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Radicals and generalizations of derivations
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Abstract. By results of Slin’ko and of Anderson, the locally nilpotent and nil radicals
of algebras over a field of characteristic 0 are preserved by derivations. This note deals
with radical preservation by various generalizations of derivations.
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1 Introduction

It was shown by Slin’ko [17] that if d is a derivation on an associative algebra
A over a field of characteristic 0, then d(L(A)) ⊆ L(A) and d(N (A)) ⊆ N (A),
where L and N are, respectively, the locally nilpotent and nil radical classes. This
generalized a similar result proved earlier by Anderson [3] for a restricted class of
algebras. The behaviour of the Jacobson radical is quite different; e.g. if K is a
field, the Jacobson radical of the ring K[[X]] of formal power series is the principal
ideal generated by X, and this is not invariant under formal differentiation.

A contrasting result for algebras over a field of prime characteristic was obtained
by Krempa [13]: a hereditary radical class R is preserved by all derivations of all
algebras if and only if R consists of (hereditarily) idempotent algebras.

In this note we shall examine several generalizations of derivations and their
effects on certain radicals, mostly L and N , and also their effects on idempotent
ideals. Idempotent ideals are invariant under ordinary derivations, there are plenty
of radical classes consisting of idempotent rings (including the class of all idempotent
rings) and even the prime radical of a ring can be idempotent, so idempotent ideals
are pertinent to our investigation.

Confining attention to algebras over fields (as in [3, 13] and [17]) avoids some
complications, notably with ideal structure, but leaves some interesting questions
unexamined. We shall prove a number of results about (additively) torsion-free rings
A by using, or first proving, the results in the special case of an algebra over a field
of characteristic 0 and extending them to the general case by means of the divisible
hull D(A) of A. It is possible to extend some results without using D(A), though
not all, but we use a uniform approach.

All our rings and algebras are associative, but similar questions could be pur-
sued for non-associative structures of various kinds. Indeed Krempa’s investigations
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in [13] were more broadly based, and among other things he established a strong
connection between derivations and the ADS condition for Lie algebras.

Now for the types of mappings whose effects we shall study.

A derivation on a ring is an additive endomorphism d such that d(ab) = d(a)b+
ad(b) for all a, b.

A higher derivation is a sequence (d0, d1, . . . , dn, . . . ) of additive endomorphisms
such that for each n we have dn(ab) =

∑

i+j=n

di(a)dj(b) for all a, b (so that in partic-

ular, d0 is a ring endomorphism).
For ring endomorphisms α, β, an (α, β)-derivation is an additive endomorphism

d such that d(ab) = d(a)β(b) + α(a)d(b) for all a, b. (Thus for a higher derivation,
as d1(ab) = d1(a)d0(b) + d0(a)d1(b) for all a, b, d1 is a (d0, d0)-derivation).

Finally, a D-structure for a ring A with identity 1 and a monoid G with identity
e is a family of mappings σx,y : A → A, where x, y ∈ G, satisfying

Condition (A)
(0) For each x ∈ G and a ∈ R, we have σx,y(a) = 0 for almost all y ∈ G.
(i) Each σx,y is an additive endomorphism.
(ii) σx,y(ab) =

∑

z∈G

σx,z(a)σz,y(b).

(iii) σxy,z =
∑

uv=z

σx,u ◦ σy,v.

(iv1) σx,y(1) = 0 if x 6= y; (iv2) σx,x(1) = 1;
(iv3) σe,x(a) = 0 if x 6= e; (iv4) σe,e(a) = a.

For unexplained terms and ideas, see [9] for rings and radicals, [8] for abelian
groups.

2 Known results

The first result is well known and elementary.

Proposition 1. If I is an idempotent ideal of a ring R and d is a derivation on R
then d(I) ⊆ I.

The following two results were proved for algebras over fields of characteristic 0,
but they can be extended to all rings that are additively torsion-free, as we shall see
in the next section.

Theorem 1. (Anderson [3]) Let A be an algebra over a field K of characteristic 0
with DCC on ideals. For every hereditary radical class R we have d(R(A)) ⊆ R(A)
for all K-linear derivations d on A.

Theorem 2. (Slin’ko [17]) Let L(A), N (A) denote, respectively, the locally nilpotent
and nil radicals of an algebra A over a field K of characteristic 0. Then d(L(A)) ⊆
L(A) and d(N (A)) ⊆ N (A) for all K-linear derivations d on A.

The situation with algebras over a field of positive characteristic is rather differ-
ent.
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Theorem 3. (Krempa [13]) Let V be a variety of algebras over a field of prime
characteristic p which is closed under tensoring by commutative-associative algebras.
Let R be a hereditary radical class in V. Then d(R(A)) ⊆ R(A) for all derivations
d of all algebras A ∈ V if and only if R consists of idempotent algebras.

The varieties of associative and commutative-associate algebras satisfy the con-
ditions of V in this theorem.

3 Some results involving additive structure

For an (additively written) abelian group G, a positive integer n and a prime p,
let

nG = {nx : x ∈ G}; G[n] = {x ∈ G : nx = 0}; Gp =
⋃

n∈Z+

G[pn].

All of the indicated subsets are subgroups, and if G is the additive group of a ring
they are all ideals. Moreover, if G is a torsion group then G =

⊕

p Gp (where the
sum is taken over all primes p) and if G is the additive group of a torsion ring this
is also a ring direct sum. In general

⊕

p Gp is the torsion subgroup of G, which we
shall call T (G). When G is the additive group of a ring, T (G) is an ideal, which
we shall call the torsion ideal. In what follows, when referring to additive aspects
of rings, we shall not distinguish notationally between a ring and its additive group.
Thus, for instance, if A is a ring then A[n] = {a ∈ A : na = 0} ⊳ A.

Proposition 2. Let A be a ring, I = nA, A[n], Ap or T (A). If d is a derivation on
A, then d(I) ⊆ I and we get a derivation d on A/I by defining d(a + I) = d(a) + I
for all a ∈ A.

Proof. Since d is an additive endomorphism we have d(I) ⊆ I so d is well-defined.
The rest is straightforward.

Proposition 3. If A is a torsion ring and d is a derivation on A, then for each prime
p, the restriction of d defines a derivation dp of Ap. Conversely, if ep is a derivation
on Ap for each p, then we get a derivation e on A by defining e(

∑

p

ap) =
∑

p

ep(ap),

where ap is the component of a in Ap for each p.

Proof. The first part follows from Proposition 2. For the second part, if a =
∑

ap, b =
∑

bp ∈ A, then

e(ab) = e
(∑

apbp

)

=
∑

ep(apbp) =
∑

(ep(ap)bp + apep(bp))

=
∑

ep(ap)
∑

bp +
∑

ap

∑

ep(bp) = e(a)b + ae(b),

and clearly e(a + b) = e(a) + e(b).

Corollary 1. Let A be a torsion ring, R a radical class of rings. Then R(A) is
preserved by all derivations on A if and only if for every p, R(Ap) is preserved by
all derivations on Ap.
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Proof. First note that R(A) =
⊕

p

R(Ap). If R(A) is preserved by derivations and δ

is a derivation on Ap, then δ extends to a derivation d on A, so d(R(A)) ⊆ R(A).
Also d(Ap) ⊆ Ap. Hence

δ(R(Ap)) = δ(Ap ∩R(A)) = d(Ap ∩R(A)) ⊆ Ap ∩R(A) = R(Ap).

If the action of R is preserved by derivations in all the Ap and e is any derivation
on A, then

e(R(A)) = e(
⊕

p

R(Ap)) =
⊕

p

ep(R(Ap)) ⊆
⊕

p

R(Ap) = R(A).

Thus the radical-preservation problem for torsion rings reduces to that for p-
rings. A p-ring R satisfying the stronger condition pR = 0 is an algebra over the
field Zp and all its ring ideals are Zp-algebra ideals. It is not known whether the
preservation property for Zp-algebras (for some or all radicals) has much influence
on that for p-rings generally. We shall prove one theorem related to this question.

Proposition 4. For every p-ring A we have pA ⊆ L(A) ⊆ N (A), whence
L(A/pA) = L(A)/pA and N (A/pA) = N (A)/pA

Proof. We only have to show that pA is locally nilpotent. For this it suffices to
prove that if S is a finite subset of pA then there is a positive integer m such that all
products of elements of S with m or more factors are zero. (This is straightforward
but tedious to prove by brute force; it is also contained in Theorem 4.1.5, p.186
of [9].) If a, b ∈ A, then (pa)b = (a + a + · · · + a)

︸ ︷︷ ︸

p terms

b = ab + ab + · · · + ab
︸ ︷︷ ︸

p terms

= p(ab) and

similarly a(pb) = p(ab). Hence pa · pb = p(a · pb) = p(p(ab)) = p2ab and so on. If
a1, a2, . . . , an ∈ A, then for y1, y2, . . . , ym ∈ {a1, a2, . . . , an} we have py1 · py2 · . . . ·
pym = pmy1y2 . . . ym = 0 if pm ≥ max{o(a1), o(a2), . . . , o(an)}, where o(ai) is the
(additive) order of ai for each i.

In fact the same proof shows that if R is any radical class with L ⊆ R, then
R(A/pA) = R(A)/pA. This gives us

Theorem 4. Let d be a derivation on a p-ring A, d the induced derivation on A/pA.
Let R be a radical class containing L. If d(R(A) ⊆ R(A), then d(R(A/pA)) ⊆
R(A/pa).

Now let A be a torsion-free ring. Its divisible hull D(A) is a minimal divisible
group containing A. For each a ∈ A and each non-zero integer n there is an element
α ∈ D(A) such that nα = a, and as D(A) is torsion-free, α is unique. It is therefore

natural to give α the name
a

n
. Then

a

n
=

b

m
if and only if ma = nb. In D(A) we

similarly define elements
x

k
for x ∈ D(A) and non-zero k ∈ Z. We get a ring on D(A)
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by defining
a

n

c

k
=

ac

nk
and this ring has a subring

{a

1
: a ∈ A

}

which we identify

with A. We make D(A) into an algebra over the field Q by defining
m

n
x =

mx

n
for

m,n, k ∈ Z, x ∈ D(A). In particular,
m

n

a

k
=

ma

nk
for a ∈ A. For all this cf. Theorem

119.1, p.284 of [8], Vol. II.

Proposition 5. Let A be a torsion-free ring. Then L(D(A)) = D(L(A)) and
N (D(A)) = D(N (A)).

Proof. We shall prove the result for L. The proof for N is similar but simpler.

Let I = L(A). For n ∈ Z+ let In = {a ∈ A : na ∈ I}. Then In ⊳ A. If
a1, a2, . . . , ak ∈ In then na1, na2, . . . , nak are in the locally nilpotent ideal I, so
there is a positive integer ℓ such that every ℓ-fold product of nais is zero. Such a
product has the form nℓc1c2 . . . cℓ, so since A is torsion-free, c1c2 . . . cℓ = 0. But the
cj are arbitrary elements of {a1, a2, . . . , ak}, so by Theorem 4.1.5 of [9] referred to
above, In is locally nilpotent, whence In ⊆ I and thus In = I. This being so for
every n, I, as an additive subgroup, is pure in A. If a ∈ A, c ∈ I, m,n are non-zero

integers and
a

n
=

c

m
, then ma = nc ∈ I, so a ∈ I. Thus without ambiguity we can

identify D(I) with the obvious subring of D(A). It is easily seen that D(I) ⊳ D(A).

If
c1

k1

,
c2

k2

, . . . ,
ct

kt

∈ D(I) (cj ∈ I, kj ∈ Z), then long enough products of cjs are

zero. But such products are multiples, by non-zero integers, of products of
cj

kj

s of

the same length. It follows that D(I) is locally nilpotent and thus D(I) ⊆ L(D(A)).

Let J/D(I) be a locally nilpotent ideal of D(A)/D(I). Then J is a locally
nilpotent ideal of D(A), so J∩A is a locally nilpotent ideal of A and hence J∩A ⊆ I.

If
g

s
∈ J , where g ∈ A, s ∈ Z, then g = s

g

s
∈ J ∩ A ⊆ I, so

g

s
∈ D(I) and so

J/D(I) = 0. Thus L(D(A))/D(I) = 0. It follows that L(D(A)) ⊆ D(I), so the two
ideals are equal, i.e. L(D(A)) = D(L(A)).

It follows that L(A) = A ∩ L(D(A)) and N (A) = A ∩ N (D(A)).

Note that the corresponding result for the Jacobson radical is false. For instance,

if A =

{
2n

2m + 1
: n,m ∈ Z

}

, then Q is a divisible hull for A, A is its own Jacobson

radical and Q has zero radical.

Lemma 1. If G is a torsion-free abelian group, each of its endomorphisms has a
unique extension to an endomorphism of D(G) and this is a Q-linear transformation
of D(A) as a Q-vector space.

Proof. For an endomorphism f of G define f̂ : D(G) → D(G) by setting f̂
(a

n

)

=

f(a)

n
for all a ∈ G, n ∈ Z\{0}. Then f̂ is well-defined, as if

a

n
=

b

m
, then mf(a) =

f(ma) = f(nb) = nf(b), i.e.
f(a)

n
=

f(b)

m
. Then for all a, c ∈ G, n, k ∈ Z\{0}
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we have f̂
(a

n
+

c

k

)

= f̂

(
ka + nc

nk

)

=
f(ka + nc)

nk
=

kf(a) + nf(c)

nk
=

kf(a)

nk
+

nf(c)

nk
=

f(a)

n
+

f(c)

k
= f̂

(a

n

)

+ f̂
( c

k

)

. Also f̂
(m

n

a

k

)

= f̂
(ma

nk

)

=
f(ma)

nk
=

mf(a)

nk
=

m

n

f(a)

k
=

m

n
f̂

(a

k

)

for a ∈ A,m,n, k ∈ Z. If f̃ is any extension of f , then

G ⊆ Ker(f̂ − f̃), so Im(f̂ − f̃) is a torsion group and hence zero.

Corollary 2. Let A be a torsion-free ring.
(i) Every derivation d on A has a unique extension to D(A) and this is Q-linear.
(ii) Every higher derivation on A has a unique extension to D(A) and all its maps
are Q-linear.
(ii) If α and β are endomorphisms of A, then every (α, β)-derivation on A has a
unique extension to an (α̂, β̂)-derivation on D(A) and this is Q-linear.

Proof. All the maps involved in (i), (ii) and (iii) are additive endomorphisms of A,
and so have unique extensions to additive endomorphisms of D(A). We just need
to show that these endomorphisms have all other properties required of them.

(ii) Let (d0, d1, . . . , dn . . . ) be a higher derivation on A. For each n let d̂n be the
extension of dn to D(A) as in the lemma. For each a, b ∈ A and non-zero k, ℓ ∈ Z,

we have d̂n

(
a

k

b

ℓ

)

= d̂n

(
ab

kℓ

)

=
dn(ab)

kℓ
=

∑

i+j=n

di(a)dj(b)

kℓ
=

∑

i+j=n

di(a)

k

dj(b)

ℓ
=

∑

i+j=n

d̂i

(a

k

)

d̂j

(
b

ℓ

)

.

Similar arguments show that extensions of ring endomorphisms and extensions
of derivations are derivations.

(iii) Let d be an (α, β)-derivation on A. Then for all a, b ∈ A and non-zero
k, ℓ ∈ Z, we have

d̂
(a

k

)

β̂

(
b

ℓ

)

+ α̂
(a

k

)

d̂

(
b

ℓ

)

=
d(a)

k

β(b)

ℓ
+

α(a)

k

d(b)

ℓ
=

d(a)β(b) + α(a)d(b)

kℓ

=
d(ab)

kℓ
= d̂

(
a

k

b

ℓ

)

.

Note that not every derivation on D(A) is an extension of one on A: consider
inner derivations, for example.

Now if A is a torsion-free ring, d a derivation on A, then by Corollary 2 d extends
to a Q-linear derivation d̂ on D(A), so

d(L(A)) = d(A ∩ L(D(A))) = d̂(A ∩ L(D(A))) ⊆ d̂(L(D(A))) ⊆ L(D(A))

and d(L(A)) ⊆ A, so

d(L(A)) ⊆ A ∩ L(D(A)) = L(A).

We can argue similarly for N (A). Thus we have
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Theorem 5. If d is a derivation on a torsion-free ring A then d(L(A)) ⊆ L(A) and
d(N (A)) ⊆ N (A).

4 Preservation by higher derivations

Proposition 6. Let (d0, d1, . . . , dn, . . . ) be a higher derivation on a ring A, I an
idempotent ideal of A with d0(I) ⊆ I. Then dn(I) ⊆ I for all n.

Proof. If dn(I) ⊆ I then for all a, b ∈ I we have

dn+1(ab) = d0(a)dn+1(b)+d1(a)dn(b) + d2(a)dn−1(b) + · · · + dn−1(a)d2(b)+

dn(a)d1(b) + dn+1(a)d0(b) ∈ I

if d0(I), d1(I), . . . , dn(I) ⊂ I.

Theorem 6. Let A be a torsion-free ring, (d0, d1, . . . , dn, . . . ) a higher derivation
on A. If d0 is an automorphism, then dn(L(A)) ⊆ L(A) and dn(N (A)) ⊆ N (A) for
all n.

Proof. We first treat the case where A is an algebra over a field of characteristic
0. Note that L(A) and N (A) (where A is treated as a ring) are algebra ideals (as
happens with all radicals) and so coincide with these radicals of A treated as an
algebra (see [7]).

It has been proved by many authors e.g. Heerema [11], Miller [15], Abu-Saymeh
[1],[2], Mirzavaziri [16], Hazewinkel [10]) that in the circumstances of the theorem, if
d0 = id then each dn (n ≥ 1) is a linear combination of compositions of derivations,
whence the result follows from Theorem 2. In general we have

d−1
0

◦ dn(ab) =d−1
0

(d0(a)dn(b) + d1(a)dn−1(b) + · · · + dn−1(a)d1(b)+

dn(a)d0(b)) =d−1
0

◦ d0(a)d−1
0

◦ dn(b) + d−1
0

◦ d1(a)d−1
0

◦ dn−1(b) + · · ·+

d−1
0

◦ dn−1(a)d−1
0

◦ d1(b) + d−1
0

◦ dn(a)d−1
0

◦ d0(b)

for all n ≥ 1, so (d−1
0

◦ d0, d
−1
0

◦ d1, . . . , d
−1
0

◦ dn, . . . ) is a higher derivation with the
identity as its zeroth term, whence d−1

0
◦ dn(L(A)) ⊆ L(A) for all n. But L(A) is

invariant under automorphisms, so

dn(L(A)) = d0 ◦ d−1
0

◦ dn(L(A)) ⊆ d0(L(A)) = L(A).

The argument for N (A) is the same.
Now turning to a general torsion-free ring A, by Corollary 2 (ii) we can extend

our higher derivation uniquely to a higher derivation (d̂0, d̂1, . . . , d̂n, . . . ) of D(A),
which is an algebra over the field Q of rational numbers. It is easy to see that if d0 is
an automorphism of A, then d̂0 is an automorphism of D(A). Hence by Proposition
5 and the first part of the proof we have

d̂n(L(D(A)) = d̂n(D(L(A))) ⊆ D(L(A)) for every n.
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Thus if a ∈ L(A), then

dn(a) = d̂n

(a

1

)

∈ D(L(A)) ∩ A = L(A)

for each n.
Again, the argument for N is the same.

A natural question is whether for a higher derivation (d0, d1, . . . , dn, . . . ), in
particular on a torsion-free ring, if d0 preserves one of our radicals the latter must
be preserved by every dn. We have an example of similar behaviour in a ring with
prime characteristic p; the radical involved is not L or N , but it is a hereditary
supernilpotent radical.

Example 1. (Cf. Krempa [12]) Let U be the upper radical class defined by the
field Kp with p elements. We get a higher derivation (d0, d1, . . . , dn, . . . ) on Kp[X]
by defining di(a0 + a1X + · · · + akX

k) = aiX
i for all i. Now U is special, so if

α ∈ U(Kp[X]) then α is taken to 0 by each homomorphism from Kp[X] to Kp.
In particular d0(α) = 0 (as the function which assigns the zeroth coefficient is a
homomorphism). Thus d0(U(Kp[X])) ⊆ U(Kp[X]). But X − Xp ∈ U(Kp[X]) and
d1(X − Xp) = X. If X were in U(Kp[X]) then the principal ideal (X) would be in
U . But Kp is a homomorphic image of (X) via X 7→ 1. Thus X /∈ U(Kp[X]) so
d1(U(Kp[X])) * U(Kp[X]).

For commutative rings we have a preservation result which does not depend on
additive properties.

Theorem 7. Let A be a commutative ring, (d0, d1, . . . , dn, . . . ) a higher derivation
on A. Then dn(L(A)) ⊆ L(A) and dn(N (A)) ⊆ N (A) for all n.

Proof. Since A is commutative, L(A) = N (A) = the set of nilpotent elements of A.

The correspondence a 7→
∞∑

n=0

dn(a)Xn defines a homomorphism f : A → A[[X]] (the

formal power series ring). If a is nilpotent then so is f(a) and then, by commutativity,
so are its coefficients. (This is presumably well known. Here is an outline of a proof.

If (
∞∑

n=0

anXn)m = 0, then am
0 = 0. By commutativity,

∞∑

n=1

anXn =
∞∑

n=0

anXn − a is

also nilpotent, whence a1 is nilpotent, and so on.) Thus each dn(a) is nilpotent and
therefore in L(A).

Presumably this result does not hold in the absence of any restriction on A,
though we do not have an example to show this. The following example shows that
higher derivations do not necessarily take nilpotent elements to nilpotent elements.

Example 2. We use an example of [4]. Let R be a ring with identity, A =
M2(R)[X]. We get a higher derivation on A[X] by defining dn(c0 + c1X + . . . ) =
cnXn for all n. Then (e12 +(e11 − e22)X − e21X

2)2 = 0, but d1(e12 +(e11 − e22)X −
e21X

2) = e11 − e22, which is a unit.
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Not much seems to be known about representing the terms of a general higher
derivation by combinations of some kind of derivations. Loy [14] remarks that if
(d0, d1, . . . , dn, . . . ) is a higher derivation, d0 is idempotent and d0 ◦ dn = dn ◦ d0

for all n, then the dn are expressible as linear combinations of compositions of
(d0, d0)−derivations δ with d0 ◦ δ = δ ◦ d0.

Note that there are related results expressing the maps of certain D-structures
in terms of endomorphisms and derivations of various kinds in Section 6 of [5] and
Section 3 of [6].

5 Preservation by (α, β)−derivations

It might be expected that ideals preserved by α and β and by derivations might
be preserved by (α, β)− derivations. The situation is more complicated, however.
The case of idempotent ideal is easy.

Proposition 7. If I is an idempotent ideal of a ring A, d an (α, β)−derivation on
A, where α(I) ⊆ I and β(I) ⊆ I, then d(I) ⊆ I.

Proof. For a, b ∈ I we have d(ab) = d(a)β(b) + α(a)d(b) ∈ I as β(b), α(a) ∈ I.

Theorem 8. If α is an automorphism of a torsion-free ring A then d(L(A)) ⊆ L(A)
and d(N (A)) ⊆ N (A) for all (α,α)−derivations d of A.

Proof. The proof uses Corollary 2 and is like part of that of Theorem 6: α−1 ◦d is an
ordinary derivation, so α−1 ◦ d(L(A)) ⊆ L(A). Hence d(L(A)) ⊆ α(L(A)) ⊆ L(A).
The same argument gives the result for the nil radical.

We do not know if there is an analogous theorem for (α, β)-derivations when α
and β are distinct automorphisms. We do however have counterexamples when α
and β are non-automorphisms, distinct or not.

Example 3. Let K be a field (any characteristic),

A =

{[
a b
0 a

]

: a, b ∈ K

}

and define f, δ : A → A by setting f

([
a b
0 a

])

=

[
a 0
0 a

]

, δ

([
a b
0 a

])

=
[

b 0
0 b

]

for all a, b ∈ K. Then f is an endomorphism and δ is an (f, f)-derivation.

We have L(A) = N (A) =

[
0 K
0 0

]

and the radicals are preserved by f but not by

δ.

Example 4. For a field K we consider the ring

[
K K
0 K

]

of upper trianglu-

lar 2 × 2 matrices. Let α

([
a b
0 c

])

=

[
a 0
0 a

]

, β

([
a b
0 c

])

=

[
c 0
0 c

]
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and d

([
a b
0 c

])

=

[
0 b
0 b

]

for all a, b, c ∈ K. Clearly α and β are endo-

morphisms. For all a, b, c, d, e and f ∈ K we have d

([
a b
0 c

])

β

([
d e
0 f

])

+

α

([
a b
0 c

])

d

([
d e
0 f

])

=

[
0 b
0 b

] [
f 0
0 f

]

+

[
a 0
0 a

] [
0 e
0 e

]

=

[
0 bf
0 bf

]

+
[

0 ae
0 ae

]

=

[
0 bf + ae
0 bf + ae

]

= d

([
ad ae + bf
0 cf

])

= d

([
a b
0 c

] [
d e
0 f

])

, so

d is an (α, β)−derivation. Now L

([
K K
0 K

])

= N

([
K K
0 K

])

=

[
0 K
0 0

]

and α

([
0 K
0 0

])

= β

([
0 K
0 0

])

= 0 so both radicals are preserved by α and

β. However, if b 6= 0 then d

([
0 b
0 0

])

=

[
0 b
0 b

]

/∈

[
0 K
0 0

]

, so the radicals

are not preserved by d.

6 Preservation by D-structures

Preservation by all mappings of an arbitrary D-structure is a very demanding
condition. We shall see that even for algebras over a field of characteristic 0, the lo-
cally nilpotent and nil radicals need not be preserved. We begin the section however
with a positive result.

Theorem 9. Let σ be a D-structure defined by a ring A and a free monoid G =
{e, x, x2, . . . , xn, . . . } and write σnm for σxn,xm. Suppose further that σnm = 0 for
n < m. If I is an idempotent ideal of A and σ11(I) ⊆ I then σij(I) ⊆ I for all i, j.

Proof. The conditions imposed imply that σ11 is an endomorphism and σnn = σn
11

for all n (see [5], Proposition 3.1 and (6.9)). Clearly we need only consider σij for
i ≥ j, and prove that σij(ab) ∈ I for all a, b ∈ I. It is given that σ11(I) ⊆ I. Now
for all a, b ∈ I we have σ10(ab) = σ11(a)σ10(b) + σ10(a)σ00(b) ∈ I, since σ11(I) ⊆ I.
Thus σ1j(I) ⊆ I for all j ≤ 1. Now we proceed by induction.

Suppose σij(I) ⊆ I for all j ≤ i when i < n. Then σnn(I) ⊆ I as σnn = σn
11. If

j < n then

σnj(ab) =
∑

n≥k≥j

σnk(a)σkj(b) = σnn(a)σnj(b) + σnj(a)σjj(b) +
∑

n>k>j

σnk(a)σkj(b).

But σnn(a) and σjj(b) ∈ I and for k < n we have σkj(b) ∈ I by the inductive
hypothesis. Hence σnj(I) ⊆ I for all j ≤ n. We have proved that for every i and for
all j ≤ i, we have σij(I) ⊆ I, and this is what we need.

It is not known how the mappings of a D-structure treat idempotent ideals in
general.
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Even in the presence of DCC for ideals, the mappings of a D-structure need
not preserve the locally nilpotent or the nil radical of an algebra over a field of
characteristic 0.

Example 5. The ring

[
Q Q
0 Q

]

is a Q−algebra and has DCC on ideals. Also

L

([
Q Q
0 Q

])

= N

([
Q Q
0 Q

])

=

[
0 Q
0 0

]

. For the cyclic group G =

{e, x} of order 2 we get a D-structure as follows: σx,x

([
a b
0 c

])

=

[
a 0
0 a

]

,

σx,e

([
a b
0 c

])

=

[
0 c − a
0 b

]

for all a, b, c ∈ Q, σe,e = id, σx,e = 0. Then σx,x

preserves the radicals, but σx,e does not.
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