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Properties of accessible subrings of pseudonormed rings

when taking quotient rings

S.A. Aleschenko, V. I. Arnautov

Abstract. Let (R, ξ) and (R̄, ξ̄) be pseudonormed rings, ϕ : R → R̄ be a ring
isomorphism. We prove that ϕ : (R, ξ) → (R̄, ξ̄) is a superposition of a finite number
of semi-isometric isomorphisms if and only if it is a narrowing on an accessible subring
of some isometric homomorphism.
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We will say that a pseudonormed ring is a ring R which may be non-associative
and has a pseudonorm (see [1], Definition 2.3.1).

The following isomorphism theorem is widely applied in the general algebra and,
in particular, in the ring theory:

Theorem 1. If A is a subring of a ring R and I is an ideal of the ring R then
the quotient rings A/(A

⋂
I) and (A + I)/I are isomorphic rings. In particular, if

A
⋂
I = 0, then the ring A is isomorphic to the ring (A+ I)/I, i.e. the rings A and

(A+ I)/I possess identical algebraic properties.

Since it is necessary to take into account properties of pseudonorms when study-
ing the pseudonormed rings then one needs to consider isomorphisms which keep
pseudonorms. Such isomorphisms are called isometric isomorphisms.

The isomorphism theorem does not always take place for pseudonormed rings.
The following theorem was proved in the work [2]:

Theorem 2. Let (R, ξ) and (R̄, ξ̄) be pseudonormed rings, ϕ : R → R̄ be a ring
isomorphism. The inequality ξ̄(ϕ(r)) ≤ ξ(r) is satisfied for all r ∈ R if and only if:

– there exists a pseudonormed ring (R̂, ξ̂) such that (R, ξ) is a subring of the
pseudonormed ring (R̂, ξ̂);

– the isomorphism ϕ can be extended up to an isometric homomorphism ϕ̂ :(
R̂, ξ̂

)
→
(
R̄, ξ̄

)
of the pseudonormed rings, i. e. ξ̄ (ϕ̂ (r̂)) = inf

{
ξ̂ (r̂ + a) |a ∈ ker ϕ̂

}

for all r̂ ∈ R̂.

As it’s shown in Theorem 2 it is impossible to tell anything more than the validity
of the inequality ξ̄(ϕ(r)) ≤ ξ(r) in the case when A is a subring of a pseudonormed
ring (R, ξ).
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The case when A is an ideal of a pseudonormed ring (R, ξ) was studied in the
work [2], the case when A is a one-sided ideal of a pseudonormed ring (R, ξ) was
studied in the work [3].

The following definition was introduced in [2]:

Definition 1. Let (R, ξ) and (R̄, ξ̄) be pseudonormed rings and ϕ : R → R̄ be a
ring isomorphism. The isomorphism ϕ : (R, ξ) → (R̄, ξ̄) is called a semi-isometric
isomorphism if there exists a pseudonormed ring (R̂, ξ̂) such that the following con-
ditions are valid:

1) the ring R is an ideal in the ring R̂;

2) ξ̂(r) = ξ(r) for any r ∈ R;

3) the isomorphism ϕ can be extended up to an isometric homomorphism
ϕ̂ : (R̂, ξ̂) → (R̄, ξ̄) of the pseudonormed rings.

The following theorem was proved in [2]:

Theorem 3. Let (R, ξ) and (R̄, ξ̄) be pseudonormed rings and ϕ : R → R̄ be a
ring isomorphism. Then the isomorphism ϕ : (R, ξ) → (R̄, ξ̄) is a semi-isometric
isomorphism of the pseudonormed rings iff the inequalities ξ(a · b) ≤ ξ̄(ϕ(a)) · ξ(b),
ξ(b · a) ≤ ξ̄(ϕ(a)) · ξ(b) and ξ̄(ϕ(a)) ≤ ξ(a) are true for any a, b ∈ R.

This paper is a continuation of [2] and [3] and it’s devoted to the study of the case
when A is an accessible subring of a pseudonormed ring (R, ξ) (see Definition 2). It’s
shown that a ring isomorphism is a superposition of semi-isometric isomorphisms iff
it is a narrowing on the accessible subring A of some isometric homomorphism.

Definition 2. As usual, a subring A of a rings R is called an accessible subring of the
stage no more than n of the ring R if there exists a chain A = R0 ⊆ R1 ⊆ R2 ⊆ . . . ⊆
Rn = R of subrings of the ring R such that Ri is an ideal in Ri+1 for i = 0, 1, . . . n−1.
Further we shall designate it as A = R0 ⊳ R1 ⊳ R2 ⊳ . . . ⊳ Rn = R.

Proposition 1. Let: 1) (R̂, ξ̂) be a pseudonormed ring; 2) R be an ideal in R̂;

3) Î be a closed ideal in (R̂, ξ̂) and I = Î
⋂
R; 4) Ĩ = [I]

(R̂,ξ̂)
and R̃ = R+ Ĩ;

5) ε̄ : R/I → (R + Î)/I be the natural embedding; 6) ω̂ : R̂ → R̂/I and ω̃ : R̂/I →
R̂/Ĩ be canonical homomorphisms. Then ω̃|R/I : (R̄, ξ̄) = (R, ξ̂|R)/I → (R̃, ξ̂|R̃)/Ĩ =

( ¯̃R, ¯̃ξ) is an isometric isomorphism.

Proof. Let’s consider the following diagram 1.

R ⊆ R̃= R+ Ĩ⊆ R̂

ω̂|R

y ω̂|
R̃

y ω̂

y

R/I
ε̄

−−−−→ R̃/I ⊆R̂/I
∥∥∥ ω̃|

R̃/I

y ω̃

y

R/I
ω̃|R/I
−−−−→ R̃/Ĩ ⊆R̂/Ĩ
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As I ⊆ Ĩ then inf{ξ̂(r + i)|i ∈ I} ≥ inf{ξ̂(r + i)|i ∈ Ĩ} for any r ∈ R. Therefore

ξ̄(r̄) ≥ ¯̃ξ(ω̃(r̄)) for any r̄ ∈ R̄.
We show that the reverse inequality is true.
Let r̄ be any element in the ring R̄ = R/I and ε be any positive number. If

r ∈ R is an element such that r̄ = r + I then there exists an element ĩ0 ∈ Ĩ such
that

¯̃
ξ(ω̃(r̄)) + ε

2 ≥ ξ̂(r + ĩ0). Since ĩ0 ∈ Ĩ = [I]
(R̂,ξ̂)

then there exists an element

i0 ∈ I such that ξ̂(i0 − ĩ0) <
ε
2 . Hence we have the inequality

ξ̄(r̄) = inf{ξ̂(r + i)|i ∈ I} ≤ ξ̂(r + i0) = ξ̂(r + ĩ0 − ĩ0 + i0) ≤

ξ̂(r + ĩ0) + ξ̂(i0 − ĩ0) <
¯̃ξ(ω̃(r̄)) + ε

2 + ε
2 = ¯̃ξ(ω̃(r̄)) + ε.

Passing to the limit in these inequalities when ε→ 0, we obtain ξ̄(r̄) ≤
¯̃
ξ(ω̃(r̄)).

Thus it follows from the inequalities ξ̄(r̄) ≥ ¯̃ξ(ω̃(r̄)) and ξ̄(r̄) ≤ ¯̃ξ(ω̃(r̄)) we have

the equality ξ̄(r̄) = ¯̃ξ(ω̃(r̄)), i.e. ω̃|R/I : (R̄, ξ̄) = (R, ξ̂|R)/I → (R̃, ξ̂|
R̃
)/Ĩ = ( ¯̃R, ¯̃ξ) is

an isometric isomorphism.
The proposition is proved.

Theorem 4. Let (R, ξ) and (R̄, ξ̄) be pseudonormed rings and ϕ : R→ R̄ be a ring
isomorphism. Then the following statements are equivalent:

1. There exists a pseudonormed ring (R̂, ξ̂) such that (R, ξ) is an accessible
subring of the stage no more than n of the pseudonormed ring (R̂, ξ̂) and the iso-
morphism ϕ can be extended up to an isometric homomorphism ϕ̂ : (R̂, ξ̂) → (R̄, ξ̄).

2. ϕ is a superposition of n semi-isometric isomorphisms, i.e. there exist
pseudonormed rings (R, ξ) = (R0, ξ0), (R1, ξ1), . . . , (Rn, ξn) = (R̄, ξ̄) and semi-
isometric isomorphisms ϕi : (Ri, ξi) → (Ri+1, ξi+1) for i = 0, 1, . . . , n − 1 such
that ϕ = ϕn ◦ ϕn−1 ◦ . . . ◦ ϕ0.

Proof 1 ⇒ 2. Let R = R̂0 ⊳ R̂1 ⊳ R̂2 ⊳ . . . ⊳ R̂n = R̂ be a chain of subrings such
that R̂i is an ideal in R̂i+1 for i = 0, 1, . . . n− 1 and the isomorphism ϕ : R→ R̄ can
be extended up to an isometric homomorphism ϕ̂ : (R̂, ξ̂) → (R̄, ξ̄).

If Î = ker ϕ̂ and ω̃ : Rk+1 → Rk+1/Î is the canonical homomorphism

(i.e. ω̃(r) = r+ Î) then there exists an isometric isomorphism η : (R̂n, ξ̂n)/Î → (R̄, ξ̄)
such that ϕ̂ = η ◦ ω̃.

Let’s consider the following diagram 2 (mappings entering into the diagram are
defined below).

R = R̂0 ⊳ . . . ⊳ R̂k ⊳ R̂k+1 = R̂k+1 = R̂

‖ ω|
R̂k

y ω

y

R
ϕ0

−−−−→ . . .
ϕk−1
−−−−→ R̂k/I ⊳ R̂k+1/I

yω̃

yϕ̂

ϕ

y ϕk

y ω̂

y

R̄ = R̂k+1/Î =R̂k+1/Î=R̂k+1/Î
η

−−−−→ R̄

The further proof will be done by induction on the number n.
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If n = 1 then (R, ξ) is an accessible subring of the stage 1 (i.e. it is an ideal)
of the pseudonormed ring (R̂, ξ̂) and the isomorphism ϕ can be extended up to an
isometric homomorphism ϕ̂ : (R̂, ξ̂) → (R̄, ξ̄), and hence ϕ : (R, ξ) → (R̄, ξ̄) is a
semi-isometric isomorphism.

Let’s assume that the theorem is true for n = k, and let n = k + 1. Since R̂k

and Î are ideals in R̂k+1 then I = R̂k

⋂
Î is an ideal in R̂k+1 too.

In the beginning let’s consider the case when I = R̂k

⋂
Î is a closed ideal

in (R̂k+1, ξ̂). If ω : R̂k+1 → R̂k+1/I is the canonical homomorphism, then
ω|

R̂k
: (R̂k, ξ̂|R̂k

) → (R̂k, ξ̂|R̂k
)/I is an isometric homomorphism. As R̂0

⋂
kerω|

R̂k
=

R̂0
⋂
I = R̂0

⋂
Î = R̂0

⋂
ker ϕ̂ = kerϕ = {0} and R̂k = R̂k

⋂
R̂ = R̂k

⋂
(R + Î) =

R + (R̂k
⋂
Î) = R + I then ω|

R̂0
: R̂0 → R̂k/I is an isomorphism and by the as-

sumption ω|
R̂0

is a superposition of k semi-isometric isomorphisms, i.e. there are

pseudonormed rings (R, ξ) = (R0, ξ0), (R1, ξ1), . . . , (Rk, ξk) = (R̂k, ξ̂|Rk
)/I and iso-

metric isomorphisms ϕi : (Ri, ξi) → (Ri+1, ξi+1) for i = 0, 1, . . . , k − 1 such that
ω|R̂0

= ϕk−1 ◦ ϕk−2 ◦ . . . ◦ ϕ0.

As I = Î
⋂
Rk = (ker ϕ̂)

⋂
Rk = ker(ϕ̂|Rk

) and R = ϕ(R) = ϕ̂(R) then R̂k + Î =

R̂0 + Î = R̂k+1, and so ϕk = ω̂|
R̂k/I

: R̂k/I → R̂k+1/Î is an isomorphism.

Since R̂k/I is an ideal in R̂k+1/I then ϕk : (R̂k, ξ̂|R̂k
)/I → (R̂k+1, ξ̂)/Î is a semi-

isometric isomorphism. Hence η ◦ ϕk : (R̂k, ξ̂|R̂k
)/I → (Rk+1, ξ) is a semi-isometric

isomorphism, and (η◦ϕk)◦ϕk−1◦ϕk−2◦. . .◦ϕ0 = η◦ϕk ◦ω|R̂0
= η◦ω̃|R0 = ϕ̂|R0 = ϕ,

i.e. the isomorphism ϕ is a superposition of k + 1 semi-isometric isomorphisms in
the case when I is a closed ideal in (R̂k+1, ξ̂) .

Let’s consider now the case when I = R̂k
⋂
Î is non-closed ideal in (R̂k+1, ξ̂).

Let’s designate Ĩ = [I]
(R̂k+1,ξ̂)

and consider the diagram 3 which is obtained by

adding one line to the diagram 2 (definitions of unknown by now rings and mappings
see below).

R = R̂0 ⊳ . . . ⊳ R̂k ⊳ R̂k+1 = R̂k+1 = R̂

‖ ω|
R̂k

y ω

y

R
ϕ0

−−−−→ . . .
ϕk−1
−−−−→ R̂k/I ⊳ R̂k+1/I

η̄

y ω′

y

ϕ

y (R̂k + Ĩ)/Ĩ⊳ R̂k+1/Ĩ
yω̃

yϕ̂

ϕ′

k

y ω̄

y

R̄ = R̂k+1/Î =R̂k+1/Î=R̂k+1/Î
η

−−−−→ R̄

As R̂k is an ideal in R̂k+1 then I = R̂k
⋂
Î is an ideal in R̂, and hence Ĩ is

a closed ideal in (R̂, ξ̂) = (R̂k+1, ξ̂). Then (R̂k+1, ξ̂)/Ĩ and (R̂k + Ĩ , ξ̂|
R̂k+Ĩ

)/Ĩ are

pseudonormed rings. If ω : R̂ → R̂/I, ω′ : R̂/I → R̂/Ĩ and ω̄ : R̂/Ĩ → R̂/Î are
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the canonical homomorphisms then ω̃ = ω ◦ ω′ ◦ ω. As (R̂k + Ĩ)/Ĩ is an ideal in
R̂k+1/Ĩ then ϕ′

k = ω̄|(R̂k+Ĩ)/Ĩ : (R̂k + Ĩ , ξ̂|R̂k+Ĩ)/Ĩ → (R̂k+1, ξ̂)/Î is a semi-isometric

isomorphism.
According to Proposition 1 η̄ = ω′|

(R̂k/I)
: (R̂k, ξ̂|R̂k

)/I → (R̂k + Ĩ , ξ̂|
R̂k+Ĩ

)/Ĩ is

an isometric isomorphism and hence η ◦ω|
R̂k

: (R̂k, ξ̂|R̂k
) → (R̂k + Ĩ , ξ̂|

R̂k+Ĩ
)/Ĩ is an

isometric homomorphism.

By the induction hypothesis, there exist pseudonormed rings (R, ξ) = (R0, ξ0),
(R1, ξ1), . . . , (Rk, ξk) = (R̂k, ξ̂|R̂k

)/I and semi-isometric isomorphisms ϕi : (Ri, ξi) →

(Ri+1, ξi+1) for i = 0, 1, 2, . . . , k − 1 such that η ◦ ω|R̂0
= ϕk−1 ◦ ϕk−2 ◦ . . . ◦ ϕ0.

Since η, η are isometric isomorphisms and ϕ′
k is a semi-isometric isomorphism

then ϕ′′
k = η ◦ ϕ′

k ◦ η : (R̂k, ξ̂|R̂k
)/I → (R, ξ) is a semi-isometric isomorphism, at

that ϕ = ϕ̂|R = η ◦ ω̃|R = η ◦ ω ◦ ω′ ◦ ω|R = η ◦ ϕ′
k ◦ η ◦ ω|R = ϕ′′

k ◦ η ◦ ω|R =
ϕ′′

k ◦ ϕk−1 ◦ ϕk−2 ◦ . . . ◦ ϕ0, i.e. the isomorphism ϕ is a superposition of k + 1

semi-isometric isomorphisms in the case when I is a non-closed ideal in (R̂k+1, ξ̂).

Thus we have proved that 2 follows from 1 for any natural number n.

Proof 2 ⇒ 1. Let’s assume there are pseudonormed rings
(R, ξ) = (R0, ξ0), (R1, ξ1), (R2, ξ2) . . . , (Rn, ξn) = (R̄, ξ̄)

and semi-isometric isomorphisms ϕi : (Ri, ξi) → (Ri+1, ξi+1) for i = 0, 1, . . . ,
n − 1 such that ϕ is the superposition of these semi-isometric isomorphisms, i.e.
ϕ = ϕn−1 ◦ ϕn−2 ◦ . . . ◦ ϕ0.

For any 0 ≤ i ≤ j ≤ n we consider the isomorphism fi,j such that fi,j =
ϕj−1 ◦ . . . ◦ ϕi : Ri → Rj for i < j and fi,i : Ri → Ri is the identical mapping.

The further proof will be done in some stages.

I. The construction of the ring R̂ and checking of some its algebraic properties.

Let’s define on the set R̂ = {(r0, r1, . . . , rn) | ri ∈ Ri, i = 0, 1, . . . , n} the opera-
tions of addition and multiplication as follows:

(a0, a1, . . . , an) + (b0, b1, . . . , bn) = (a0 + b0, a1 + b1, . . . , an + bn)
and

(a0, a1, . . . , an) · (b0, b1, . . . , bn) = (r0, r1, . . . , rn),

where ri = ai · bi for i ∈ {0, n} and ri = ai · bi + (f0,i(a0) − ai) · ϕ
−1
i (bi+1) +

ϕ−1
i (ai+1) · (f0,i(b0) − bi) for 1 ≤ i ≤ n− 1.

As the mappings ϕi : Ri → Ri+1 and f0,i : R0 → Ri are isomorphisms then it’s
easily checked that:

I.1. R̂ is a non-associative ring with respect to these operations (even if the
initial rings are associative).

I.2. For any 0 ≤ k < n the set R̂k = {(r0, . . . , rn) ∈ R̂ | ri = 0 if i > k} is an
ideal in the ring R̂k+1 = {(r0, . . . , rn) ∈ R̂ | ri = 0 if i > k + 1}.

I.3. R̂0 = {(r0, . . . , rn) ∈ R̂ | ri = 0 if i ≥ 1} is an accessible subring of the stage
no more than n in the ring R̂n = R̂;

I.4. The mapping ψ : R̂0 → R0 = R which transfers the element (a, 0, . . . , 0) ∈
R̂0 into the element a ∈ R0 is isomorphic.
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I.5. From the definition of the operations of addition and multiplication in R̂ it
follows that Î = {(0, r1, . . . rn) | ri ∈ Ri, i = 1, . . . , n} is an ideal in the ring R̂ and
R̂0
⋂
Î = {0} and R̂0 + Î = R̂.

I.6. If ϕ̂ : R̂ → R̄ is a mapping such that ϕ̂(r0, r1, . . . , rn) = ϕ(r0) for any
(r0, r1, . . . , rn) ∈ R̂ then ϕ̂ : R̂→ R̄ is a ring homomorphism, and besides ker ϕ̂ = Î
and ϕ̂|R = ϕ.

Identifying any elements (a, 0, . . . , 0) ∈ R̂0 with the elements a ∈ R0, we shall
identify the ring R̂0 with the ring R0. Therefore we can consider that R = R0 is an
accessible subring of the stage no more than n of the ring R̂n = R̂.

II. The definition of a pseudonorm ξ̂ on the ring R̂ and checking of some
properties of the pseudonormed ring (R̂, ξ̂).

Let’s define ξ̂((r0, r1, . . . , rn)) =
n−1∑
i=0

ξi(ri − ϕ−1
i (ri+1)) + ξn(rn).

II.1. Let’s check that ξ̂ is a pseudonorm on the ring R̂.
It’s easy follows from the definition of the function ξ̂ that ξ̂((−r0,−r1, . . . ,−rn)) =

ξ̂((r0, r1, . . . , rn)) ≥ 0 for any (r0, r1, . . . , rn) ∈ R̂ and ξ̂((r0, r1, . . . , rn)) = 0 if and
only if (r0, r1, . . . , rn) = (0, 0, . . . , 0).

Let a = (a0, a1, . . . , an) ∈ R̂ and b = (b0, b1, . . . , bn) ∈ R̂. Then

ξ̂(a+ b) =
n−1∑
i=0

ξi(ai + bi − ϕ−1
i (ai+1 + bi+1)) + ξn(an + bn) ≤

n−1∑
i=0

(ξi(ai − ϕ−1
i (ai+1)) + ξi(bi − ϕ−1

i (bi+1))) + ξn(an) + ξn(bn) = ξ̂(a) + ξ̂(b).

If r = (r0, r1, . . . , rn) = a · b = (a0, a1, . . . , an) · (b0, b1, . . . , bn) then r0 = a0 · b0,
rn = an · bn, ri = ai · bi + (f0,i(a0) − ai) · ϕ

−1
i (bi+1) + ϕ−1

i (ai+1) · (f0,i(b0) − bi) for
i ∈ {1, 2, . . . , n− 1} and

ξ̂(a · b) = ξ̂((r0, r1, . . . , rn)) = ξn(rn) +
n−1∑
i=0

ξi(ri − ϕ−1
i (ri+1)).

Let’s consider each term of this sum. It’s obvious that ξn(rn) ≤ ξn(an) · ξn(bn).
Let hi = ai −ϕ

−1
i (ai+1) and h′i = bi −ϕ

−1
i (bi+1) for i ∈ {0, 1, . . . , n−1}; hn = an

and h′n = bn. Taking in consideration the definitions of mapping fi,j by induction
on the number j − i it’s easy proved that

fi,j(ai) − aj = fi,j(ai) − ϕj−1(ϕ
−1
j−1(aj)) =

fi,j(ai) − fi,j(ϕ
−1
i (ai+1)) + fi,j(ϕ

−1
i (ai+1)) − fj−1,j(ϕ

−1
j−1(aj)) =

fi,j(ai − ϕ−1
i (ai+1)) + fi,j(ϕ

−1
i (ai+1)) − fj−1,j(ϕ

−1
j−1(aj)) = fi,j(hi)+

fi,j(ϕ
−1
i (ai+1)) − fj−1,j(ϕ

−1
j−1(aj)) = . . . = fi,j(hi) + fi+1,j(hi+1) + . . .+ fj−1,j(hj−1)

for any 0 ≤ i < j ≤ n. Then for i ∈ {1, 2, . . . , n− 2} we have
ξi(ri −ϕ

−1
i (ri+1)) = ξi(ai · bi +(f0,i(a0)−ai) ·ϕ

−1
i (bi+1)+ϕ−1

i (ai+1) · (f0,i(b0)− bi)−
ϕ−1

i (ai+1 · bi+1 + (f0,i+1(a0)− ai+1) ·ϕ
−1
i+1(bi+2) +ϕ−1

i+1(ai+2) · (f0,i+1(b0)− bi+1))) =

ξi(ai · bi +
i−1∑
k=0

fk,i(hk) ·ϕ
−1
i (bi+1) +ϕ−1

i (ai+1) ·
i−1∑
k=0

fk,i(h
′
k)−ϕ−1

i (ai+1) ·ϕ
−1
i (bi+1)−

ϕ−1
i (

i∑
k=0

fk,i+1(hk) ·ϕ
−1
i+1(bi+2)+ϕ

−1
i+1(ai+2) ·

i∑
k=0

fk,i+1(h
′
k))) = ξi(ai ·bi +

i−1∑
k=0

fk,i(hk) ·
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ϕ−1
i (bi+1 −ϕ−1

i+1(bi+2)) +ϕ−1
i (ai+1 −ϕ−1

i+1(ai+2)) ·
i−1∑
k=0

fk,i(h
′
k)− (ai − hi) · (bi − h′i)−

hi ·ϕ
−1
i (bi+1−h

′
i+1)−ϕ

−1
i (ai+1−hi+1) ·h

′
i) = ξi(

i−1∑
k=0

fk,i(hk) ·ϕ
−1
i (h′i+1)+ϕ

−1
i (hi+1) ·

i−1∑
k=0

fk,i(h
′
k) + hi · (bi − ϕ−1

i (bi+1)) + (ai − ϕ−1
i (ai+1)) · h

′
i − hi · h

′
i + hi · ϕ

−1
i (h′i+1) +

ϕ−1
i (hi+1) · h

′
i) = ξi(

i−1∑
k=0

fk,i(hk) · ϕ
−1
i (h′i+1) + ϕ−1

i (hi+1) ·
i−1∑
k=0

fk,i(h
′
k) + hi · h

′
i + hi ·

ϕ−1
i (h′i+1) + ϕ−1

i (hi+1) · h
′
i).

If i = n− 1 then

ξn−1(rn−1−ϕ
−1
n−1(rn)) = ξn−1(an−1 ·bn−1+(f0,n−1(a0)−an−1) ·ϕ

−1
n−1(bn)+ϕ−1

n−1(an) ·

(f0,n−1(b0)− bn−1)−ϕ−1
n−1(an · bn)) = ξn−1(an−1 · bn−1 +

n−2∑
k=0

fk,n−1(hk) ·ϕ−1
n−1(h

′
n) +

ϕ−1
n−1(hn) ·

n−2∑
k=0

fk,n−1(h
′
k) − (an−1 − hn−1) · (bn−1 − h′n−1)) = ξn−1(

n−2∑
k=0

fk,n−1(hk) ·

ϕ−1
n−1(h

′
n)+ϕ−1

n−1(hn) ·
n−2∑
k=0

fk,n−1(h
′
k)+hn−1 ·(h

′
n−1 +ϕ−1

n−1(h
′
n))+(hn−1 +ϕ−1

n−1(hn)) ·

h′n−1 − hn−1 · h
′
n−1) = ξn−1(

n−2∑
k=0

fk,n−1(hk) · ϕ−1
n−1(h

′
n) + ϕ−1

n−1(hn) ·
n−2∑
k=0

fk,n−1(h
′
k) +

hn−1 · h
′
n−1 + hn−1 · ϕ

−1
n−1(h

′
n) + ϕ−1

n−1(hn) · h′n−1).

Since the isomorphism ϕi : (Ri, ξi) → (Ri+1, ξi+1) is a semi-isometric then ac-
cording to Theorem 3 the following inequalities are true:

ξi(ai · bi)

ξi(bi)
≤ ξi+1(ϕi(ai)) ≤ ξi(ai) and

ξi(ai · bi)

ξi(ai)
≤ ξi+1(ϕi(bi)) ≤ ξi(bi).

It’s follows from the definition of the isomorphisms fk,i:

ξi(fk,i(hk)) ≤ ξk(hk) and ξi(fk,i(h
′
k)) ≤ ξk(h

′
k)

for any 0 ≤ k ≤ i ≤ n. Then for i ∈ {1, 2, . . . , n− 1} we have

ξi(
i−1∑
k=0

fk,i(hk)·ϕ
−1
i (h′i+1)+ϕ

−1
i (hi+1)·

i−1∑
k=0

fk,i(h
′
k)+hi ·h

′
i+hi ·ϕ

−1
i (h′i+1)+ϕ

−1
i (hi+1)·

h′i) ≤
i−1∑
k=0

ξi(fk,i(hk)) ·ξi+1(h
′
i+1)+

i−1∑
k=0

ξi+1(hi+1) ·ξi(fk,i(h
′
k))+ξi(hi) ·ξi(h

′
i)+ξi(hi) ·

ξi+1(h
′
i+1) + ξi+1(hi+1) · ξi(h

′
i) ≤

i−1∑
k=0

ξk(hk) · ξi+1(h
′
i+1) +

i−1∑
k=0

ξi+1(hi+1) · ξk(h
′
k) +

ξi(hi) · ξi(h
′
i) + ξi(hi) · ξi+1(h

′
i+1) + ξi+1(hi+1) · ξi(h

′
i).

If i = 0 then

ξ0(r0−ϕ
−1
1 (r1)) = ξ0(a0 ·b0−ϕ

−1
0 (a1 ·b1 +(ϕ0(a0)−a1) ·ϕ

−1
1 (b2)+ϕ

−1
1 (a2) ·(ϕ0(b0)−

b1))) = ξ0(a0 · b0−ϕ
−1
0 (a1) ·ϕ

−1
0 (b1)− (a0−ϕ

−1
0 (a1)) ·ϕ

−1
0 (ϕ−1

1 (b2))−ϕ
−1
0 (ϕ−1

1 (a2)) ·
(b0−ϕ

−1
0 (b1))) = ξ0(a0 ·b0−(a0−h0)·(b0−h

′
0)−h0 ·ϕ

−1
0 (b1−h

′
1)−ϕ

−1
0 (a1−h1)·h

′
0) =

ξ0(h0 ·h
′
0+h0 ·ϕ

−1
0 (h′1)+ϕ

−1
0 (h1)·h

′
0) ≤ ξ0(h0)·ξ0(h

′
0)+ξ0(h0)·ξ1(h

′
1)+ξ1(h1)·ξ0(h

′
0).
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It follows from the proven inequalities that

ξ̂(a ·b) ≤ ξ0(h0) ·ξ0(h
′
0)+ξ0(h0) ·ξ1(h

′
1)+ξ1(h1) ·ξ0(h

′
0)+

n−1∑

i=1

( i−1∑

k=0

ξk(hk) ·ξi+1(h
′
i+1)+

i−1∑

k=0

ξi+1(hi+1) · ξk(h
′
k) + ξi(hi) · ξi(h

′
i) + ξi(hi) · ξi+1(h

′
i+1) + ξi+1(hi+1) · ξi(h

′
i)
)
+

ξn(an) · ξn(bn) =
n−1∑

i=0

n−1∑

j=0

ξi(hi) · ξj(h
′
j) + ξn(an) ·

n−1∑

j=0

ξj(h
′
j) +

n−1∑

i=0

ξi(hi) · ξn(bn)

+ξn(an) · ξn(bn) =

(
n−1∑

i=0

ξi(hi) + ξn(an)

)
·




n−1∑

j=0

ξj(h
′
j) + ξn(bn)


 = ξ̂(a) · ξ̂(b).

Thus we have shown the inequality ξ̂(a·b) ≤ ξ̂(a)·ξ̂(b) for any a, b ∈ R̂. Therefore
(R̂, ξ̂) ia a pseudonormed ring.

II.2. Since ξ̂(r, 0, . . . , 0) = ξ0(r−0)+ξ1(0)+ . . .+ξn(0) = ξ(r) for any r ∈ R and
any element r ∈ R is identifying with the element (r, 0, . . . , 0) ∈ R̂0 then ξ̂|R = ξ.

II.3. Let’s show that ϕ̂ : (R̂, ξ̂) → (R̄, ξ̄) is an isometric homomorphism, i.e.

ξ̄ (ϕ̂ (r̂)) = inf
{
ξ̂ (r̂ + â)

∣∣∣â ∈ ker ϕ̂
}

for all r̂ ∈ R̂. Let r̂ = (r0, r1, . . . , rn) ∈ R̂ and

b̂ = (0, f0,1(r0) − r1, . . . , f0,n(r0) − rn). Then b̂ ∈ Î and so

inf
{
ξ̂(r̂ + â)

∣∣∣â ∈ ker ϕ̂
}
≤ ξ̂(r̂ + b̂) = ξ̂((r0, r1, . . . , rn)+

(0, f0,1(r0) − r1, . . . , f0,n(r0) − rn)) = ξ̂((r0, f0,1(r0), . . . , f0,n(r0))) =

ξ0(r0 − ϕ−1
0 (f0,1(r0))) + ξ1(f0,1(r0)−

ϕ−1
1 (f0,2(r0))) + . . .+ ξn−1(f0,n−1(r0) − ϕ−1

n−1(f0,n(r0))) + ξn(f0,n(r0)) =

ξ0(0) + ξ1(0) + . . . + ξn−1(0) + ξn(ϕ(r0)) = ξ̄(ϕ(r0)) = ξ̄(ϕ̂(r̂)).

On the other hand, since f0,n = ϕ and ξi(di) ≥ ξn(fi,n(dn)) for every di ∈ Ri and

any i ∈ {0, 1, . . . , n} then for every element â = (o, a1, . . . , an) ∈ Î we have

ξ̂(r̂ + â) = ξ̂((r0, r1 + a1, . . . , rn + an) = ξ0(r0 − ϕ−1
0 (r1 + a1))+
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n−1∑

i=1

ξi(ri + ai −ϕ−1
i (ri+1 + ai+1)) + ξn(rn + an) ≥ ξn(f0,n(r0)− f0,n(ϕ−1

0 (r1 + a1)))+

n−1∑

i=1

ξn(fi,n(ri+ai)−fi,n(ϕ−1
i (ri+1+ai+1)))+ξn(rn+an) = ξn(f0,n(r0)−f1,n(r1+a1))+

n−1∑

i=1

ξn(fi,n(ri + ai) − fi+1,n(ri+1 + ai+1)) + ξn(rn + an) ≥

ξn

(
f0,n(r0) − f1,n(r1 + a1) +

n−1∑

i=1

(fi,n(ri + ai) − fi+1,n(ri+1 + ai+1)) + rn + an

)
=

ξn (f0,n(r0)) = ξn(ϕ(r0)) = ξ̄(ϕ̂(r̂)).

Since â ∈ Î is any element then inf
{
ξ̂ (r̂ + â)

∣∣∣â ∈ ker ϕ̂
}

≥ ξ̄(ϕ̂(r̂)) and so

inf
{
ξ̂ (r̂ + â)

∣∣∣â ∈ ker ϕ̂
}

= ξ̄(ϕ̂(r̂)). Therefore ϕ̂ : (R̂, ξ̂) → (R̄, ξ̄) is an isometric

homomorphism.

The theorem is completely proved.

Designation 1. Let R be a ring. Put R1 = R and for any natural number n define
Rn as the subgroup generated by the set {a · b|a ∈ Rs, b ∈ Rt, 0 < s, t < n, s+ t = n}.
It’s easy to note that Rn is an ideal in the ring R.

Definition 3. A ring R is called a nilpotent ring if Rn = 0 for some natural number
n. The minimal one from these natural numbers is called the index of nilpotence.

Theorem 5. Let (R, ξ) and (R̄, ξ̄) be associative pseudonormed rings, ϕ : R → R̄
be a ring isomorphism and Rn = 0. Then the following statements are equivalent:

1. ξ̄(ϕ(r)) ≤ ξ(r) for any r ∈ R.

2. ϕ is a superposition of n semi-isometric isomorphisms, i.e. there exist
pseudonormed rings (R, ξ) = (R0, ξ0), (R1, ξ1), . . . , (Rn, ξn) = (R̄, ξ̄) and semi-
isometric isomorphisms ϕi : (Ri, ξi) → (Ri+1, ξi+1) for i = 0, 1, . . . , n − 1 such
that ϕ = ϕn ◦ ϕn−1 ◦ . . . ◦ ϕ0.

3. There exists a non-associative pseudonormed ring (R̂, ξ̂) such that (R, ξ) is an
accessible subring of the stage no more than n of the pseudonormed ring (R̂, ξ̂) and
the isomorphism ϕ can be extended up to an isometric homomorphism ϕ̂ : (R̂, ξ̂) →
(R̄, ξ̄).

Proof 1 ⇒ 2.

Let Rk = R for k = 0, 1, · · · , n − 1 and Rn = R̄; let ϕn−1 = ϕ : R → R̄ and
ϕk = ε : R → R be the identical mapping for k = 0, 1, · · · , n − 2 ; let ξ0(r) = ξ(r),
ξn(r̄) = ξ̄(r̄), ξn−1(r) = ξ̄(ϕ(r)) and
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ξk(r) = sup

{
ξ̄(ϕ(r)),

ξk−1(r · a)

ξk−1(a)
,
ξk−1(a · r)

ξk−1(a)

∣∣∣a ∈ R\{0}

}

for k = 1, 2, · · · , n − 2.
Let’s prove by induction on the number k that each function ξk is a pseudonorm

on the ring Rk.
It’s obvious that ξk(−r) = ξk(r) ≥ 0 for any r ∈ Rk and ξk(r) = 0 if and only

if r = 0. Let’s show the validity of inequalities ξk(r1 + r2) ≤ ξk(r1) + ξk(r2) and
ξk(r1 · r2) ≤ ξk(r1) · ξk(r2) for any r1, r2 ∈ Rk.

Indeed, for any a ∈ R\{0} we have

ξk−1((r1 + r2) · a)

ξk−1(a)
≤
ξk−1(r1 · a)

ξk−1(a)
+
ξk−1(r2 · a)

ξk−1(a)
≤

sup

{
ξk−1(r1 · b)

ξk−1(b)

∣∣∣b ∈ R\{0}

}
+ sup

{
ξk−1(r2 · b)

ξk−1(b)

∣∣∣b ∈ R\{0}

}
≤ ξk(r1) + ξk(r2),

ξk−1(a · (r1 + r2))

ξk−1(a)
≤
ξk−1(a · r1)

ξk−1(a)
+
ξk−1(a · r2)

ξk−1(a)
≤

sup

{
ξk−1(b · r1)

ξk−1(b)

∣∣∣b ∈ R\{0}

}
+ sup

{
ξk−1(b · r2)

ξk−1(b)

∣∣∣b ∈ R\{0}

}
≤ ξk(r1) + ξk(r2)

and

ξ̄(ϕ(r1 + r2)) = ξ̄(ϕ(r1) + ϕ(r2)) ≤ ξ̄(ϕ(r1)) + ξ̄(ϕ(r2)) ≤ ξk(r1) + ξk(r2).

Therefore

ξk(r1+r2) = sup

{
ξ̄(ϕ(r1 + r2)),

ξk−1((r1 + r2) · a)

ξk−1(a)
,
ξk−1(a · (r1 + r2))

ξk−1(a)

∣∣∣a ∈ R\{0}

}
≤

ξk(r1) + ξk(r2).

For any a ∈ R\{0} we have

ξk−1((r1 · r2) · a)

ξk−1(a)
=
ξk−1(r1 · (r2 · a))

ξk−1(r2 · a))
·
ξk−1(r2 · a)

ξk−1(a)
≤

sup

{
ξk−1(r1 · b)

ξk−1(b)

∣∣∣b ∈ R\{0}

}
· sup

{
ξk−1(r2 · c)

ξk−1(c)

∣∣∣c ∈ R\{0}

}
≤ ξk(r1) · ξk(r2),

ξk−1(a · (r1 · r2))

ξk−1(a)
≤
ξk−1(a · r1)

ξk−1(a)
·
ξk−1((a · r1) · r2)

ξk−1(a · r1)
≤

sup

{
ξk−1(b · r1)

ξk−1(b)

∣∣∣b ∈ R\{0}
}
· sup

{
ξk−1(c · r2)

ξk−1(c)

∣∣∣c ∈ R\{0}

}
≤ ξk(r1) · ξk(r2)

and

ξ̄(ϕ(r1 · r2)) = ξ̄(ϕ(r1) · ϕ(r2)) ≤ ξ̄(ϕ(r1)) · ξ̄(ϕ(r2)) ≤ ξk(r1) · ξk(r2).
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Therefore

ξk(r1 · r2) = sup

{
ξ̄(ϕ(r1 · r2)),

ξk−1((r1 · r2) · a)

ξk−1(a)
,
ξk−1(a · (r1 · r2))

ξk−1(a)

∣∣∣a ∈ R\{0}

}
≤

ξk(r1) · ξk(r2).

Thus the function ξk is a pseudonorm on the ring Rk.

Let’s prove that ϕk : (Rk, ξk) → (Rk+1, ξk+1) is a semi-isometric isomorphism
for k = 0, 1, · · · , n − 2.

Let’s check the validity of inequality ξk+1(ϕk(r)) ≤ ξk(r).

Since

ξ̄(ϕ(r)) ≤ ξk(r),
ξk(r · a)

ξk(a)
≤ ξk(r) and

ξk(a · r)

ξk(a)
≤ ξk(r)

for any a ∈ R\{0} then

sup

{
ξ̄(ϕ(r)),

ξk−1(r · a)

ξk−1(a)
,
ξk−1(a · r)

ξk−1(a)

∣∣∣a ∈ R\{0}

}
≤ ξk(r)

and

ξk+1(ϕk(r)) = ξk+1(ε(r)) = ξk+1(r) ≤ ξk(r)

for any r ∈ Rk.

Let’s show that the inequalities ξk(r · q) ≤ ξk+1(ϕk(r)) · ξk(q) and ξk(q · r) ≤
ξk+1(ϕk(r)) · ξk(q) are true.

Indeed, for any q 6= 0 we have

ξk(r · q)

ξk(q)
≤ sup

{
ξk(r · a)

ξk(a)

∣∣∣a ∈ R\{0}

}
≤

sup

{
ξ̄(ϕ(r)),

ξk(r · a)

ξk(a)
,
ξk(a · r)

ξk(a)

∣∣∣a ∈ R\{0}

}
= ξk+1(r)

and
ξk(q · r)

ξk(q)
≤ sup

{
ξk(a · r)

ξk(a)

∣∣∣a ∈ R\{0}

}
≤

sup

{
ξ̄(ϕ(r)),

ξk(r · a)

ξk(a)
,
ξk(a · r)

ξk(a)

∣∣∣a ∈ R\{0}

}
= ξk+1(r).

Thus

ξk(r · q) ≤ ξk+1(r) · ξk(q) = ξk+1(ε(r)) · ξk(q) = ξk+1(ϕk(r)) · ξk(q)

and

ξk(q · r) ≤ ξk+1(r) · ξk(q) = ξk+1(ε(r)) · ξk(q) = ξk+1(ϕk(r)) · ξk(q).

All conditions of Theorem 3 are satisfied. Therefore ϕk : (Rk, ξk) → (Rk+1, ξk+1)
is a semi-isometric isomorphism for k = 0, 1, · · · , n − 2.
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Let’s consider ϕn−1 : (Rn−1, ξn−1) → (Rn, ξn). Since ξn−1(r) = ξ̄(ϕ(r)) for any
r ∈ R that the isomorphism ϕn−1 = ϕ : (Rn−1, ξn−1) = (R, ξn−1) → (Rn, ξn) =
(R̄, ξ̄) is isometric.

Therefore there exist pseudonormed rings (R, ξ) = (R0, ξ0), (R1, ξ1), . . . , (Rn, ξn) =
(R̄, ξ̄) and semi-isometric isomorphisms ϕi : (Ri, ξi) → (Ri+1, ξi+1) for i =
0, 1, . . . , n− 1 such that ϕ = ϕn ◦ ϕn−1 ◦ . . . ◦ ϕ0.

The implication 1 ⇒ 2 is proved.
The implication 2 ⇒ 3 follows from Theorem 4. The implication 3 ⇒ 1 follows

from Theorem 2.
The theorem is completely proved.
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2008, No. 3(58), 3–8.

S.A. Aleschenko
Transnistrian T. G. Shevchenko State University
str. 25 Octombrie, 128, MD-3300 Tiraspol
Moldova

E-mail: alesch.svet@gmail.com

V. I. Arnautov
Institute of Mathematics and Computer Science
Academy of Sciences of Moldova
str. Academiei, 5, MD-2028 Chişinău
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