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The Lyapunov quantities and the center conditions

for a class of bidimensional polynomial systems

of differential equations with nonlinearities

of the fourth degree
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Abstract. For the autonomous bidimensional polynomial systems of differential
equations with nonlinearities of the fourth degree the GL(2, R)-invariant recurrence
equations for determination of the Lyapunov quantities were established. Moreover,
the general form of Lyapunov quantities for the mentioned systems is obtained. For
a class of such systems the necessary and sufficient GL(2, R)-invariant conditions for
the existence of center are given.
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Let us consider the system of differential equations with nonlinearities of the
fourth degree

dx

dt
= P1(x, y) + P4(x, y) = P(x, y),

dy

dt
= Q1(x, y) + Q4(x, y) = Q(x, y), (1)

where Pi(x, y), Qi(x, y) are homogeneous polynomials of degree i in x and y with
real coefficients.

The goal of this paper is to determine the invariant recurrence formulas for con-
struction of the Lyapunov quantities for the system of differential equations with
nonlinearities of the fourth degree and to establish the invariant center conditions
for a class of these systems. The center-focus problem is one of the most impor-
tant problem in the Qualitative Theory of Differential Equations. This problem is
completely solved only for the bidimensional quadratic systems and for the systems
with nonlinearities of the third degree [1–3]. Also, this problem was solved for some
classes of cubic differential systems [4–7]. In [8] the center problem for a linear center
perturbed by homogeneous polynomials, more exactly for the systems of the form

dx

dt
= y,

dy

dt
= −x+ Q4(x, y)

was solved. In [9], the authors give some sufficient conditions for the integrability in
polar coordinates of a bidimensional polynomial systems with linear part of center
type and non-linear part given by homogeneous polynomials of the fourth degree.
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Also they establish a conjecture that if it turns to be true then the integrable cases
they found are the only possible ones. In [10] the author gives some center conditions
for a class of bidimensional polynomial systems of the fourth degree.

1 Definitions and notations

The system (1) can be written in the following coefficient form:

dx

dt
= cx+ dy + gx4 + 4hx3y + 6kx2y2 + 4lxy3 + my4,

dy

dt
= ex+ fy + nx4 + 4px3y + 6qx2y2 + 4rxy3 + sy4. (2)

We denote by A the 14-dimensional coefficient space of the system (1), by a ∈ A
the vector of coefficients a = (c,d, e, f, g,h, k, l,m,n,p, q, r, s), by q ∈ Q ⊆ Aff(2,R)
a nondegenerate linear transformation of the phase plane of system (1), by q the
transformation matrix and by rq (a) the linear representation of the coefficients of
transformed system in the space A.

Definition 1 (see [11, 12]). A polynomial K(a,x) in coefficients of system (1) and

coordinates of the vector x =

(
x
y

)

∈ R
2 is called a comitant of system (1) with

respect to the group Q if there exists a function λ : Q → R such that

K(rq(a),qx) ≡ λ(q)K(a,x)

for every q ∈ Q, a ∈ A and x ∈ R
2.

If Q is the group GL(2,R) of nondegenerate linear transformations

u = qx, ∆q = detq 6= 0 (3)

of the phase plane of system (1), where u =

(
u
v

)

is a vector of new phase

variables and q =

(
q11 q12
q21 q22

)

is the transformation matrix, then the comitant is

called GL(2,R)-comitant or center-affine comitant. In what follows only GL(2,R)-
comitants are considered. If a comitant does not depend on coordinates of the vector
x, then it is called invariant.

The function λ(q ) is called a multiplicator. It is known [11] that the function
λ(q) has the form λ(q) = ∆−χ

q , where χ is an integer, which is called the weight of
the comitant K(a,x). If χ = 0, then the comitant is called absolute, otherwise it is
called relative.

We say that a comitant K(a,x) has the character (ρ; χ; δ) if it has the weight
χ, the degree δ with respect to the coefficients of the system (1) and the degree ρ
with respect to the coordinates of the vector x.
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Definition 2 (see [13]). Let ϕ and ψ be homogeneous polynomials in coordinates of

the vector x =

(
x
y

)

∈ R
2 of the degrees ρ1 and ρ2, respectively. The polynomial

(ϕ,ψ)(j) =
(ρ1 − j)!(ρ2 − j)!

ρ1!ρ2!

j
∑

i=0

(−1)i
(
j

i

)
∂jϕ

∂xj−i∂yi
∂jψ

∂xi∂yj−i

is called the transvectant of index j of polynomials ϕ and ψ.

Using this formula we have the following remarks.

Remark 1 (see [14] ). If polynomials ϕ and ψ are GL(2,R)-comitants of system (1)
with the characters (ρϕ; χϕ; δϕ) and (ρψ; χψ; δψ), respectively, then the transvectant
of index j ≤ min{ρϕ, ρψ} is a GL(2,R)-comitant of system (1) with the character
(ρϕ + ρψ − 2j; χϕ + χψ + j; δϕ + dψ). If j > min{ρϕ, ρψ}, then (ϕ,ψ)(j) = 0.

Remark 2. If homogeneous polynomials f , g, ϕ and ψ have the degrees m, n, µ
and 0 ( m, n, µ ∈ N

∗), respectively, with respect to x and y and l, q ∈ N, α ∈ R,
then

a) (αf, g)(k) = (f, αg)(k) = α(f, g)(k), b) (f q, f)(2l+1) = 0,

c) (f + g, ϕ)(k) = (f, ϕ)(k) + (g, ϕ)(k), d) (ψ, f)(k) = 0,

e) (f · g, ϕ)(1) =
m

m+ n
(f, ϕ)(1)g +

n

m+ n
(g, ϕ)(1)f.

Remark 3. If homogeneous polynomials f and ϕ have the degrees m ∈ N∗ and 2,
respectively, with respect to x and y, then

((f, ϕ)(1), ϕ)(1) =
m− 1

m
(f, ϕ)(2)ϕ− 1

2
f(ϕ,ϕ)(2).

The GL(2,R)-comitants of the first degree with respect to the coefficients of the
system (1) have the form

Ri = Pi(x, y)y − Qi(x, y)x, Si =
1

i

(
∂Pi(x, y)

∂x
+
∂Qi(x, y)

∂y

)

, i = 1, 4. (4)

By using the comitants Ri and Si, i = 1, 4, the system (1) can be written [15] in
the form

dx

dt
=

1

2

∂R1

∂y
+

1

2
S1x+

1

5

∂R4

∂y
+

4

5
S4x,

dy

dt
= −1

2

∂R1

∂x
+

1

2
S1y −

1

5

∂R4

∂x
+

4

5
S4y. (5)

For every homogeneous GL(2,R)-comitant K(x, y) with degree s ∈ N
∗ of the

system (1) from (5) we obtain the total derivative of K(x, y) with respect to t [16]:

dK
dt

=
∂K
∂x

· dx
dt

+
∂K
∂y

· dy
dt

=
∂K
∂x

(
1

2

∂R1

∂y
+

1

2
S1x+

1

5

∂R4

∂y
+

4

5
S4x

)

+
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+
∂K
∂y

(

−1

2

∂R1

∂x
+

1

2
S1y −

1

5

∂R4

∂x
+

4

5
S4y

)

= (6)

= s(K, R1)
(1) +

s

2
KS1 + s(K, R4)

(1) +
4s

5
KS4,

where (K, Ri)(1) is a Jacobian (the transvectant of the first index) of GL(2,R)-
comitants K and Ri. The representation (6) shows that the derivative with respect
to t of every homogeneous GL(2,R)-comitant with the degree s ≥ 1 of the system
(1) is a GL(2,R)-comitant too.

By using the comitants Ri and Si (i = 1, 4), and the notion of the transvectant
the following GL(2,R)-comitants and invariants of the system (1) were constructed
(in the list below, the bracket ”[[” is used in order to avoid placing the otherwise
necessary parenthesis ”(”):

I1 = S1, I2 = (R1, R1)
(2), I3 = [[S4, R1)

(2), R1)
(1), (S4, R1)

(2))(1),

I4 = [[R4, R1)
(2), R1)

(2), R1)
(1), ((R4, R1)

(2), R1)
(2))(1),

K1 = (S4, R1)
(1), K2 = ((S4, R1)

(2), R1)
(1), K3 = (R4, S4)

(3),

K4 = (K2
3 , S4)

(3), K5 = ((K3, S4)
(2), R1)

(2)

J1 = ((R4, R4)
(4), R1)

(2), J2 = ((R4, S4)
(3), R1)

(2), J3 = ((S4, S4)
(2), R1)

(2),

J4 = [[R4, R4)
(2), R1)

(2), R1)
(2), R1)

(2), J5 = [[R4, S4)
(2), R1)

(2), R1)
(2),

J6 = (K4,K5)
(1).

2 Lyapunov quantities for bidimensional polynomial systems of

differential equations with nonlinearities of the fourth degree

with S1 = 0, I2 6= 0

We will consider the system (1) with the conditions S1 = 0, I2 > 0. These
conditions mean that the eigenvalues of the Jacobian matrix at the singular point
(0, 0) are pure imaginary, i.e., the system has the center or a weak focus at (0, 0).
In these conditions the system (1) can be reduced, via a linear transformation and
time rescaling, to the system

dx

dt
= y + P4(x, y),

dy

dt
= −x+ Q4(x, y), (7)

which can be written in the form

dx

dt
=

1

2

∂R1

∂y
+

1

5

∂R4

∂y
+

4

5
S4x,

dy

dt
= −1

2

∂R1

∂x
− 1

5

∂R4

∂x
+

4

5
S4y, (8)

where R1 = x2 + y2.
Let us consider the formal power series of the form

F (x, y) = x2 + y2 +

∞∑

j=3

Fj(x, y)



116 IURIE CALIN, STANISLAV CIUBOTARU

where for each j, Fj(x, y) is a homogeneous polynomial of degree j, so that the
derivative of F (x, y) along the solutions of the system (7) (or (8)) satisfies

dF (x, y)

dt
=

∞∑

k=2

G2k(x
2 + y2)k,

where G2k are the polynomials in the coefficients of the system (7), called Lyapunov
quantities [17].

For establishing the center conditions for the system (7) we will determine Lya-
punov quantities. The polynomials Fj(x, y) and the constants G2k can be determined
from the identity:

∂

(

x2 + y2 +
∞∑

j=3
Fj(x, y)

)

∂x
(y + P4(x, y)) +

+

∂

(

x2 + y2 +
∞∑

j=3
Fj(x, y)

)

∂y
(−x+ Q4(x, y)) ≡

∞∑

k=2

G2k(x
2 + y2)k. (9)

Because for the system (7) R1 = x2 + y2 and by using (8), the identity (9) can
be written in the form:

∂

(

R1 +
∞∑

j=3
Fj(x, y)

)

∂x

(
1

2

∂R1

∂y
+

1

5

∂R4

∂y
+

4

5
S4x

)

+

+

∂

(

R1 +
∞∑

j=3
Fj(x, y)

)

∂y

(

−1

2

∂R1

∂x
− 1

5

∂R4

∂x
+

4

5
S4y

)

≡
∞∑

k=2

G2kR
k
1 . (10)

Next, we analyze the identity (10) which is more general than the identity (9),
taking S1 = 0, I2 = (R1, R1)

(2) 6= 0. By using the notion of the transvectant and
Euler formula, the left side of the identity (10) can be written into the form:

1

5

(
∂R1

∂x
· ∂R4

∂y
− ∂R1

∂y
· ∂R4

∂x

)

+
4

5
S4

(
∂R1

∂x
· x− ∂R1

∂y
· y
)

+

+
1

2

∞∑

j=3

(
∂Fj(x, y)

∂x
· ∂R1

∂y
− ∂Fj(x, y)

∂y
· ∂R1

∂x

)

+

+
1

5

∞∑

j=3

(
∂Fj(x, y)

∂x
· ∂R4

∂y
− ∂Fj(x, y)

∂y
· ∂R4

∂x

)

+

+
4

5
S4

∞∑

j=3

(
∂Fj(x, y)

∂x
· x+

∂Fj(x, y)

∂y
· y
)

=
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= 2(R1, R4)
(1) + 2 · 4

5
R1S4 +

∞∑

j=3

j · (Fj , R1)
(1) +

∞∑

j=3

j · (Fj , R4)
(1) +

4

5

∞∑

j=3

j · FjS4,

and the identity (10) is reduced to the form:

∞∑

j=3

j · (Fj , R1)
(1) +

∞∑

j=2

j ·W (Fj) ≡
∞∑

k=2

G2kR
k
1 , (11)

where F2 = R1, W (Fj) = (Fj , R4)
(1) +

4

5
FjS4.

Equaling in (11) polynomials with the same degree with respect to the coordi-
nates of the vector (x, y), the identity (11) can be reduced to the system of differential
equations in partial derivatives:

3(F3, R1)
(1) = 0,

4(F4, R1)
(1) = G4R

2
1,

5(F5, R1)
(1) + 2W (F2) = 0,

6(F6, R1)
(1) + 3W (F3) = G6R

3
1,

7(F7, R1)
(1) + 4W (F4) = 0,

8(F8, R1)
(1) + 5W (F5) = G8R

4
1,

9(F9, R1)
(1) + 6W (F6) = 0,

10(F10, R1)
(1) + 7W (F7) = G10R

5
1,

11(F11, R1)
(1) + 8W (F8) = 0,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

j(Fj , R1)
(1) + (j − 3)W (Fj−3) =







0, for j = 2l + 1, l ∈ N
∗,

GjR
j

2
1 , for j = 2l + 2, l ∈ N

∗,

(12)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Equations of the form j(Fj , R1)
(1) = 0, in the case when j is an odd number, have

the solution Fj ≡ 0 in the class of homogeneous polynomials with real coefficients.

In the case when j is an even number, the equations j(Fj , R1)
(1) = GjR

j

2
1 admit

the solution of the form Fj = CR
j

2
1 and then Gj = 0, where C is an arbitrary real

constant. Assuming C = 0, we can consider in this case that Fj ≡ 0. From the first
equation of the system (12), it follows that F3 ≡ 0. This implies W (F3) ≡ 0 and so,
F6 ≡ 0 and G6 = 0. In turn, F6 ≡ 0 implies W (F6) ≡ 0, and then F9 ≡ 0 and so on.
From the second equation of the system (12), it follows that F4 ≡ 0 and G4 = 0.
From F4 ≡ 0, it turns out that W (F4) ≡ 0 and then F7 ≡ 0. In turn, F7 ≡ 0 implies
W (F7) ≡ 0 and then F10 ≡ 0 and G10 = 0, and so on. Basing on those mentioned,
the system (12) is reduced to the following system:

5(F5, R1)
(1) + 2W (F2) = 0,
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8(F8, R1)
(1) + 5W (F5) = G8R

4
1,

11(F11, R1)
(1) + 8W (F8) = 0,

14(F14, R1)
(1) + 11W (F11) = G14R

7
1,

17(F17, R1)
(1) + 14W (F14) = 0,

20(F20, R1)
(1) + 17W (F17) = G20R

10
1 ,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(3m+ 2)(F3m+2, R1)
(1) + (3m− 1)W (F3m−1) =

=







0, for m = 2l − 1, l ∈ N
∗,

G3m+2R
3m+2

2
1 , for m = 2l, l ∈ N

∗,

(13)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

From the system (13) it follows that only the homogeneous polynomials
F3m−1(a,x), m ∈ N

∗ and the Lyapunov quantities G6l+2(a), l ∈ N
∗ participate

in solving the center-focus problem for the system (1). By solving consecutively the
equations of the system (13) the polynomials F5, F8, F11, F14, F17, F20, . . . , and
respectively the Lyapunov quantities G8, G14, G20, . . . , are determined.

F5 =
2∑

j=0

2 · 5! · 2j+1 ·Rj1 · [[W (F2),

j
︷ ︸︸ ︷

R1)
(2), . . . , R1)

(2), R1)
(1)

(4 − 2j)! ·
j∏

i=0

(

(5 − 2i)2 · (R1, R1)
(2)
)

,

F8 =
3∑

j=0

5 · 8! · 2j+1 ·Rj1 · [[W (F5),

j
︷ ︸︸ ︷

R1)
(2), . . . , R1)

(2), R1)
(1)

(7 − 2j)! ·
j∏

i=0

(

(8 − 2i)2 · (R1, R1)
(2)
)

,

F11 =
5∑

j=0

8 · 11! · 2j+1 · Rj1 · [[W (F8),

j
︷ ︸︸ ︷

R1)
(2), . . . , R1)

(2), R1)
(1)

(10 − 2j)! ·
j∏

i=0

(

(11 − 2i)2 · (R1, R1)
(2)
)

,

F14 =

6∑

j=0

11 · 14! · 2j+1 · Rj1 · [[W (F11),

j
︷ ︸︸ ︷

R1)
(2), . . . , R1)

(2), R1)
(1)

(13 − 2j)! ·
j∏

i=0

(

(14 − 2i)2 · (R1, R1)
(2)
)

,

F17 =

8∑

j=0

14 · 17! · 2j+1 · Rj1 · [[W (F14),

j
︷ ︸︸ ︷

R1)
(2), . . . , R1)

(2), R1)
(1)

(16 − 2j)! ·
j∏

i=0

(

(17 − 2i)2 · (R1, R1)
(2)
)

,
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F20 =
9∑

j=0

17 · 20! · 2j+1 · Rj1 · [[W (F17),

j
︷ ︸︸ ︷

R1)
(2), . . . , R1)

(2), R1)
(1)

(19 − 2j)! ·
j∏

i=0

(

(20 − 2i)2 · (R1, R1)
(2)
)

,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

F3m+2 =

=

[3m+1
2 ]
∑

j=0

(3m− 1) · (3m+ 2)! · 2j+1 · Rj1 · [[W (F3m−1),

j
︷ ︸︸ ︷

R1)
(2), . . . , R1)

(2), R1)
(1)

(3m− 2j + 1)! ·
j∏

i=0

(

(3m− 2i+ 2)2 · (R1, R1)
(2)
)

, (14)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

where m ∈ N
∗, W (Fi) = (Fi, R4)

(1) +
4

5
FiS4.

G8 =
5 · 8! · 24 · [[W (F5),

4
︷ ︸︸ ︷

R1)
(2), . . . , R1)

(2)

3∏

i=0

(

(8 − 2i)2 · (R1, R1)
(2)
) ,

G14 =
11 · 14! · 27 · [[W (F11),

7
︷ ︸︸ ︷

R1)
(2), . . . , R1)

(2)

6∏

i=0

(

(14 − 2i)2 · (R1, R1)
(2)
) ,

G20 =
17 · 20! · 210 · [[W (F17),

10
︷ ︸︸ ︷

R1)
(2), . . . , R1)

(2)

9∏

i=0

(

(20 − 2i)2 · (R1, R1)
(2)
) ,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

G6l+2 =

=
(6l − 1) · (6l + 2)! · 23l+1 · [[W (F6l−1),

3l+1
︷ ︸︸ ︷

R1)
(2), . . . , R1)

(2)

3l∏

i=0

(

(6l − 2i+ 2)2 · (R1, R1)
(2)
) , (15)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

where l ∈ N
∗, W (Fi) = (Fi, R4)

(1) +
4

5
FiS4.

Next we show that the polynomials F3m+2 (14) and Lyapunov quantities G6l+2

(15) satisfy the equations of system (13). Replacing in the right side of (13) the
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expresion for F3m+2 (14) and by using Remarks 1, 2 and 3 we obtain:

(3m+ 2)(3m − 1)(3m+ 2)!×

×
[ 3m+1

2 ]
∑

j=0

2j+1 ·
(

Rj1 · [[W (F3m−1),

j
︷ ︸︸ ︷

R1)
(2), . . . , R1)

(2), R1)
(1), R1

)(1)

(3m− 2j + 1)! ·
j∏

i=0

(

(3m− 2i+ 2)2 · (R1, R1)
(2)
)

+

+(3m− 1)W (F3m−1) =

applying Remark 2. e), taking f = Rj1,

g = [[W (F3m−1),

j
︷ ︸︸ ︷

R1)
(2), . . . , R1)

(2), R1)
(1) and ϕ = R1, we obtain

= (3m+ 2)(3m − 1)(3m+ 2)!×

×
[ 3m+1

2 ]
∑

j=0

2j+1

(3m− 2j + 1)! ·
j∏

i=0

(

(3m− 2i+ 2)2 · (R1, R1)
(2)
)
×

×






2j

3m+ 2
(Rj1, R1)

(1) · [[W (F3m−1),

j
︷ ︸︸ ︷

R1)
(2), . . . , R1)

(2), R1)
(1) +

+
3m− 2j + 2

3m+ 2
Rj1 · [[W (F3m−1),

j
︷ ︸︸ ︷

R1)
(2), . . . , R1)

(2), R1)
(1), R1)

(1)




+

+(3m− 1)W (F3m−1) =

according to Remark 2. b), the first term in square brackets is
equal to zero, because (Rj1, R1)

(1) = 0. For the second term, by

applying Remark 3, taking f = [[W (F3m−1),

j
︷ ︸︸ ︷

R1)
(2), . . . , R1)

(2) and
ϕ = R1, we obtain

= (3m+ 2)(3m − 1)(3m+ 2)!×

×
[ 3m+1

2 ]
∑

j=0

2j+1

(3m− 2j + 1)! ·
j∏

i=0

(

(3m− 2i+ 2)2 · (R1, R1)
(2)
)
×

×






(3m− 2j + 1)(3m− 2j + 2)

(3m− 2j + 2)(3m + 2)
Rj+1

1 · [[W (F3m−1),

j
︷ ︸︸ ︷

R1)
(2), . . . , R1)

(2), R1)
(2) −
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− 3m− 2j + 2

2(3m+ 2)
Rj1 · (R1, R1)

(2) · [[W (F3m−1),

j
︷ ︸︸ ︷

R1)
(2), . . . , R1)

(2)




+

+(3m− 1)W (F3m−1) =

= (3m− 1)(3m+ 2)!×

×








[ 3m+1
2 ]
∑

j=0

2j+1 · (3m− 2j + 1) · Rj+1
1 · [[W (F3m−1),

j
︷ ︸︸ ︷

R1)
(2), . . . , R1)

(2), R1)
(2)

(3m− 2j + 1)! ·
j∏

i=0

(

(3m− 2i+ 2)2 · (R1, R1)
(2)
)

−

−
[ 3m+1

2 ]
∑

j=0

2j+1 · (3m− 2j + 2) ·Rj1 · (R1, R1)
(2) · [[W (F3m−1),

j
︷ ︸︸ ︷

R1)
(2), . . . , R1)

(2)

2(3m− 2j + 1)! ·
j∏

i=0

(

(3m− 2i+ 2)2 · (R1, R1)
(2)
)








+

+(3m− 1)W (F3m−1) =

because for j = 0, the term obtained from the second sum is equal
to −(3m− 1)W (F3m−1), we get

= (3m− 1)(3m+ 2)!×

×








[ 3m+1
2 ]
∑

j=0

2j+1 · (3m− 2j + 1) · Rj+1
1 · [[W (F3m−1),

j+1
︷ ︸︸ ︷

R1)
(2), . . . , R1)

(2)

(3m− 2j + 1)! ·
[

(R1, R1)
(2)
]j+1

·
j∏

i=0
(3m− 2i+ 2)2

−

−
[ 3m+1

2 ]
∑

j=1

2j · (3m− 2j + 3) ·Rj1 · [[W (F3m−1),

j
︷ ︸︸ ︷

R1)
(2), . . . , R1)

(2)

(3m− 2j + 2)! · (3m− 2j + 3) ·
[

(R1, R1)
(2)
]j

·
j−1∏

i=0
(3m− 2i+ 2)2








=

by changing the sum index in the second sum, we obtain

= (3m− 1)(3m+ 2)!×

×








[ 3m+1
2 ]
∑

j=0

2j+1 · (3m− 2j + 1) · Rj+1
1 · [[W (F3m−1),

j+1
︷ ︸︸ ︷

R1)
(2), . . . , R1)

(2)

(3m− 2j + 1)! ·
[

(R1, R1)
(2)
]j+1

·
j∏

i=0
(3m− 2i+ 2)2

−

−
[ 3m+1

2 ]−1
∑

j=0

2j+1 · (3m− 2j + 1) ·Rj+1
1 · [[W (F3m−1),

j+1
︷ ︸︸ ︷

R1)
(2), . . . , R1)

(2)

(3m− 2j + 1)! ·
[

(R1, R1)
(2)
]j+1

·
j∏

i=0
(3m− 2i+ 2)2








=
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= (3m− 1)(3m+ 2)!×

×2[
3m+3

2 ] · (3m− 2
[

3m+1
2

]
+ 1) ·R[ 3m+3

2 ]
1 · [[W (F3m−1),

[ 3m+3
2 ]

︷ ︸︸ ︷

R1)
(2), . . . , R1)

(2)

(3m− 2
[

3m+1
2

]
+ 1)! ·

[

(R1, R1)
(2)
][ 3m+3

2 ]
·
[ 3m+1

2 ]
∏

i=0
(3m− 2i+ 2)2

. (16)

If m is an odd number, i.e. m = 2l− 1, l ∈ N
∗, the expression (16) is written in

the form:

(6l − 4)(6l − 1)! · 23l · 0 · R3l
1 · [[W (F6l−4),

3l
︷ ︸︸ ︷

R1)
(2), . . . , R1)

(2)

[

(R1, R1)
(2)
]3l

·
3l−1∏

i=0
(6l − 2i− 1)2

,

where the transvectant

[[W (F6l−4),

3l
︷ ︸︸ ︷

R1)
(2), . . . , R1)

(2)

is equal to 0, because the degree of comitant W (F6l−4) with respect to the coordi-
nates of the vector x is equal to 6l− 1, but the total index of transvectants with R1

is equal to 6l.

If m is an even number, i.e. m = 2l, l ∈ N
∗, the expression (16) is written in

the form:

(6l − 1)(6l + 2)! · 23l+1 · R3l+1
1 · [[W (F6l−1),

3l+1
︷ ︸︸ ︷

R1)
(2), . . . , R1)

(2)

[

(R1, R1)
(2)
]3l+1

·
3l∏

i=0
(6l − 2i+ 2)2

= G6l+2 · R3l+1
1 , (17)

where G6l+2 coincides with the expression (15). So, for establishing the Lyapunov
quantities for the system (1) with the conditions S1 = 0, I2 6= 0, the formulas (14)
and (15) can be used.

Notice that, when m = 2l − 1, l ∈ N
∗, the respective equations of the system

(13) have a unique solution with respect to F3m+2, i.e. in this case F3m+2 are
determined unambiguously. In the case m = 2l, l ∈ N

∗, the solutions of respective
equations of the system (13) with respect to F3m+2 are determined up to a term of

the form CR
3m+2

2
1 , where C is an arbitrary real constant. This implies that Lyapunov

quantities G6l+2, l ∈ N
∗, are not determined unambiguously.

Notice that the numerators in formulas (14) and (15) are expressed by transvec-
tants constructed by using the comitants R1, R4 and S4, but the denominators
represent the powers of invariant I2 = (R1, R1)

(2). Based on Remark 1, it follows
that the numerators in formulas (14) and (15) are GL(2,R)-comitants for the system
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(1). Since the GL(2,R)-comitants in (15) does not depend on the coordinates of the
vector x it follows they are GL(2,R)-invariants for the system (1).

On the above analysis, it results that the system (1), with the conditions S1 =
0, I2 6= 0 and all Lyapunov quantities (15) being equal to zero, admits first formal
integral of the form:

F (x, y) =

∞∑

m=0

F3m+2(x, y),

where F2(x, y) = R1, but F3m+2(x, y), m ∈ N
∗ are expressions (14).

3 The center conditions for the class of bidimensional polynomial

systems of differential equations with nonlinearities of the fourth

degree with S1 = 0, I2 > 0, I3 = I4 = 0

Let us consider the bidimensional polynomial system of differential equations
with nonlinearities of the fourth degree (1).

By using the comitants Ri and Si (i = 1, 4) the system (1) can be written in the
form (5).

We will consider the system (5) (or (1)) with the conditions S1 = 0, I2 > 0 which
has a center or a weak focus at (0, 0).

Remark 4. If R4 · S4 ≡ 0 then the system (5) (or (1)) with S1 = 0 and I2 > 0 has
a singular point of the center type at the origin of coordinates.

Indeed, if R4 ≡ 0, then the system (5) has the invariant algebraic curve

Φ(x, y) = 32R1 ·K2 + 8I2 ·K1 − 5I2
2 = 0

and the first integral

|Φ| 23 · |R1|−1 = c1,

where c1 is a real constant.
If S4 ≡ 0, then the system (5) has the first integral:

5R1 + 2R4 = c2,

where c2 is a real constant.
For the system (1) with S1 = 0, I2 > 0 and I3 = I4 = 0 the GL(2,R)-invariant

conditions for distinguishing between center and focus were established.

Theorem 1. The system (1) with the conditions S1 = 0, I2 > 0 and I3 = I4 = 0
has the center at the origin of coordinates if and only if the following conditions are
fulfilled

G8 = G26 = G32 = G38 = 0,

where G8, G26, G32 and G38 are Lyapunov quantities given in (15).
Moreover, the above conditions are equivalent to the following invariant ones:

J5 = J6 = 0.
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Proof. Necessity. The system (1) (or (2)) with S1 = 0, I2 > 0 can be reduced by a
centeraffine transformation and time scaling to the form

dx

dt
= y + gx4 + 4hx3y + 6kx2y2 + 4lxy3 + my4,

dy

dt
= − x+ nx4 + 4px3y + 6qx2y2 + 4rxy3 + sy4. (18)

By a transformation of rotation, in the system (18) can be obtained the equality

h + q = 0. (19)

By using the substitutions

g =
4P + 5H

5
, h =

10K + 6Q

10
, k =

30L+ 12R

30
, l =

5M + S

5
, m = N,

n = −G, p =
P − 5H

5
, q =

12Q− 30K

30
, r =

6R− 10L

10
, s =

4S − 5M

5

and using (19), the system (18) can be reduced to the form

dx

dt
= y +

5H + 4P

5
x4 + 4Kx3y +

30L+ 12R

5
x2y2 +

20M + 4S

5
xy3 +Ny4,

dy

dt
= −x−Gx4 +

4P − 20H

5
x3y − 6Kx2y2 +

12R− 20L

5
xy3 +

4S − 5M

5
y4, (20)

for which

R1 = x2 + y2,

R4 = Gx5 + 5Hx4y + 10Kx3y2 + 10Lx2y3 + 5Mxy4 +Ny5,

S4 = Px3 + 3Rxy2 + Sy3,

I3 = (P +R)2 + S2,

I4 = (G+ 2K +M)2 + (H + 2L+N)2.

So, I3 = 0 implies S = 0 and R = −P , and I4 = 0, implies G = −2K −M and
N = −2L − H, i.e., the system (1) with S1 = 0, I2 > 0 and I3 = I4 = 0 can be
reduced to the form

dx

dt
= y +

5H + 4P

5
x4 + 4Kx3y +

30L− 12P

5
x2y2 + 4Mxy3 − (H + 2L)y4,

dy

dt
= −x+ (2K +M)x4 +

4P − 20H

5
x3y − 6Kx2y2− 12P + 20L

5
xy3−My4, (21)

for which

R4 = −(2K +M)x5 + 5Hx4y + 10Kx3y2 + 10Lx2y3 + 5Mxy4 − (H + 2L)y5,

S4 = Px3 − 3Pxy2.
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Applying the formulas (14) and (15) for the system (21) we obtain the following
expresions for Lyapunov quantities G8, G14, G20:

G8 = (K +M)P = J5/4,

G14 = J5 (405I2J1 − 2160I2J2 + 952I2J3 + 2025J4) /14400,

G20 = J5

(
2815560I2

2J
2
1 − 19591875I2

2J1J2 + 63518400I2
2J

2
2 + 8637786I2

2J1J3−
58484160I2

2 J2J3 + 14084096I2
2 J

2
3 + 13454100I2J1J4 − 71938125I2J2J4+

29031030I2J3J4 − 3118500J2
4

)
/414720000.

Since the condition G8 = 0 for the system (21) is equivalent to the GL(2,R)- invari-
ant condition J5 = 0, we obtain the first GL(2,R)- invariant necessary condition to
have a center at the origin of coordinates of system (1) with S1 = 0, I2 > 0 and
I3 = I4 = 0.

So we have that G8 = 0 implies G14 = G20 = 0. Because for the system (21)
G8 = (K +M)P , then the condition G8 = 0 implies P = 0 or K +M = 0.

If, P = 0, then the comitant S4 ≡ 0. In this case, by Remark 4., the system has
center at the origin of coordinates.

So, next we consider the situation when K + M = 0. In this case, the system
(21) is reduced to the system:

dx

dt
= y +

5H + 4P

5
x4 + 4Kx3y +

30L− 12P

5
x2y2 − 4Kxy3 − (H + 2L)y4,

dy

dt
= −x+Kx4 +

4P − 20H

5
x3y − 6Kx2y2 − 12P + 20L

5
xy3 +Ky4. (22)

For the system (22) the Lyapunov quantities G26, G32, G38, calculated by using
the formulas (14) and (15), have the following form:

G26 = F0F1F2F3F4/84000000

G32 = G26(922393092509I2J1 − 7764307622400I2J2 + 4866278972800I2J3+

3192990020695J4)/3146766336000+

3F0F2F3F4(H + L)T1/36700160000+

F0F1F3F4(H + L)T2/3369074688000−
221F0F1F2F4(H + L)T3/23506452480000−
19F0F1F2F3(H + L)T4/580123856076800,

G38 = G26

(
1260330988434177209628113I2

2J
2

1 − 1565022781470031761945900I2

2J1J2+

3961006936844834443936320I2

2J1J3 − 8168120539265700752256 · 103I2

2J2J3+

2369232236068131016396800I2

2
J2

3
+ 10245606623605773424473980I2J1J4−

5406135013075353898294500I2J2J3 + 19179000607759206394593600I2J3J4+

19995035693675277842822075J2

4

)
/833778038297581977600000−

F0F2F3F4(H + L)
(
79683781250(H + L)4 + 16596426225(H + L)2T1−

142466T 2

1

)
/465032131379200000−

F0F1F3F4(H + L)
(
5162357307858086250(H + L)4+
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56310112366375(H+ L)2T2 − 29394738T 2

2

)
/250457744498759156367360000+

F0F1F2F4(H + L)
(
24262059975447656250(H+ L)4+

11785658137723675(H + L)2T3 + 12640691034T 2

3

)
/8656725653336988057600000+

F0F1F2F3(H + L)
(
36485669757340710580038147(H+ L)4 − 1810577808T 2

4+

22352124982450552136(H+ L)2T4 )/1534080025254517631690342400000,

where polynomials Fi, i = 0, 4, and Tj , j = 1, 4, have the forms

F0 = K(−3H2 + 16K2 + 18HL− 27L2)P,

F1 = 45H + 45L+ 8P,

F2 = 35H + 35L+ 24P,

F3 = 85H + 85L+ 24P,

F4 = 665H + 665L+ 116P,

T1 = − 2051H2 + 1584K2 − 4894HL − 1259L2,

T2 = − 373481H2 + 994704K2 − 1244314HL + 123871L2,

T3 = − 105177H2 + 36368K2 − 228538HL − 86993L2,

T4 = − 215747339H2 + 134963680K2 − 498976518HL − 148265499L2 .

If F0 = 0, then the Lyapunov quantities G26, G32 and G38 are equal to zero.

If F0 6= 0, then G26 = 0 if and only if F1F2F3F4 = 0. If at least two of
polynomials Fi, i = 1, 4, are equal to zero, then H +L = 0 and P = 0 which implies
G32 = G38 = 0. Moreover, this implies also F0 = 0.

We claim that even the equality with zero of only one of the polynomials Fi, i =
1, 4, together with G32 = G38 = 0 also implies F0 = 0. For the vanishing of G26, we
consider the following four cases:

1. F1 = 45H + 45L+ 8P = 0 with F2, F3, F4 6= 0,

2. F2 = 35H + 35L+ 24P = 0 with F1, F3, F4 6= 0,

3. F3 = 85H + 85L+ 24P = 0 with F1, F2, F4 6= 0 and

4. F4 = 665H + 665L + 116P = 0 with F1, F2, F3 6= 0.

Case 1. Let F1 = 45H + 45L+ 8P = 0 and F2, F3, F4 6= 0. In this case

G32 = 3F0F2F3F4(H + L)T1/36700160000

and for the vanishing of G32 we have the following subcases:

1.1. H + L = 0 and

1.2. T1 = 0.

Subcase 1.1. If H +L = 0 then together with the condition F1 = 45H +45L+
8P = 0 it leads to P = 0, which implies the comitant S4 ≡ 0. In this case the system
has a center at the origin of coordinates.

Subcase 1.2. If T1 = 0, then G38, up to a numerical factor, has the form
G38 = F0F2F3F4(H + L)5. Notice that the Lyapunov quantity G38 can be nonzero
and this implies that the condition G38 = 0 is a necessary condition for the existence
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of a center at the origin of coordinates. The condition G38 = 0 implies H + L = 0
then together with the condition F1 = 45H + 45L + 8P = 0 it leads to P = 0. In
this case the system has a center at the origin of coordinates.

So, in this case for the existence of a center at the origin of coordinates of the
phase plane of system (22) the vanishing of Lyapunov quantities G26, G32 and G38

is necessary , which implies

F0 = K(−3H2 + 16K2 + 18HL− 27L2)P = 0.

This condition is equivalent with the following invariant condition

J6 = 16K(−3H2 + 16K2 + 18HL− 27L2)P 5 = 0.

Cases 2, 3 and 4 can be analyzed by the same way described above and it leads
to the same result. So, we obtain that for the existence of a center at the origin of
coordinates of the phase plane of system (21) the realization of the conditions:

G8 = G26 = G32 = G38 = 0

is necessary, which leads to the invariant conditions:

J5 = J6 = 0.

Sufficiency. In proving the necessity, it was established that the condition

KP
[
(16K2 − 3(H − 3L)2

]
= 0 (23)

is the necessary one for the existence of a center at the origin of coordinates for
the system (22). Next we prove the sufficiency of this condition. Condition (23) is
verified if one of the following equalities is fulfilled:

(i) P = 0; (ii) K = 0; (iii) K =

√
3

4
(H − 3L); (iv) K = −

√
3

4
(H − 3L).

Case (i). If P = 0, then S4 ≡ 0 and the point (0; 0) is a singular point of center
type for the system (22). This case was analyzed above.

Case (ii). If K = 0, then in this case the system (22) takes the form:

dx

dt
= y +

5H + 4P

5
x4 +

30L− 12P

5
x2y2 − (H + 2L)y4,

dy

dt
= −x+

4P − 20H

5
x3y − 12P + 20L

5
xy3. (24)

For the system (24), the condition

Q(−x; y)P(x; y) = −P(−x; y)Q(x; y) (25)

is fulfilled, i.e. the straight line defined by the equation x = 0 is a symmetry axis
for the system (24). So, the point (0; 0) is a singular point of center type for the
system (24), i.e. for the system (22) with K = 0.



128 IURIE CALIN, STANISLAV CIUBOTARU

Case (iii). If K =

√
3

4
(H − 3L), then the system (22) takes the form

dx

dt
= y +

5H + 4P

5
x4 + (

√
3H − 3

√
3L)x3y +

30L− 12P

5
x2y2−

(
√

3H − 3
√

3L)xy3 − (H + 2L)y4,

dy

dt
= − x+

√
3H − 3

√
3L

4
x4 +

4P − 20H

5
x3y − 3

√
3H − 9

√
3L

2
x2y2− (26)

12P + 20L

5
xy3 +

√
3H − 3

√
3L

4
y4.

The trajectories of the system (26) are symmetric with respect to the straight line
defined by the equation x−

√
3y = 0. With the rotation of axes

x1 = x cosα+ y sinα, y1 = −x sinα+ y cosα (27)

with the angle α = −π
3
, the system (26) becomes as follows:

dx1

dt
= y1 −

5H + 45L+ 16P

20
x1

4 +
−45H + 75L+ 24P

10
x1

2y1
2 +

7H − L

4
y1

4,

dy1

dt
= −x1 +

5H + 45L− 4P

5
x1

3y1 +
15H − 25L+ 12P

5
x1y1

3. (28)

For the system (28) the condition (25) is verified in coordinates of x1 and y1, i.e.
the straight line defined by the equation x1 = 0 is a symmetry axis for the system
(28). Therefore, it follows that the straight line defined by the equation x−

√
3y = 0

is the symmetry axis for the system (26). So, the point (0; 0) is a singular point of

center type for the system (26), or for the system (22) with K =

√
3

4
(H − 3L).

Case (iv). If K = −
√

3

4
(H − 3L), then the system (22) takes the form

dx

dt
= y +

5H + 4P

5
x4 − (

√
3H − 3

√
3L)x3y +

30L− 12P

5
x2y2+

(
√

3H − 3
√

3L)xy3 − (H + 2L)y4,

dy

dt
= − x−

√
3H − 3

√
3L

4
x4 +

4P − 20H

5
x3y +

3
√

3H − 9
√

3L

2
x2y2− (29)

12P + 20L

5
xy3 −

√
3H − 3

√
3L

4
y4.

The trajectories of system (29) are symmetric with respect to the straight line defined

by the equation x+
√

3y = 0. With the rotation of axes (27) with the angle α =
π

3
,

the system (29) becomes like the system (28), for which the line defined by the
equation x1 = 0 is a symmetry axis. So, the point (0; 0) is a singular point of center

type for the system (29), or for the system (22) with K = −
√

3

4
(H − 3L).
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In such a way the conditions

G8 = G26 = G32 = G38 = 0 (30)

or the invariant conditions

J5 = J6 = 0 (31)

are sufficient conditions for the existence of a singular point of center type at the
origin of coordinates for the system (21). Because G8, G26, G32, G38, J5, J6 are
GL(2,R)-invariants and the system (21) was obtained from system (1), with con-
ditions S1 = 0, I2 > 0, I3 = I4 = 0 , by linear transformation and time scaling, it
follows that the conditions (30) and (31) are necessary and sufficient for the exis-
tence of a singular point of center type at the origin of coordinates for the system
(1) with S1 = 0, I2 > 0 and I3 = I4 = 0.

Theorems 1 is proved.
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