈ ϕ(D) ∩ ϕ(G0) = f(D) ∩ G = {0}, so a ∈ D ∩

(

W ⊕ m(Y )
)

= {0}. Further,
given any z ∈ W ⊕ Y, we have ϕ(z) = ϕ(a) + ϕ(b) for some a ∈ D and b ∈ G0.
Consequently, z − a− b = t for some t ∈ W ⊕ m(Y ), and hence z = a + b + t. Since
b + t ∈ G0, we conclude that W ⊕ Y = D ∔ G0. Since Qp is σ-compact, it then
follows from [1, (6.5)] that W ⊕ Y = D ⊕ G0.

Corollary 2. Let X be a group in L such that t(X) is reduced and closed in X. If
D is a closed subgroup of X satisfying D ∼= Qp, then D splits topologically from X.

Proof. As in the proof of Lemma 3, write X = U ⊕ V ⊕ W ⊕ Y, where U ∼= Rd

for some d ∈ N, V ∼= Q(µ) and W ∼= (Q∗)ν for some cardinal numbers µ and ν,
and Y is residual. Since t(X) is closed in X, we have m(X) = t(X) = t(Y ), so
(c(X) ∩ k(X)) + m(X) = W ⊕ t(Y ). It is also clear that D ⊂ k(X) = W ⊕ Y.
In order to apply Theorem 3, we have to show that D 6⊂ W ⊕ t(Y ). Assume this
is not so, and let ε ∈ E(X) denote the canonical projection of X onto Y. It follows
that ε(D) is a subgroup of t(Y ). Since ε(D) is divisible and t(Y ) is reduced, we
get ε(D) = {0}, so D ⊂ W, which is a contradiction because W is compact and D
is not.

We continue with the following

Lemma 5. Let p ∈ P, and let X be a non-reduced topological p-primary group in L
such that t(X) = X[pn0 ] for some n0 ∈ N. For any non-zero a ∈ d(X), let Da be the
smallest divisible subgroup of X containing a. Then Da

∼= Qp and X = Da ⊕ G for
some closed subgroup G of X.

Proof. Since t(X) = X[pn0 ], d(X) cannot contain copies of Z(p∞), so Da is alge-
braically isomorphic to Q. It follows from [2, Theorem 1] that Da is divisible. Since
X is a topological p-primary group, there exists a topological group isomorphism
f from Zp onto 〈a〉. Let η : 〈a〉 → Da denote the canonical injection, and set
h = η ◦ f. Since Zp is open in Qp, h extends to a continuous group homomorphism
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h0 : Qp → Da [8, (A.7)]. Now, since Qp is the minimal divisible extension of Zp,
Zp is essential in Qp [6, Lemma 24.3], and hence ker(h0) = {0} [6, Lemma 24.2].
We deduce that h0 is a topological isomorphism from Qp onto a closed subgroup
of Da [1, (4.21)]. Now, since h0(Qp) is divisible and a ∈ h0(Qp), we must have
h0(Qp) = Da, so Da

∼= Qp. It remains to apply Corollary 2.

Now we can concretize the structure of topological p-primary groups in L with
the property in question.

Theorem 4. Let p ∈ P, and let X be a topological p-primary group in L such that
E(X) satisfies DCC on topologically principal right (respectively, left) ideals. Then

X ∼=

k(p)
∏

i=0

Z(pri(p)) × Ql(p)
p

for some k(p), r0(p), . . . , rk(p)(p), l(p) ∈ N.

Proof. By Theorem 1, there exists an n(p) ∈ N such that m(X) = X[pn(p)] and

d(X) = pn(p)X. We will distinguish two cases: d(X) = {0} and d(X) 6= {0}.

First assume d(X) = {0}, so X = X[pn(p)]. To decompose X, pick an element
of maximal order x0 ∈ X, and set A0 = 〈x0〉. Clearly, A0

∼= Z(pr0(p)) for some
r0(p) ∈ N. By [12, Lemma 2], we can write X = A0 ⊕ B0 for some closed subgroup
B0 of X. If B0 6= {0}, choose an element of maximal order x1 ∈ B0 and write
X = A0 ⊕ A1 ⊕ B1, where A1

∼= Z(pr1(p)) for some r1(p) ∈ N and B1 is a closed
subgroup of B0. As Lemma 4 shows, if we continue in this way, we must arrive at
a step k(p) with Bk(p) = {0}.

Next assume d(X) 6= {0}. Picking any non-zero y0 ∈ d(X), let D0 be the closure
of the smallest divisible subgroup of X containing y0. By Lemma 5, D0

∼= Qp and
X = D0 ⊕ G0 for some closed subgroup G0 of X. If d(G0) 6= 0, pick any non-
zero y1 ∈ d(G0) and let D1 be the closure of the smallest divisible subgroup of D0

containing y1. As above, we have D1
∼= Qp and X = D0 ⊕ D1 ⊕ G1 for some closed

subgroup G1 of G0. By Lemma 4 again, this procedure must stop after a finite
number, say l(p), of steps, and so

X = D0 ⊕ · · · ⊕ Dl(p)−1 ⊕ Gl(p),

where Gl(p) is reduced. This shows that

d(X) = D0 ⊕ · · · ⊕ Dl(p)−1 = d(X) and X[pn(p)] ⊂ Gl(p).

Therefore

pn(p)Gl(p) ⊂ pn(p)X ∩ Gl(p) = d(X) ∩ Gl(p)

= (D0 ⊕ · · · ⊕ Dl(p)−1) ∩ Gl(p) = {0},



DESCENDING CHAIN CONDITIONS IN E(X) 103

so Gl(p) = X[pn(p)], and hence

X = D0 ⊕ · · · ⊕ Dl(p)−1 ⊕ X[pn(p)].

Since D0 ⊕ · · · ⊕ Dl(p)−1 and X[pn(p)] are fully invariant in X, we deduce from
Lemma 3 that

E(X) ∼= E(D0 ⊕ · · · ⊕ Dl(p)−1) × E(X[pn(p)]),

and hence E(X[pn(p)]) satisfies DCC on topologically principal ideals. It follows
that the first case applies to X[pn(p)], completing the proof.

5 Characterizations

In this last section, we establish our results. We begin with two lemmas, which
are needed in the proof of the main result. For the former, recall that every di-
visible torsion-free abelian group D can be considered as a vector space over the
field of rational numbers, Q, and this Q-vector space structure is the only one ex-
isting on D. Moreover, every group homomorphism between such groups is in fact
a homomorphism of Q-vector spaces.

We have:

Lemma 6. Let d, n, l1, . . . , ln ∈ N and p1, . . . , pn ∈ P. The Q-vector spaces Rd ×
∏n

i=1 Qli
pi

and (Q∗)d satisfy both ACC and DCC on closed Q-subspaces.

Proof. It is clear that in either of Q-vector spaces Rd and Ql
p, where d, l ∈ N and

p ∈ P, the closed Q-subspaces are in fact R-subspaces and respectively Qp-subspaces.
As dimR(Rd) = d and dimQp

(Ql
p) = l, we conclude that Rd and Ql

p satisfy ACC and

DCC on closed Q-subspaces. Now, write the Q-vector space G = Rd ×
∏n

i=1 Qli
pi

in
the form

G = G0 ⊕ G1 ⊕ · · · ⊕ Gn,

where G0
∼= Rd, G1

∼= Ql1
p1

, . . . , Gn
∼= Qln

pn
. Given a closed Q-subspace H of G, it is

clear that c(H) ⊂ c(G) = G0. It is also clear that, for any x ∈ G0∩H, the Q-subspace
Qx ⊂ G0 ∩ H, so Rx = Qx ⊂ G0 ∩ H, and hence G0 ∩ H is connected [3, Ch. 1,
§11, Proposition 2]. It follows that c(H) = G0 ∩H. Further, since H is torsion-free,
we can write H = H0 ⊕ K (a topological direct sum of topological groups), where
H0 = c(H) [1, (6.13)]. Moreover, since H0 ⊂ G0, we have K ⊂ G1 ⊕ · · · ⊕ Gn, so
K = H1⊕· · ·⊕Hn, where Hi ⊂ Gi for all i = 1, . . . , n [1, (3.13)]. Thus we obtained a
decomposition of H as a topological direct sum H = H0⊕H1⊕· · ·⊕Hn of Q-vector
spaces. Since the Q-vector spaces G0, G1, . . . , Gn satisfy ACC and DCC on closed
Q-subspaces, we conclude that so does G.

Now let us consider the case of (Q∗)d. It suffices to observe that a closed subgroup
C of (Q∗)d is a Q-subspace if and only if its annihilator A(Qd, C) is a Q-subspace of
Qd. Indeed, if C is a Q-subspace of (Q∗)d and x ∈ A(Qd, C), then γ(p

q
x) = p

q
γ(x) = 0

for all γ ∈ C and p
q
∈ Q. Consequently, p

q
x ∈ A(Qd, C) for all p

q
∈ Q, so A(Qd, C)
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is a Q-subspace of Qd. In a similar way, if A(Qd, C) is a Q-subspace of Qd, then
C is a closed Q-subspace of (Q∗)d. Since Qd is of finite dimension, the proof is
complete.

Lemma 7. Let R be a topological ring, M a topological (right or left) R-module,
and C a closed submodule of M.

(i) If M satisfies DCC on closed submodules, then so do C and M/C.

(ii) If C is either compact or open in M and if C and M/C satisfy DCC on closed
submodules, then so does M.

Proof. The proof follows the same pattern as in the abstract case (see, for examle,[9,
Proposition 27.1]). The requirement in (ii) that C is either compact or open in M
assures that the image through the canonical projection of any closed submodule of
M is closed in M/C.

We are now prepared to prove our main result.

Theorem 5. For a group X ∈ L, the following statements are equivalent:

(i) E(X) satisfies both ACC and DCC on closed right ideals.

(ii) E(X) satisfies DCC on closed right ideals.

(iii) E(X) satisfies DCC on topologically principal right ideals, i.e. ideals of the
form fE(X) with f ∈ E(X).

(iv) X ∼= Rd × Qn × (Q∗)m ×
∏

p∈S1
Q

l(p)
p ×

∏

p∈S2

∏k(p)
i=0 Z(pri(p)), where S1, S2

are finite subsets of P, and d, n,m, the k(p)’s, the ri(p)’s and the l(p)’s are
natural numbers.

Proof. Clearly, (i) implies (ii) and (ii) implies (iii). The fact that (iii) implies (iv)
follows from Theorem 2 and Theorem 4.

Now assume (iv). We can write X = D ⊕ T, where

D ∼= Rd × Qn × (Q∗)m ×
∏

p∈S1

Ql(p)
p and T ∼=

∏

p∈S2

k(p)
∏

i=0

Z(pri(p)).

It is clear that D = d(X) and T = t(X), so D and T are topologically fully invariant
subgroups of X. It follows from Lemma 3 that E(X) ∼= E(D) × E(T ). Since E(T )
is finite and since every right ideal J of E(D) × E(T ) is of the form J = Jd × Jt,
where Jd is a right ideal of E(D) and Jt is a right ideal of E(T ), it suffices to show
that E(D) satisfies ACC and DCC on closed right ideals. In order to do this, write
D = M ⊕ W, where

M ∼= Qn and W ∼= Rd × (Q∗)m ×
∏

p∈S1

Ql(p)
p .
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We have W = c(D) + k(D), so W is topologically fully invariant in D, and hence

E(D) ∼=

(

E(W ) H(M,W )
0 E(M)

)

by Lemma 3 again. It follows from Lemma 2 that we will achieve our goal if we
show that E(W )E(W ) and

(

H(M,W )×E(M)
)

E(M)
satisfy ACC and DCC on closed

submodules.
First we consider the case of

(

H(M,W ) × E(M)
)

E(M)
. Since E(M) ∼= Mn(Q),

we deduce that E(M) is discrete and satisfies ACC and DCC on right ideals. As
then H(M,W ) × {0} is open in H(M,W ) × E(M), it suffices by Lemma 7 to show
that H(M,W ) satisfies ACC and DCC on closed E(M)-submodules. To this end,
we write

W = V ⊕ K ⊕ L, (2)

where V ∼= Rd, K ∼= (Q∗)m, and L = ⊕p∈S1Lp with Lp
∼= Q

l(p)
p for all p ∈ S1. We

know from [8, (23.34)(d)] that

H(M,W ) ∼= H(M,V ) × H(M,K) ×
∏

p∈S1

H(M,Lp) (3)

as topological groups, and hence as topological E(M)-modules because the cor-
responding canonical isomorphism in (3) is easily seen to be an isomorphism of
E(M)-modules . Now, since M is discrete and K is compact, it follows by the
Ascoli theorem that H(M,K) is compact. Therefore to see that H(M,W ) satisfies
ACC and DCC on closed E(M)-submodules, it suffices by Lemma 7 to show that
so do H(M,K) and H(M,V ) ×

∏

p∈S1
H(M,Lp). For this purpose, we will con-

sider H(M,K) and H(M,V ) ×
∏

p∈S1
H(M,Lp) as vector spaces over Q, by using

the inclusion λ 7→ λIn of Q into Mn(Q) ∼= E(M). It is then clear that the closed
E(M)-submodules of H(M,K) and those of H(M,V )×

∏

p∈S1
H(M,Lp) are closed

Q-subspaces, so it will suffice to show that H(M,K) and H(M,V )×
∏

p∈S1
H(M,Lp)

satisfy both ACC and DCC on closed Q-subspaces. Now, since H(Q, Q∗) ∼= Q∗,
H(Q, R) ∼= R, and H(Q, Qp) ∼= Qp for all p ∈ P, we deduce from [8, (23.34)(c, d)]
that

H(M,K) ∼= (Q∗)nm and H(M,V ) ×
∏

p∈S1

H(M,Lp) ∼= Rnd ×
∏

p∈S1

Qnl(p)
p

as topological groups, and hence as topological vector spaces over Q. It follows from
Lemma 6 that both H(M,K) and H(M,V ) ×

∏

p∈S1
H(M,Lp) satisfy ACC and

DCC on closed Q-subspaces. This proves that H(M,W )×E(M) satisfies ACC and
DCC on closed E(M)-submodules.

Further, we consider the case of E(W ). Since K ⊕ L = k(W ) is topologically
fully invariant in W, we deduce from (2) and Lemma 3 that

E(W ) ∼=

(

E(K ⊕ L) H(V,K ⊕ L)
0 E(V )

)

.
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By Lemma 2, we have to show that the modules E(K ⊕ L)E(K⊕L) and
(

H(V,K ⊕
L) × E(V )

)

E(V )
satisfy ACC and DCC on closed submodules.

First we consider the case of
(

H(V,K ⊕ L) × E(V )
)

E(V )
. By use of the inclu-

sion λ 7→ λId ∈ Md(R) ∼= E(V ), the group H(V,K ⊕ L) × E(V ) can be given a
topological vector space structure over the field of reals, R. It is clear that every
E(V )-submodules of H(V,K ⊕ L) × E(V ) becomes an R-subspace. So to achieve
our goal, it suffices to show that H(V,K ⊕L)×E(V ) is of finite dimension. This is
clear for E(V ). On the other hand, H(V,K ⊕ L) = H(V,K) because V = c(V ) and
c(L) = {0}. Since, by [8, (23.34)(c,d)], H(V,K) ∼= Rmd as topological groups and
hence as topological R-spaces, H(V,K) has finite dimension as well.

Next consider the case of E(K ⊕ L) = E(K ⊕ ⊕p∈S1Lp). We will proceed by
induction on n = card(S1). If S1 = ∅, then E(K ⊕ L) = E(K). Since E(K) and
E(K∗) are topologically anti-isomrphic, and since E(K∗) ∼= Mm(Q)opp, the fact that
E(K) satisfies ACC and DCC on closed right ideals is clear. Assume S1 = {p}, so
L = Lp. Since K = c(K ⊕ Lp) is topologically fully invariant in K ⊕ Lp, it follows
that

E(K ⊕ L) = E(K ⊕ Lp) ∼=

(

E(K) H(Lp,K)
0 E(Lp)

)

.

To see that E(K ⊕ Lp)E(K⊕Lp) satisfies ACC and DCC on closed submodules,

it suffices to show that so do E(K)E(K) and
(

H(Lp,K) × E(Lp)
)

E(Lp)
. The case of

E(K) is clear. Further, by use of the inclusion λ 7→ λIl(p) of the field Qp of p-adic
numbers into Ml(p)(Qp) ∼= E(Lp), the group H(Lp,K)×E(Lp) can be given a vector
space structure over Qp. Since every E(Lp)-submodule of

(

H(Lp,K)×E(Lp)
)

E(Lp)
is

a Qp-vector space, it suffices to show that
(

H(Lp,K)×E(Lp)
)

Qp
has finite dimension.

This is clear for E(Lp)Qp
because E(Lp) ∼= Ml(p)(Qp). Also, since H(Lp,K) ∼=

H(K∗, L∗
p)

∼= H(Q, Qp)
ml(p) ∼= Q

ml(p)
p , we have dimQp

H(Lp,K) = ml(p), proving
the case n = 1. Assume n ≥ 2 and that for every proper subset S′ of S1, the ring
E(K ⊕ ⊕p∈S′Lp) satisfies ACC and DCC on closed right ideals. Pick any p ∈ S1.
We have

E(K ⊕ L) ∼=

(

E(K ⊕⊕q∈S1\{p}Lq) H(Lp,K ⊕⊕q∈S1\{p}Lq)

0 E(Lp)

)

.

By the induction hypothesis, the ring E(K ⊕⊕q∈S1\{p}Lq) satisfies ACC and DCC
on closed right ideals. Observing that

H(Lp,K ⊕⊕q∈S1\{p}Lq) = H(Lp,K),

we conclude from the preceding case that H(Lp,K ⊕ ⊕q∈S1\{p}Lq)E(Lp) satisfies
ACC and DCC on closed submodules, Consequently, Lemma 2 is applicable, and
the proof is complete.

Corollary 3. For a group X ∈ L, the following statements are equivalent:

(i) E(X) satisfies both ACC and DCC on closed left ideals.
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(ii) E(X) satisfies DCC on closed left ideals.

(iii) E(X) satisfies DCC on topologically principal left ideals, i.e. ideals of the
form E(X)f with f ∈ E(X).

(iv) X ∼= Rd × Qn × (Q∗)m ×
∏

p∈S1
Q

l(p)
p ×

∏

p∈S2

∏k(p)
i=0 Z(pri(p)), where S1, S2

are finite subsets of P, and d, n,m, the k(p)’s, the ri(p)’s and the l(p)’s are
natural numbers.

In particular, E(X) satisfies DCC on closed left ideals if and only if it satisfies
DCC on closed right ideals.

Proof. The assertion follows from the fact that E(X) and E(X∗) are topologically
anti-isomorphic.

Specializing to the case of discrete groups, we see that the result of L. Fuchs and
F. Szász, mentioned in Introduction, can be supplemented as follows.

Corollary 4. For a discrete group X ∈ L, the following statements are equivalent:

(i) E(X) is right (respectively, left) artinian.

(ii) E(X) satisfies DCC on principal right (respectively, left) ideals.

(iii) E(X) satisfies DCC on closed right (respectively, left) ideals.

(iv) E(X) satisfies DCC on topologically principal right (respectively, left) ideals.

(v) X ∼= Qn ×
∏

p∈S Z(pk(p)), where n ∈ N, S is a finite subset of P and k(p) ∈ N

for all p ∈ S.

Proof. Since (i) ⇒ (ii) ⇒ (iv) ⇒ (v) and (i) ⇒ (iii) ⇒ (iv) ⇒ (v), it remains to
apply [7, Theorem 111.3].

In the following, we drop the assumption that the ideals are closed. First, we
consider the problem of determining the groups X ∈ L for which the ring E(X) is
right (respectively, left) artinian. We need the following

Lemma 8. Let Y be one of the groups Rd, (Q∗)m, or Q
l(p)
p , where d,m, l(p) ∈ N0

and p ∈ P. For any n ∈ N0, the module H(Qn, Y )E(Qn) fails to be artinian.

Proof. Let C be a Q-basis of Y and {γk | k ∈ N} a countable subset of C. For
i ∈ N, let

Hi = {h ∈ H(Qn, Y ) | im(h) ⊂ 〈γk | k ≥ i〉Q},

where 〈γk | k ≥ i〉Q is the Q-subspace of Y generated by the γk with k ≥ i. Then
(Hi)i∈N is a strictly decreasing sequence of E(Qn)-submodules of H(Qn, Y )E(Qn).

We have:
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Corollary 5. For a group X ∈ L, the following statements are equivalent:

(i) E(X) is right artinian.

(ii) X is topologically isomorphic with one of the groups

Rd × (Q∗)n ×
∏

p∈S1
Q

l(p)
p ×

∏

p∈S2

∏k(p)
i=0 Z(pri(p)),

or Qn ×
∏

p∈S2

∏k(p)
i=0 Z(pri(p)), where S1, S2 are finite subsets of P

and d, n, k(p), l(p), ri(p) ∈ N for all i ∈ {0, . . . , k(p)} and p ∈ S1 ∪ S2.

Proof. Assume (i). Then, clearly, E(X) satisfies DCC on closed right ideals, so

X ∼= Rd × Qn × (Q∗)m ×
∏

p∈S1

Ql(p)
p ×

∏

p∈S2

k(p)
∏

i=0

Z(pri(p))

for some finite subsets S1, S2 of P and natural numbers d, n,m, k(p), l(p), and
ri(p) with i ∈ {0, . . . , k(p)} and p ∈ S1 ∪ S2. Writing X = D ⊕ T, where

D ∼= Rd × Qn × (Q∗)m ×
∏

p∈S1
Q

l(p)
p and T ∼=

∏

p∈S2

∏k(p)
i=0 Z(pri(p)). we have

E(X) ∼= E(D) × E(T ). It follows that E(D) is right artinian. Now, write

D = M ⊕ W, where M ∼= Qn and W ∼= Rd × (Q∗)m ×
∏

p∈S1
Q

l(p)
p . Hence

E(D) ∼=

(

E(W ) H(M,W )
0 E(M)

)

, where H(M,W )E(Qn) is topologically isomorphic

with H(Qn, Rd)E(Qn) ×H(Qn, (Q∗)m)E(Qn) ×
∏

p∈S1
H(Qn, Q

l(p)
p )E(Qn), as easily fol-

lows from [8, (23,34)(d)]. If M and W were both non-zero, it would follow from
Lemma 8 and [10, (1,2)] that E(D) is not right artinian. This contradiction proves
(ii).

To see the converse, we have, by Corollary 4, to consider only the case of X =

Rd × (Q∗)n ×
∏

p∈S1
Q

l(p)
p ×

∏

p∈S2

∏k(p)
i=0 Z(pri(p)). Then writing X = C ⊕ T, where

C ∼= Rd × (Q∗)m ×
∏

p∈S1
Q

l(p)
p and T ∼=

∏

p∈S2

∏k(p)
i=0 Z(pri(p)). we have E(X) ∼=

E(C) × E(T ). Consequently, it suffices to show that E(C) is right artinian. Write

C = V ⊕ K ⊕ L, where V ∼= Rd, K ∼= (Q∗)n and L = ⊕p∈S1Lp with Lp
∼= Q

l(p)
p

for all p ∈ S1. Then E(C) ∼=

(

E(K) H(V ⊕ L,K)
0 E(V ⊕ L)

)

. Since E(K) ∼= Md(Q)opp

and E(V ⊕ L) ∼= Md(R) ×
∏

p∈S1
Ml(p)(Qp), it suffices by [10, (1.2)] to show that

H(V ⊕ L,K)E(V ⊕L) is artinian. It is clear from [8, (23,34)(c)] that

H(V ⊕ L,K)E(V ⊕L)
∼= H(V,K)E(V ⊕L) ×

∏

p∈S1

H(Lp,K)E(V ⊕L),

where the scalar multiplication of the modules H(V,K)E(V ⊕L) and respectively
H(Lp,K)E(V ⊕L) with p ∈ S1 is given by using the projection of E(V ⊕ L) ∼=
E(V ) ×

∏

q∈S1
E(Lq) onto E(V ) respectively E(Lp). Thus it suffices to show that

H(V,K)E(V ) and respectively H(Lp,K)E(Lp) with p ∈ S1 are artinian. Now, since
the field R embeds in E(V ) and the field Qp embeds in E(Lp), H(V,K) can be
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considered as a vector space over R and H(Lp,K)E(Lp) as a vector space over Qp.
The conclusion follows because these spaces are finite dimensional.

Corollary 6. For a group X ∈ L, the following statements are equivalent:

(i) E(X) is left artinian.

(ii) X is topologically isomorphic with one of the groups

Rd × Qn ×
∏

p∈S1
Q

l(p)
p ×

∏

p∈S2

∏k(p)
i=0 Z(pri(p)),

or (Q∗)n ×
∏

p∈S2

∏k(p)
i=0 Z(pri(p)), where S1, S2 are finite subsets of P

and d, n, k(p), l(p), ri(p) ∈ N for all i ∈ {0, . . . , k(p)} and p ∈ S1 ∪ S2.

Proof. Since E(X) and E(X∗) are topologically anti-isomorphic, the assertion fol-
lows from Corollary 5 and duality.

We close the paper by determining the groups X ∈ L with the property that
E(X) satisfies DCC on principal right (respectively, left) ideals. It turns out that
this last condition on E(X) is equivalent to those of Theorem 5. First we establish
the following

Lemma 9. Let X = Qn and Y = Rd × (Q∗)m ×
∏

p∈S1
Q

l(p)
p , where S is a subset

of P and d, n,m, and l(p) for p ∈ S are natural numbers. If u, v ∈ H(X,Y ) satisfy
v = u ◦ w for some w ∈ E(X) and dimQ im(v) = dimQ im(u), then v = u ◦ w′ for
some invertible w′ ∈ E(X).

Proof. It is clear that the morphisms in H(X,Y ) are Q-linear mappings. Since
dim im(v) = dim im(u), it follows by rank-nullity connection [14, Theorem 2.12]
that ker(u) and ker(v) have the same dimension, say k. Let e1, . . . , en and e′1, . . . , e

′
n

be bases in X such that e1, . . . , ek is a basis in ker(u) and e′1, . . . , e
′
k is a basis in

ker(v). Clearly, v(e′i) = u(w(e′i)) for all i = 1, . . . , n. We define w′ ∈ E(X) by setting

w′(e′i) =

{

ei, if i = 1, . . . , k;

w(ei), if i = k + 1, . . . , n.

Then w′ is invertible and (u ◦ w′)(e′i) = v(e′i) for all i = 1, . . . , n, so v = u ◦ w′.

We have:

Corollary 7. For a group X ∈ L, the following statements are equivalent:

(i) E(X) satisfies DCC on principal right (respectively, left) ideals.

(ii) X ∼= Rd ×Qn × (Q∗)m ×
∏

p∈S1
Q

l(p)
p ×

∏

p∈S2

∏k(p)
i=0 Z(pri(p)), where S1, S2 are

disjoint finite subsets of P, and d, n,m, the k(p)’s, the ri(p)’s and the l(p)’s
are natural numbers.
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Proof. The fact that (i) implies (ii) follows from Theorem 5. Assume (ii) and write

X = D⊕T, where D ∼= Rd×Qn×(Q∗)m×
∏

p∈S1
Q

l(p)
p and T ∼=

∏

p∈S2

∏k(p)
i=0 Z(pri(p)).

Since E(X) ∼= E(D)×E(T ), it suffices to show that E(D) satisfies DCC on principal
right (respectively, left) ideals. We will first consider the case of principal right ideals.
Write D = M ⊕ W, where

M ∼= Qn and W ∼= Rd × (Q∗)m ×
∏

p∈S1

Ql(p)
p .

Since W is topologically fully invariant in D, it follows that

E(D) ∼=

(

E(W ) H(M,W )
0 E(M)

)

.

Let
(

f1 g1

0 h1

)(

E(W ) H(M,W )
0 E(M)

)

⊃ . . .⊃

(

fi gi

0 hi

)(

E(W ) H(M,W )
0 E(M)

)

⊃ . . .

be a descending chain of principal right ideals. For any i ∈ N0, we have
(

fi gi

0 hi

)(

E(W ) H(M,W )
0 E(M)

)

=

(

fiE(W ) fiH(M,W ) + giE(M)
0 hiE(M)

)

,

so
(

fiE(W )
)

i
,
(

fiH(M,W )+giE(M)
)

i
, and respectively

(

hiE(M)
)

i
are descending

chains of submodules in E(W )E(W ), H(M,W )E(M), and respectively E(M)E(M).
Moreover, the chain

(

fiH(M,W )
)

i
of submodules of H(M,W )E(M) decreases as

well, because so does the chain
(

fiE(W )
)

i
. Now, since E(W ) and E(M) are ar-

tinian rings by Corollary 5, the chains
(

fiE(W )
)

i
and

(

hiE(M)
)

i
are stationary. It

remains to show that the chain
(

fiH(M,W ) + giE(M)
)

i
stabilises as well. Fix any

i0 ∈ N0 such that fiE(W ) = fi0E(W ) for all i ≥ i0. Using this representation, we
get easily fiH(M,W ) = fi0H(M,W ) for all i ≥ i0. Observe also that, without loss
of generality, we may consider giE(M) ⊃ gi+1E(M) for all i ≥ i0. Indeed, given any
such i, we can write gi+1 = fi ◦ ui + gi ◦ vi for some ui, vi ∈ E(M). It follows easily
that, for g′i+1 = gi ◦ vi, we have

fi+1H(M,W ) + gi+1E(M) = fi+1H(M,W ) + g′i+1E(M).

Thus, replacing gi+1 with g′i+1, we get our claim by induction. Now, we clearly have
im(gi) ⊃ im(gi+1), so

dim im(gi0) ≥ dim im(gi0+1) ≥ . . . ,

and hence there is j0 ≥ i0 such that dim im(gi) = dim im(gj0) for all i ≥ j0. It follows
from Lemma 9 that for every i ≥ j0 there is an invertible wi ∈ E(M) such that
gi = gj0◦wi, whence gj0 = gi◦w−1

i . Consequently, the chain
(

fiH(M,W )+giE(M)
)

i
stabilises.

Next we consider the case of left principal ideals. Because of the form of D,
it is clear that the preceding argument can be applied to E(D∗) to conclude that
E(D∗) satisfies DCC on principal right ideals. As E(D) and E(D∗) are topologically
anti-isomorphic, it follows that E(D) must satisfy DCC on principal left ideals.
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