
BULETINUL ACADEMIEI DE ŞTIINŢE
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Some Homomorphic Properties of Multigroups

P.A. Ejegwa, A. M. Ibrahim

Abstract. Multigroup is an algebraic structure of multiset that generalized crisp
group theory. In this paper, we study the concept of homomorphism and its properties
in multigroups context. Some related results are established.
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1 Introduction

The idea of multigroup was proposed in [5] as an algebraic structure of multiset
that generalized the concept of group. The notion is consistent with other non-
classical groups in [4]. Although other researchers in [2, 3, 6, 7, 10, 11] earlier used
the term multigroup as an extension of group theory (with each of them having
a divergent view), the notion of multigroup in [5] is quite acceptable because it is
in consonant with other non-classical groups and defined over multiset (see [9] for
multisets details).

Some new results on multigroups following [5] were presented in [1]. In this
paper, we study the notion of homomorphism in multigroups context, present some
of its properties and obtain some results.

2 Preliminaries

Definition 1 (see [8]). Let X = {x1, x2, ..., xn, ...} be a set. A multiset A over X
is a cardinal-valued function, that is, CA : X → N such that x ∈ Dom(A) implies
A(x) is a cardinal and A(x) = CA(x) > 0, where CA(x), denotes the number of
times an object x occur in A. Whenever CA(x) = 0, implies x /∈ Dom(A). The set
X is called the ground or generic set of the class of all multisets (for short, msets)
containing objects from X.

A multiset A = [a, a, b, b, c, c, c] can be represented as A = [a, b, c]2,2,3. Different
forms of representing multiset exist other than this. See [8, 9, 12] for details.

We denote the set of all multisets by MS(X).

Definition 2 (see [9]). Let A and B be two multisets over X, A is called a submul-
tiset of B written as A ⊆ B if CA(x) ≤ CB(x) ∀x ∈ X. Also, if A ⊆ B and A 6= B,
then A is called a proper submultiset of B and denoted as A ⊂ B. A multiset is
called the parent in relation to its submultiset.
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Definition 3. Two multisets A and B over X are comparable to each other if A ⊆ B
or B ⊆ A.

Definition 4 (see [12]). Let A and B be two multisets over X. Then the intersection
and union of A and B, denoted by A∩B and A∪B respectively, are defined by the
rules that for any object x ∈ X,

(i) CA∩B(x) = CA(x) ∧ CB(x),

(ii) CA∪B(x) = CA(x) ∨ CB(x),

where ∧ and ∨ denote minimum and maximum.

Definition 5. Let {Ai}i∈I be a family of multisets over X. Then

(i) C⋂
i∈I Ai

(x) =
∧

i∈I CAi(x)∀x ∈ X,

(ii) C⋃
i∈I Ai

(x) =
∨

i∈I CAi(x)∀x ∈ X.

Definition 6 (see [5]). Let X be a group. A multiset G is called a multigroup of
X if it satisfies the following conditions:

(i) CG(xy) ≥ CG(x) ∧ CG(y)∀x, y ∈ X,

(ii) CG(x−1) ≥ CG(x)∀x ∈ X,

where CG denotes the count function of G from X into a natural number N.

By implication, a multiset G is called a multigroup of a group X if

CG(xy−1) ≥ CG(x) ∧ CG(y), ∀x, y ∈ X.

It follows immediately from the definition that CG(e) ≥ CG(x) ∀x ∈ X, where e
is the identity element of X. A multigroup G of X is complete if G∗ = X, where
G∗ = {x ∈ X | CA(x) > 0}. Also, the set G∗ is defined by

G∗ = {x ∈ X | CA(x) = CA(e)},
where e is the identity of X. We denote the set of all multigroups of X by MG(X).

Example 1. The following are examples of multigroups.

(i) Let Z4 = {0, 1, 2, 3} be a group with respect to addition. Then
G = [0, 1, 2, 3]4,3,4,3 is a multigroup of Z4.

(ii) The zeros of f(x) = x8 − 2x4 + 1 form a multigroup of a group
X = {1,−1, i,−i}.

(iii) Let X = {ρ0, ρ1, ρ2, ρ3, ρ4, ρ5} be a permutation group on a set
S = {1, 2, 3} such that

ρ0 = (1), ρ1 = (123), ρ2 = (132), ρ3 = (23), ρ4 = (13), ρ5 = (12).

Then A = [ρ0, ρ1, ρ2, ρ3, ρ4, ρ5]7,4,4,3,3,3 is a multigroup of X.
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Definition 7 (see [5]). Let A, B ∈ MG(X). Then the product of A and B denoted
as A ◦B, is governed by

CA◦B(x) =
∨

x=yz

(CA(y) ∧ CB(z)), ∀y, z ∈ X.

Definition 8 (see [5]). For any multigroup A ∈ MG(X), there exists its inverse,
A−1 defined by

CA−1(x) = CA(x−1) ∀x ∈ X.

For example, let X = {0, 1, 2, 3} be a group of (Z4,+). Let A = [0, 1, 2, 3]4,3,2,3

be a multigroup of X, then A−1 = [0, 3, 2, 1]4,3,2,3. From Definition 6 (ii),
CA(x−1) ≥ CA(x)∀x ∈ X and also, CA(x) = CA((x−1)−1) ≥ CA(x−1). Hence,
CA(x) = CA(x−1). Since CA−1(x) = CA(x−1), we have CA(x) = CA−1(x). There-
fore, A = A−1 for every A ∈ MG(X).

Proposition 1 (see [5]). Let A ∈ MS(X). Then A ∈ MG(X) if and only if A
satisfies the following conditions;

(i) A ◦A ⊆ A,

(ii) A−1 ⊆ A or A ⊆ A−1 or A−1 = A,

(iii) A ◦A−1 ⊆ A.

Proposition 2 (see [5]). Let A,B ∈ MG(X), then the following hold.

(i) A ◦A = A,

(ii) A ◦B = B ◦A,

(iii) (A ◦B)−1 = B−1 ◦A−1,

(iv) (A ◦B) ◦ C = A ◦ (B ◦ C).

Proposition 3 (see [5]). Let A,B ∈ MG(X). Then A ◦B ∈ MG(X) if and only if
A ◦B = B ◦A.

Definition 9. Let {Ai}i∈I , I = 1, ..., n be an arbitrary family of multigroups of
X. Then {Ai}i∈I ∈ X is said to have descending or ascending chain if either
A1 ⊆ A2 ⊆ ... ⊆ An or A1 ⊇ A2 ⊇ ... ⊇ An, respectively.

3 Main Results

Throughout this section, we assume that multigroups are completely defined over
the underlying groups.

Definition 10. Let X and Y be groups and let f : X → Y be a homomorphism.
Let A and B be multisets over X and Y respectively. Then
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(i) the image of A under f , denoted by f(A), is a multigroup of Y defined by

Cf(A)(y) =
{ ∨

x∈f−1(y) CA(x), f−1(y) 6= ∅
0, otherwise

for each y ∈ Y .

(ii) the inverse image of B under f , denoted by f−1(B), is a multigroup of X
defined by

Cf−1(B)(x) = CB(f(x)) ∀x ∈ X.

Definition 11. Let X and Y be groups and let A ∈ MG(X) and B ∈ MG(Y ),
respectively.

(i) A homomorphism f from X to Y is called a weak homomorphism from A to
B if f(A) ⊆ B. If f is a weak homomorphism of A into B, then we say that
A is weakly homomorphic to B denoted by A ∼ B.

(ii) An isomorphism f from X to Y is called a weak isomorphism from A to B
if f(A) ⊆ B. If f is a weak isomorphism of A into B, then we say that A is
weakly isomorphic to B denoted by A ' B.

(iii) A homomorphism f from X to Y is called a homomorphism from A to B if
f(A) = B. If f is a homomorphism of A onto B, then A is homomorphic to
B denoted by A ≈ B.

(iv) An isomorphism f from X to Y is called an isomorphism from A to B if
f(A) = B. If f is an isomorphism of A onto B, then A is isomorphic to B
denoted by A ∼= B.

Definition 12. Let f : X → Y be a homomorphism. Suppose A and B are
multigroups of X and Y , respectively and A is homomorphic to B. Then the kernel
of f from A to B is defined by

kerf = {x ∈ X | CA(x) = CB(e′), f(e) = e′},

where e and e′ are the identities of X and Y , respectively.

Proposition 4. Let f : X → Y be a homomorphism. For A,B ∈ MG(X), if
A ⊆ B, then f(A) ⊆ f(B).

Proof. Straightforward.

Proposition 5. Let X, Y be groups and f be a homomorphism of X into Y . For
A,B ∈ MG(Y ), if A ⊆ B, then f−1(A) ⊆ f−1(B).

Proof. Straightforward.
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Definition 13. Let f be a homomorphism of a group X into a group Y , and
A ∈ MG(X). If for all x, y ∈ X, f(x) = f(y) implies CA(x) = CA(y), then A is
f-invariant.

Lemma 1. Let f : X → Y be groups homomorphism and A ∈ MG(X). If ∀x, y ∈
X, f(x) = f(y), then A is f-invariant.

Proof. Suppose f(x) = f(y) ∀x, y ∈ X. Then Cf(A)(f(x)) = Cf(A)(f(y)) implies
CA(x) = CA(y). Hence, A is f-invariant.

Lemma 2. If f : X → Y is a homomorphism and A ∈ MG(X), then

(i) f(A−1) = (f(A))−1,

(ii) f−1(f(A−1)) = f((f(A))−1).

Proof. (i) Let y ∈ Y . Then we get

Cf(A−1)(y) = CA−1(f−1(y)) = CA(f−1(y))
= Cf(A)(y) = C(f(A))−1(y)∀y ∈ Y.

Hence, f(A−1) = (f(A))−1.

(ii) Similar to (i).

Proposition 6. Let X and Y be groups such that f : X → Y is an isomorphic
mapping. If A ∈ MG(X) and B ∈ MG(Y ), respectively, then

(i) (f−1(B))−1 = f−1(B−1),

(ii) f−1(f(A)) = f−1(f(f−1(B))).

Proof. Recall that, if f is an isomorphism, then f(x) = y ∀x ∈ X, ∀y ∈ Y . Conse-
quently, f(A) = B.
(i)

C(f−1(B))−1(x) = Cf−1(B)(x
−1) = Cf−1(B)(x)

= CB(f(x)) = CB−1((f(x))−1)
= CB−1(f(x)) = Cf−1(B−1)(x).

Hence, (f−1(B))−1 = f−1(B−1).

(ii) Similar to (i).

Proposition 7. Let f : X → Y be a homomorphism of groups. If {Ai}i∈I ∈ MG(X)
and {Bi}i∈I ∈ MG(Y ), respectively, then

(i) f(
⋃

i∈I Ai) =
⋃

i∈I f(Ai),
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(ii) f(
⋂

i∈I Ai) =
⋂

i∈I f(Ai),

(iii) f−1(
⋂

i∈I Bi) =
⋂

i∈I f−1(Bi),

(iv) f−1(
⋃

i∈I Bi) =
⋃

i∈I f−1(Bi).

Proof. (i) Let x ∈ X and y ∈ Y . Since f is a homomorphism, so f(x) = y. Then
we have,

Cf(
⋃

i∈I Ai)(y) = C⋃
i∈I Ai

(f−1(y))

=
∨

i∈I

CAi(f
−1(y))

=
∨

i∈I

Cf(Ai)(y)

= C⋃
i∈I f(Ai)(y), ∀y ∈ Y.

Hence, f(
⋃

i∈I Ai) =
⋃

i∈I f(Ai).

The proofs of (ii)-(iv) are similar to (i).

Theorem 1. Let X be a group and f : X → X be an automorphism. If A ∈
MG(X), then f(A) = A ⇔ f−1(A) = A, consequently, f(A) = f−1(A).

Proof. Let x ∈ X, and suppose f(A) = A, we get

Cf(A)(x) = CA(f−1(x)) = CA(x)
= CA(f(x)) = Cf−1(A)(x)

implies that f−1(A) = A.
Conversely, let f−1(A) = A, we have

Cf−1(A)(x) = CA(f(x)) = CA(x)

= CA(f−1(x)) = Cf(A)(x).

Hence, f(A) = A.
Therefore, f(A) = A ⇔ f−1(A) = A.

Theorem 2. Let f : X → Y be a homomorphism. If A ∈ MG(X), then
f−1(f(A)) = A, whenever f is injective.

Proof. Suppose f is injective, then f(x) = y ∀x ∈ X and ∀y ∈ Y . Now

Cf−1(f(A))(x) = Cf(A)(f(x)) = Cf(A)(y)

= CA(f−1(y)) = CA(x).

Hence, f−1(f(A)) = A.
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Corollary 1. Let f : X → Y be a homomorphism. If B ∈ MG(Y ), then
f(f−1(B)) = B, whenever f is surjective.

Proof. Similar to Theorem 2.

Remark. Let f : X → Y be a homomorphism, A ∈ MG(X) and B ∈ MG(Y ),
respectively. If kerf = {e} that is, kerf ⊆ A∗, then f−1(f(A)) = A since f is
one-to-one.

Proposition 8. Let X,Y and Z be groups and f : X → Y, f : Y → Z be homomor-
phisms. If {Ai}i∈I ∈ MG(X) and {Bi}i∈I ∈ MG(Y ) for each i ∈ I, then

(i) f(Ai) ⊆ Bi ⇒ Ai ⊆ f−1(Bi),

(ii) g[f(Ai)] = [gf ](Ai),

(iii) f−1[g−1(Bi)] = [gf ]−1(Bi).

Proof. The proof of (i) is trivial.

(ii) Since f and g are homomorphisms, then f(x) = y and g(y) = z
∀x ∈ X, ∀y ∈ Y and ∀z ∈ Z respectively. Now

Cg[f(Ai)](z) = Cf(Ai)(g
−1(z)) = Cf(Ai)(y)

= CAi(f
−1(y)) = CAi(x),

and

C[gf ](Ai)(z) = Cg(f(Ai))(z) = Cf(Ai)(g
−1(z))

= Cf(Ai)(y) = CAi(f
−1(y))

= CAi(x)∀x ∈ X.

Hence, g[f(Ai)] = [gf ](Ai).

(iii) Similar to (ii).

Theorem 3. Let X and Y be groups and f : X → Y be an isomorphism. Then the
following statements hold.

(i) A ∈ MG(X) if and only if f(A) ∈ MG(Y ).

(ii) B ∈ MG(Y ) if and only if f−1(B) ∈ MG(X).

Proof. (i) Suppose A ∈ MG(X). Let x, y ∈ Y , then ∃f(a) = x and f(b) = y since
f is an isomorphism for all a, b ∈ X. We know that

CB(x) = CA(f−1(x)) =
∨

a∈f−1(x)

CA(a)
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and
CB(y) = CA(f−1(y)) =

∨

b∈f−1(y)

CA(b).

Clearly, a ∈ f−1(x) 6= ∅ and b ∈ f−1(y) 6= ∅. For a ∈ f−1(x) and b ∈ f−1(y) ⇒
x = f(a) and y = f(b). Thus f(ab−1) = f(a)f(b−1) = f(a)(f(b))−1 = xy−1. Let
c = ab−1 ⇒ c ∈ f−1(xy−1). Now,

CB(xy−1) =
∨

c∈f−1(xy−1)

CA(c)

= CA(ab−1)
≥ CA(a) ∧ CA(b)
= Cf−1(B)(a) ∧ Cf−1(B)(b)
= CB(f(a)) ∧ CB(f(b))
= CB(x) ∧ CB(y)∀x, y ∈ Y.

Hence, f(A) ∈ MG(Y ).
Conversely, let a, b ∈ X and suppose f(A) ∈ MG(Y ). Then

CA(ab−1) = Cf−1(B)(ab−1)

= CB(f(ab−1))
= CB(f(a)f(b−1))
= CB(f(a)(f(b))−1)
≥ CB(f(a)) ∧ CB(f(b))
= Cf−1(B)(a) ∧ Cf−1(B)(b)
= CA(a) ∧ CA(b)

∀a, b ∈ X. Hence, A ∈ MG(X).

(ii) Similar to (i).

Corollary 2. Let X and Y be groups and f : X → Y be an isomorphism. Then the
following statements hold.

(i) A−1 ∈ MG(X) if and only if f(A−1) ∈ MG(Y ),

(ii) B−1 ∈ MG(Y ) if and only if f−1(B−1) ∈ MG(X).

Proof. By combining Definition 8 and Theorem 3, the result follows.

Corollary 3. Let X and Y be groups and f : X → Y be homomorphism. If⋂
i∈I Ai ∈ MG(X) and

⋂
i∈I Bi ∈ MG(Y ), then

(i) f(
⋂

i∈I Ai) ∈ MG(Y ),

(ii) f−1(
⋂

i∈I Bi) ∈ MG(X).
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Proof. Straightforward from Theorem 3.

Corollary 4. Let f : X → Y be groups homomorphism. If
⋃

i∈I Ai ∈ MG(X) and⋃
i∈I Bi ∈ MG(Y ), whenever {Ai}i∈I and {Bi}i∈I have sup/inf assuming chain,

then

(i) f(
⋃

i∈I Ai) ∈ MG(Y ),

(ii) f−1(
⋃

i∈I Bi) ∈ MG(X).

Proof. Straightforward from Theorem 3.

Theorem 4. Let f : X → Y be an isomorphism. If A ∈ MG(X) and B ∈ MG(Y ),
then

(i) f(A) ◦B ∈ MG(Y ) if and only if f(A) ◦B = B ◦ f(A),

(ii) f−1(B) ◦A ∈ MG(X) if and only if f−1(B) ◦A = A ◦ f−1(B).

Proof. (i) By Theorem 3, it follows that f(A) ∈ MG(Y ). So, f(A), B ∈ MG(Y ).
Suppose f(A) ◦B ∈ MG(Y ). Then

Cf(A)◦B(y) = C(f(A))−1◦B−1(y)
= C(B◦f(A))−1(y)
= CB◦f(A)(y)∀y ∈ Y.

Conversely, suppose f(A) ◦B = B ◦ f(A). Then

C(f(A)◦B)−1(y) = C(B◦f(A))−1(y)
= C(f(A))−1◦B−1(y)
= Cf(A)◦B(y)∀y ∈ Y,

and

C(f(A)◦B)◦(f(A)◦B)(y) = Cf(A)◦(B◦f(A))◦B(y)
= Cf(A)◦(f(A)◦B)◦B(y)
= C(f(A)◦f(A))◦(B◦B)(y)
= Cf(A)◦B(x)∀y ∈ Y.

Hence, f(A) ◦B ∈ MG(Y ) by Propositions 1, 2 and 3.

(ii) Combining Propositions 1, 2 and 3, Definition 10, Theorem 3 and (i), the proof
follows.



76 P. A. EJEGWA, A. M. IBRAHIM

References

[1] Awolola J.A., Ibrahim A.M. Some results on multigroups. Quasi. Related Systems, 2016,
24(2), 169–177.

[2] Barlotti A., Strambach K. Multigroups and the foundations of geometry. Rendi. Del Cir.
Matematico Di Palermo, 1991, 40(1), 5–68.

[3] Dresher M., Ore O. Theory of multigroups. American J. Math., 1938, 60, 705–733.

[4] Nazmul Sk., Samanta S.K. Fuzzy soft group. J. Fuzzy Math., 2011, 19(1), 101–114.

[5] Nazmul Sk., Majumdar P., Samanta S.K. On multisets and multigroups. Annals Fuzzy
Math. Inform., 2013, 6(3), 643–656.

[6] Prenowitz W. Projective geometries as multigroups. American J. Math., 1943, 65, 235–256.

[7] Schein B.M. Multigroups. J. Algebra, 1987, 111, 114–132.

[8] Singh D., Ibrahim A.M., Yohanna T., Singh J.N. An overview of the applications of
multisets. Novi Sad J. Math., 2007, 37(2), 73–92.

[9] Syropoulos A. Mathematics of multisets. Springer-Verlag Berlin Heidelberg, 2001 347–358.

[10] Tella Y., Daniel S. A study of group theory in the context of multiset theory. Int. J. Sci.
Tech., 2013, 2(8), 609–615.

[11] Tella Y., Daniel S. Symmetric groups under multiset perspective. IOSR J. Math., 2013,
7(5), 47–52.

[12] Wildberger N. J. A new look at multisets. School of Math., UNSW Sydney 2052, Australia,
2003.

P.A. Ejegwa
Department of Mathematics/Statistics/Computer Science
University of Agriculture, P.M.B. 2373, Makurdi, Nigeria
E-mail: ejegwa.augustine@uam.edu.ng

A.M. Ibrahim
Department of Mathematics, Ahmadu Bello University
Zaria, Nigeria
E-mail: amibrahim@abu.edu.ng

Received October 16, 2016
Revised February 14, 2017


