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Application of the Fast Automatic Differentiation for
Calculation of Gradients of Material’s Bulk Modulus
and Shear Modulus

Alla Albu, Vladimir Zubov

Abstract. In computer modeling of crystal structures the gradient optimization
methods are often used. This raises the need to calculate the exact gradients of the
Bulk modulus and the Shear modulus of materials. With help of the Fast Automatic
Differentiation the formulas that allow the calculation of the exact above-mentioned
gradients were derived in the case where the total interatomic energy of the system is
determined by Tersoff’s Potential.
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1 Introduction and problem formulation

When modeling many solid atomic structures, such as carbon, silicon, germa-
nium, and their compounds, the Tersoff’s Potential is often used (see [1]). It is an
example of the multiparticle potential based on concepts of link order: the interac-
tion between two atoms depends on the local surrounding. The Tersoff Potential
consists of ten parameters specific to the modeling material.

Various mathematical models are used to study materials of atomic structures.
Some parameters of these models are unknown. They should be identified from
the condition that the calculated properties of the modeled material are close to its
properties, which were found experimentally. In [2] was considered an optimization
problem of minimizing the following cost function

F©) = wiwi(§) — 5:)? (1)
=1

where w; is the weight factor; y; is the value of the i-th material characteristic
obtained experimentally, and y;(§) is the value of the same material characteristic
calculated using Tersoff Potential with ¢ parameters (£ € R™ are vector parameters
to be identified). The solution of the problem is looked for on the set X C R™,
which is a parallelepiped. Its boundaries are chosen so that it obviously contained
the admissible range of parameters. The quantity of items in formula (1) varies
depending on the studied material. A required set of parameters has to provide
the minimum deviation of the calculated characteristics of material from the known
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experimental values, thereby most precisely describing the modeled properties of a
crystal. For numerical solution of this problem the gradient minimization methods
are often used. There exists the need to calculate the exact value of the objective
function gradient efficiently.

These derivatives are often calculated (in particular, see [2]) using the finite
difference method. Studies have shown that finite difference method does not allow
to calculate the gradient of the cost function with acceptable accuracy and requires
(m + 1) times to calculate the value of the function.

One of the terms in formula (1) is the total energy of the system of atoms. As
the interatomic potential energy, the Tersoff Potential was choosen. In [3], using the
Fast Automatic Differentiation (see [4]), formulas to calculate the exact gradient of
the total energy with respect to parameters of Tersoff Potential (specific for modeled
substance) were received.

The other two terms in formula (1) are the Bulk modulus of elasticity (it relates
to how the volume of a piece of material changes when exposed to a uniform change
in pressure) and the Shear modulus. They are proportional to B(E) — the second
derivative of the total energy with respect to length of crystal lattice. Note that
in [2] B(F) is also calculated using the finite difference method.

In this paper, we build a multistep algorithm to calculate the exact value of B(E)
in the case where the total energy of the system is determined by Tersoff Potential.
With the help of Fast Automatic Differentiation we derived formulas to calculate
the gradient of B(FE) with respect to Tersoff parameters with machine precision.

2 Calculation of second derivative of total energy with respect
to atomic lattice coefficient

Let a be the initial length of the edges of the lattice of atoms; @ = aa (o € R) —

length of the edges of the lattice of atoms after deformation; p = a—a — deformation
a+p

a
some lattice atom before deformation and 7y = (Zg1,Tke, Tk3) are its coordinates

after deformation, then x;; = (1 + B) Tp1, Tpo = (1 + B) Tho, Tpz = (1 + B) Th3.
Let E(71,T2,...,71) be the totalaenergy of atoms’ scgfstem before deforr?lation.
Then E(%l,%g, ...,%1) =F [(1 + g) 71, (1 + S) T9y eeey (1 + g) FI] is the total en-
ergy of atoms’ system after deformation. The Bulk modulus and the Shear modulus
of the material are proportional to B(FE), that can be calculated by the formula:

B(E) ng[( O, (14 L) o (14 2) 7|

As to total energy E(71,72,...,71) it is calculated with the help of expression

I I
E(71,79,...,T1 Z Z Vij,

i=1 j=ljj#i

parameter. Then (1 + p) a. If 7, = (a1, TR2, Tr3) are the coordinates of
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where Vj; is the interaction potential between atoms marked ¢ and j (i-atom and
j-atom). In present paper the Tersoff Potential is used as interaction potential:

Vij = fe(rij) (VR(rij) — bijVa(rij)) ,

1, r < R— Rew,
1 . m(r— R

folr) = 2(1—s1n<(2th)>>, R— Rew <7 < R+ Reut,
0, T>R+Rcut7

% exp (—ﬂ\/ﬁ(rij - re)) ,

Vit = Va(rij) = 5

SD 2
A e
Vig = Valryg) = g— exp <—5 (i = Te)) ;

I
1
bij=(L+(G)N 7, Gi= D felri)giwie,  wipk = exp(Niji),
k=1;k+#i,j
c\?2 c?
Tigk = (rij — Tik)ga ik = 1+ (g) @2+ (h — cos Oy;1,)2
ij

Here I is the number of atoms in considered system; r;; is the distance between i-
atom and j-atom; ©;j; is the angle between two vectors, first vector begins at i-atom
and finishes at j-atom, second vector begins at i-atom and finishes at k-atom; R
and R, are known parameters, identified from experimental geometric properties
of substance. Tersoff Potential depends on ten parameters (m = 10), specific to
modeled substances: D, re, 3,5,1n,7, A, ¢, d, h.

Let us construct the multistep algorithm to calculate the total energy F of atoms’
system (interaction potential is Tersoff Potential). The distance between i-atom and
j-atom is determined by the formula:

rij = \/(l‘u — 1) + (w2 — w25)? + (30 — x35)?,

where x1;, x9;, 23; are the Cartesian coordinates of i-atom. If ©;;; is the angle be-

tween two vectors, connecting i-atom with j-atom and k-atom respectively, then
2 2 2

T T — Tk : :

cos Ok = Qijk = SR w— For compactness further in the study we introduce
TijTik

vectors @ and Z having the following coordinates: @’ = [ur, ug, ..., ulo]T, L =

T
[21, 22, ...y 210] where w1y = De, us = re, ug = B, ug = S, us; =
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n, ug=17 uUr=A ug=c, ug=d, uyp=~"n

21 = {Zijk V(@1 — 218)? + (T2 — 29)? + (w31 — 23%)% ¢ = F(1, Z1,Uh),

25 = (1) — 21)2 + (2) — wo0)? + (w35 — $3k)2} = F(2,22,Us),
13 ik
ijk (Zijs)g + (Y )2 — (2 éj

|
Z28 = Qijk = 2,2”’“2” = F(3,Z3,Us),
1 713

Zijk = fc(zi]k)} = F(4, Z47 U4),

}
{ 2
g u us)®
z5 = {zéjk = gigle = 1+ <UZ>  (ug)? +((Uiz) —25%)? }
{
{
{
=

F(57 Z57 U5)a

26" =Tk = (21 - ?k)?’} = F(6, Zs, Us),

zéjk = wjjk = exp((m)?’z”k)} F(7,%Z7,Uy),

20 = folrin)gijpwije = 24" 2" ?k)} = F(8, Zs, Us),

zg = Gj = Zk Liki,j # 2 k} F(9, 29, Uy),

21 = 7Gij = e } F(10, Z19, Uro),

2= (1G)" = (210)“5} = F(11, Z11, Un),

2 =by =1+ zﬁ)_i} = F(12, Z12,U12),

2% = /(@1 — 21)2 + (w2 — 025)2 + (231 — 963j)2} = F(13, Z13,U1s),
?4 = Vit = i exp (—ugv/2ua(s — w) ) } = F(14, Z14, Una),
= Vi =it exp (‘US\/%(Zg - U2)>} = F(15, Z15,Uss),
16 = fc(z13)} F(16, Z16, Us),

o = Vi = #ib(eH — i) | = FOT 20, U,

I\
ik
w
I
f—’h\f—’h\/—"\f—’h\/—’h\f—’h\/—"\r—"\
N

Z LI, j:ﬁ’ J# 1, k:ﬁ, k#%])
Note that 23 (( > Tigs (1 + g) Tiks (1 + g) T’jk) = zgjk(rij,rik, rjk);
”k (( ) Tij, (1 + g) Tik, (1 + g) Tjk) = Zéjk(rij, rikyrjk:)-

The energy E of the atoms in the system with the help of new variables may be

rewritten as follows: . ,
EGu) =Y Y =
=1 j=lij#i
Variables z1, 29, ..., z17 (the phase variables) are determined by the specified above
multistep algorithm z; = F(I, Z;, U;), (I = 17), where Z; is the set of elements z, in
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the right part of the equation z; = F(I, Z;, U;), and Uj is the set of elements u,, that
appear in the right side of this equation. Note that each component z; depends on
a number of other components (z 7 or zl” .

Let us introduce also the following designations: z1, Zo, ..., 217 and 21, 29, ..., 217,

e
where Zn = g;gk . Eﬁk _ 0z} (Tijarikarjk) _
dp B
p=0
azwk((lJFg)?“ija(lJfg)?"ik, (1+2) rn) n=1,8
op -
i (= P
5= 5 gy = 2 ) O (1+§) riy) . n=017,
dp B dp B
p=0 p=0
= <ijk ~ijk 022" (i, i Ti)
Zn = Z’I’Z . ZTL = a 3 —
p —
p=0
2" (L4 &) rig (14 8) 7 (1+ 2) jn)
- 0 2 5 n = 1,8,
p o
ER O i (G| B A (SR LY) e
n — n *“n — 8/)2 - - 8/)2 ) , =9, ,
p=0 p=0

The above values are calculated by the formulas:

~ijk . ~ijk . ~zgkz 0: Sijk _ Ofe (( )Tzk) )
Z = ri/a; Z = Tik/ @ 3 =W o ap i
p=0
~ijk . ~ijk zjk w]k ijk _ijk 37/ ..
zZ" = 0; Zg /a; z7" = 328" 27" (ur)? /a;
I
~ijk 'L]k ~ijk 'L]k Z]k‘/\/ij ~ij ~1]k: ~ij _ ~F .
Zg Z5 ( +z )7 Zg = Z 235 Z1p = Rg U6;
k=1,k#i,j

.. .. .. .. 1 1
j _ g i \us—1. >J . S _ .
zyy = Zrous(210)" 12 = 2u5211(1 + Z ) s 213 = 213/%

i _usV2uarihy Ly ws/2/wazpe sy 0 (L4 6) i)

14 = 0 ) 15 = a ) 16 = 3p ;
p=0
~ij 1] ~i] ~ij i ~ij 1] ~i] 1] 1]
217 = z16214 216212215 + 214Z16 2122162'15 2157216712
~ijk  <ijk <ijk =ijk ) :”l]k‘ o0 fe (( )Tzk) .
Z] =2y =2zg3 =2z5 =0 Z4 5,2 ;
P _
p=0

~ijk ik ~ijk k ijk ik
5 = 620" fa2 = BN )32 (ur)? + 2);
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. . . 1 y
B PE P 5= > B
k=1;k#1,j
~ij ~ij ~ij i _ ~ij
210 = Z9 U6; Z1; = us(us — 1)(210)2(2?0)7“L5 2+ U5(Z1o)(z1o)u5 L
~ij 1+2 1 1 1 .
B = RGP+ AD TR - B ) TR =0

4us 2us

2 PN
ij_ 2(ug)*ua(2ih)?21) 37 2(us)*(214)° 21} 39 Tl ((1 " a> TZJ)

z g g = M
14 a2 ) 15 CL2U,4 ’ 16 apg )
p=0
~ij =~ ij ~ij ij _ij ~iJ ~Z] i ] l] ~ZJ
17 = 216214 + 27"16214 216212715 — 2216212215 — 27164124151

T B T X g if
+TZ14%16 — 212216Z15 2215216212 215%16%12"

To compute the second derivative of a function f.(r) there is a need for smoothing
this function. It is proposed to replace the function f.(r) as follows:

0, r> R+ Rcuty
f()_ 17 TSR_RCUIH
TN O (f)P0, R <7 < R+ Reu,
C(Qf*_(f) (r))’ R—Re <r <R
3 _ Rcut _ Rzut
Where C - Rv f* exp(—§), QO(T) - (7“ _ R Rcut)27 1/1(7") - _ R—|— Rcut)Q‘
Derivatives of function f.(r) with respect to p are calculated by the formulas:
0, r > R+ Reut,
afc((1+§) 7“) . 0, r < R — Reuyt,
8p 0 N C- (f*)(’p(r) ln(f*) : (E(T)a R<r <R+ Rey,
” C- (f)¥n(f) - o(r), R~ Row <7< R,
07 r Z R + Rcut7
07 r S R - Rcu ’
2f((1+2)r)| ) = '
o7 =1 C-(£)P0m(f) [In(£)P(r) + 30|, R <r<R+Reu,
=0 ~ ~
| e ) [0+ 90| R-Ra<r < R
—2rR2 ~ —2rR2
h 0 = cut — cut
where (1) a(r — R — Rewt)?’ () a(r — R+ Rewt)?’
= 6r2RCut = 6T2Rc’u,t

p(r) = o(r) =

a?(r — R — Reut)*’ a?(r — R+ Reut)*

Thus, B(FE) is calculated by the formula
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I I .
)
B(E) = E , E 217
i=1 1=1;j%#1

where the variables z1, 2o, ..., 217, 21, 22, ..., 217, 21, 22, -++, 217 are determined by men-
tioned above multistep algorithm.

3 Determining the adjoint variables and gradient

We represent the general formulas of Fast Automatic Differentiation below, which
will be used to calculate the gradient of function B(E) with respect to parameters
of Tersoff Potential specific to modeled substance. Let vectors z € R™ and u € R™
satisfy the following system of nonlinear scalar equations (multistep process):

Zi:F(i,Zi,UZ'), 1§z§n (2)

where Z; is the set of vectors z;, that appear at the right part of equality (2), and Uj;
is the set of vectors u;, that appear at the right part of the same equality (2). Usually
the vectors z € R™ and the vectors u € R™ are called dependent (phase) and inde-
pendent (control) variables respectively. Let differentiable function W(z, u) define
mapping W : R" x R™ — R!. Then the composite function Q(u) = W (z(u),u) is
differentiable, and its gradient with respect to the independent variables u; is given
by the formula

o0
8ui B

W, (z,u) + Z Fu, (4, Zq; Uq)pg- (3)
9€K;

The multipliers p; € R™ are the adjoint variables that are defined by the following
system of linear algebraic equations:

pi :Wzi(27u)+ Z FZi(Q7Zq7Uq)pq7 (4)
q€Q;

where Q; and K; are the index sets:

Q;={j:1<j<n, z€Z} Ki={j:1<j<n, weU}.

In accordance to (4), for all i = 1,1, j=1,1, j#i, k=11, k+#i,j
adjoint variables corresponding to the phase variables z1, 2o, ..., 217, 21, 22, ..., 217,
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?1,52, ...,%17 are defined by the equations:
i = P T R R
pz’7jkz _ Eijkzéjki);]k +~ka ?kﬁghr ijk zykpzyk+
b ) 328 () + 257+ S
pd" =y Py = uepip;

oy = [s(oss — 1)(us — 2) (1) (EH) + w

5(us — 1)(»3; )4 2Zlo p11+

us—2737% us—1
us (us — 1) (245) "5 220B1) + us(21h) " 1ol
pij = — (1 + dus)(1 + 2us) (1+ 2 )—i—i*(zw )Qﬁ” w(l + 24 )_i_
11 S(U5)3 11 11 12 4(’LL5)2 11
~ij~ij (14 2us) RS i 1y
XZ11D — 5 1tz s 2P 1+= 7 p
11P12 4(us)? ( ) 11P12 — 2u5( ) 125
i T g 9% i e N
Py = (= 216215 215216 Zl6 Z15)P17
2 N2 .
o miiii | 2(ug)ua(21h)? =
p14 = Z16P17 —ag —usy 2” p14,
i i\ 2(U3)2(Zij3)2fij U3213~u
pis = (— 216212 225%% — 2ihz19)D1r + Zu, PV 2/ug D153
ij I I gy i 80\ DT ii A
pie = (14 — 212215 2'212"515 219215)P17 pi7 =0;
~ijk A/ij zyk ik _ijk~ijk . ~ijk _ ~ij.
b7 =2z p + Zy 25 Pg 3 Pg = pg ;
~j  ~ij ~ij i \us 1247 ~ij
Pg = U6P1p; Pro = 2us(us — 1)(210)% P11 + U5(z10)“5 210P115
17 \—1/(2us)—
~ij _ (14 2us) 1 1/(2us)~2id 59 (14 zp) M),
1= (1+=z ) 11P12 — Dia;
Q(U5) 2us
S o5l il 4 5 i T 53
Pia = —2(Z15215 + Z15%16) P17 Piy = 2Z16P17;
Sid ozl i 4 i iy 5 o(zid _ i S iy
Pis = —2(Zg213 + 215216)P175 Pie = 2(21) — Z12215 Z15212)P175
i ~ijk ik ijkiik ~ijk  ~ij ~ij  ij
P77 = 0’ Py =24 Z5 Pg Pgs =Dy ; Pg = U6P105
y g 5\ — 1.
~ij i \us 15 ~ij (1+27) 1/(2us) 1:1]_
P10 = U5(Z1o) P11; P11 = — P12
2U5
=ij ij ij = =ij i =
P12 = —215%16P17; P14 = Z{6P17;
~7J ij a5 I ~j i ~ij ~j 1:
Pis = —2{2216P17; P16 = (21 — 212215)1717» P17 =

)
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The adjoint variables are calculate in the following order:

~ij =J4Jj i j ~ij i ij
pl?ap167 . 7p7 ap17,' 'ap'? ap177 "'7p5 .

103

Those adjoint variables, whose formulas for calculation aren’t provided above, aren’t

used for calculation of the components of the gradient.
The partial derivatives of function

I I i
Q(w) = B(E() =) 21

i=1 j=lij#i

with respect to independent variables u,,, (m = 1,10) (components of gradient),

according to equation (3), are determined by the relations:
14 Z] 2?5 ij
8u1 Zz; Z ( ul Pls) 3
7é )
I I
P33 (st + /2Tl

=1 j:].
J#i
o0

i=1 j=1
JFi
+i Z <4u3u4§@,>2z;% Wﬁ)+
=1 =1
JFi
! ! dug(249)22" J] 2424
+Z Z ( a2134 15 _~13 15\/2/7 >;
=1 =
JFi
%)

o5 ?
87114 = Z Z ((— " 1_4 1~ 0.5U3M(zl3 - u2)214> p14> +

! ! z” .. .. ..
I ((—M(f_n+o.5<u3/u4>m<zg—uz>zi@) paﬂ5)+

Buz :i i <Zl4 ( m(*’«'m 2)) pﬁ + 2?5 <—\/2/T4(Z% - U2)> p%) +
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us3 . - 2(u;3)2(zij)2 .
((_m\/2/u4213214)511]4+<a213 20 pus | +
1

P N
o0 . (1 + 2%)~1/(us)
ous Z Z <(21]0) *In(210)pf) + 21(25)2 In(1+ 2)ph | +

=1 ]:
JF#i
[ I . ..
3 > (5 + us(eh) e E ) ) 7)) +
=1 j= 1
JFi
I - -
+3° 7 ((@us = D2 + (0s)? - us) ()2 n(:)) (FH)%5n ) +
=1 ] —
J#i
L i i
+Z Z (((210)u5 " us(21) " 11“(210)) g10%1)“‘
=1 ] =1
JF#i
I 1 iJ\=1/(2us)-1  1p
+Z Z<<(1+Z121()u5)2 1 (41(:;)'211) (1+ ) 1/(2us)— )Aijlﬁllg) +
=15
JFi
Ll (1 +us) i\ —1/(2us)—2 \ (2id \25
+Z Z <(_ 2(us)3 (14 217) )( 1) p12> +
=1 ] =1
JF#i
I I ij
+Z Z (((1+2u852i§)(j+21]1)(1+ ) 1/(2us)— 2) (wy)zﬁllg) n
=1 ] =1
JFi
r 1 —1/(2us)—1 Iy
+Z Z (<(1 * Z us )2 lnil(;; )<1 + 2] T Bus) ) 51j1p1j2> ;
i=1 ] =1

J#
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I I
_ J U )~ .
oug Z Z (Z9 Pio + 29 Pro + 29 Pw) ;
7&

o9 I I I - ) . ”
dur Z Z Z (3Zéjkzz7]k(u7)2pz7jk + aZéjkzZ?jk(u7)2ﬁfL7]k> +

JFiT k#ijg
! ! ! 3Zéjk2;jk 18 ijk 5 6 2 ~ijk )
T Z Z Z a2 ( zg (ur)” + 6(ur) ) b7 )
=j=1 k=1
jFT k#Fij
I I I
o0 2ug 2ug ijk
Oug ; jg i :Zl (((ug)Q (u9)2 + (u10 — zgﬂk)2> 5
JFL k#Fij
I I I
N —2(ug)? 2(ug)“ug ijk
= + p 3
Oug ; Z Z (ug)? ((u )2 + (u L )2)2 >
j 1 k=1 9 10 3
JFT k#Fij
6@255 Ei 55 2(us)? (u10 — 25" ijk
duipy 4 2 ijky2) 2 |
=T ko \\ () + (o = 27)

J#Fi k#ij

The received formulas for calculation of the gradient of function B(FE(u)) out-
wardly are represented quite difficult and bulky. Therefore, there is a natural ques-
tion: whether to use simpler approaches, for example, finite difference method, to
calculate the gradient functions B(FE(u)).

In [5] the comparison of function gradients, calculated by the finite differences
and by using Fast Automatic Differentiation formulas (see above), was presented.
The results of comparison are the following:

1) when computing the gradient of complicated function using finite differences,
one must conduct researches related to the choice of suitable increments of each
parameter;

2) for different parameters, the researches must be carried out independently;

3) for the same parameter, the researches must be carried out if its value changed;

4) to calculate the gradient of complicated function using finite differences one
must (m + 1) times calculate the value of function itself.

In contrary to it, the Fast Automatic Differentiation enables us to calculate
gradients of any complicated function with the machine accuracy for arbitrary pa-
rameters. The machine time that is needed to calculate the gradient does not exceed
three times of calculation of the function itself.
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4 Conclusion

In this work an efficient algorithm to calculate gradients of the Bulk modulus
and the Shear modulus is presented. The algorithm is based on the modern Fast
Automatic Differentiation technique. The formulas to compute the mentioned gra-
dients are derived. These formulas allow us to compute the gradients with the
machine accuracy. The computation time that is needed to calculate the gradient
does not exceed three times of calculation of the function itself. The comparison
of the proposed algorithm and finite differences method to calculate gradients of
complicated function is made. The conclusion is made: the calculation of gradient
of Bulk modulus and the Shear modulus using finite difference method is linked to
enormous difficulties.
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