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Solvability of the boundary value problem for the
equation of transition processes in semiconductors with

a fractional time derivative

Dmitriy M. Gordievskikh

Abstract. Necessary and sufficient conditions are established for the unique solv-
ability of the initial boundary value problem for the equation describing the transition
processes in semiconductors. The method of studying is the reducing to the Cauchy
problem for a degenerate evolution equation of fractional order in a Banach space.
Using the functional calculus in the Banach algebra of bounded linear operators a
form of the considered problem solution is performed.
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Introduction

Let Ω ⊂ R3 is a bounded domain with smooth boundary ∂Ω, ∆ =
3∑

k=1

∂2

∂x2
k

is the

Laplace operator. For α > 0, λ, β, θ ∈ R consider the initial boundary value problem

Dα
t (λ−∆)w(x, t) = βw(x, t) + f(x, t), (x, t) ∈ Ω× R+, (1)

(1− θ)w(x) + θ
∂

∂n
w(x) = 0, (x, t) ∈ ∂Ω× R+, (2)

∂kw

∂tk
(x, 0) = wk(x), x ∈ Ω, k = 0, 1, . . . ,m− 1, (3)

Here Dα
t is a fractional Caputo derivative, m is a smallest integer not exceeding or

equal to α. It is worth noting that the fractional derivatives play an increasingly
important role in mathematical modeling, partially for describing various physical
processes [3–6].

In the case of α = 1 equation (1) describes the transition processes in semi-
conductors [2]. Function w(x, t) has a physical sense of the electric field potential.
The unique solvability of problem (1)–(3) with α = 1 was studied in [2]. A mixed–
type optimal control problem for the corresponding distributed control system was
researched in [7].

In this paper by means of solution operators theory for fractional differential
equations in Banach spaces the conditions of problem (1)–(3) unique solvability in
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the fractional case are found and the form of solution is performed in the present
work.

1 Cauchy problem for abstract fractional order equation

Let R+ = {x ∈ R : x > 0} , R+ = {0} ∪ R+, for δ > 0 gδ(t) = tδ−1/Γ(δ), t > 0,

Jδ
t h(t) = (gδ ∗ h)(t) =

t∫

0

gδ(t− s)h(s)ds =
1

Γ(δ)

t∫

0

(t− s)δ−1h(s)ds.

Let α > 0, m is the smallest integer that is greater than or equal to α, Dm
t is a

usual derivative of order m for m ∈ N, Dα
t is Caputo derivative [1], i. e.

Dα
t h(t) = Dm

t Jm−α
t

(
h(t)−

m−1∑

k=0

h(k)(0)gk+1(t)

)
= Jm−α

t Dm
t h(t),

when the expression on the right side is defined.
Let U and V be Banach spaces, L ∈ L(U;V) (linear and continuous operator),

M ∈ Cl(U; V) (linear, closed and densely defined operator), DM is a domain of the
operator M , f : [0, T ] → V is a given function. Consider the Cauchy problem

u(k)(0) = uk, k = 0, 1, . . . ,m− 1, (4)

for the fractional differential equation

Dα
t Lu(t) = Mu(t) + f(t). (5)

Various initial–boundary value problems for partial differential equations or sys-
tems of equations not solved with respect to the time–fractional derivatives can be
reduced to the Cauchy problem (4), (5). Such equations arise in mathematical mod-
eling of various processes in natural and technical sciences [2, 8–10]. Partially it
concerns problem (1)–(3).

The theory of fractional differential equations has been intensively developed
in the last decades [1, 3–6], but a few articles concern the fractional differential
equations of the form (1), not solved with respect to the fractional derivative. See
[9–11].

Define L–resolvent set of operator M ρL(M) =
{
µ ∈ C : (µL−M)−1 ∈ L(V; U)

}
.

Operator M is called (L, σ)–bounded if the complement to the set ρL(M) is bounded
in C. Define RL

µ(M) = (µL−M)−1L, LL
µ(M) = L(µL−M)−1,

P =
1

2πi

∫

γ

RL
µ(M)dµ ∈ L(U; U), Q =

1
2πi

∫

γ

LL
µ(M)dµ ∈ L(V; V), (6)

where the integrals are taken along a circle γ with a radius a, enclosing the comple-
ment to ρL(M) in the complex plane C. It is easy to check that operators P and Q are
projectors [8]. Denote U0 = kerP , V0 = kerQ, U1 = imP , V1 = imQ. Let Lk(Mk)
be the restrictions of operator L(M) to the subspace Uk(DMk

= DM ∩Uk), k = 0, 1.
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Theorem 1. [8] Let operator M be (L, σ)–bounded. Then
(i) M1 ∈ L(U1; V1), M0 ∈ Cl(U0; V0), Lk ∈ L(Uk; Vk), k = 0, 1;
(ii) there exist operators M−1

0 ∈ L(V0;U0), L−1
1 ∈ L(V1; U1).

Let us denote N0 = {0} ∪ N, H = M−1
0 L0. For p ∈ N0 operator M is called

(L, p)–bounded if it is (L, σ)–bounded, Hp 6= O, Hp+1 = O.
The solution of Cauchy problem (4), (5) is a function u ∈ Cm−1(R+; U) ∩

C(R+; DM ) such that Lu ∈ Cm−1(R+; V), gm−α ∗
(

Lu−
m−1∑
k=0

(Lu)(k)(0)gk+1

)
∈

Cm(R+;V), equalities (4) and (5) are valid for all t ∈ R+.
The unique solvability of problem (4), (5) was investigated in [10]. Formulate

the theorem on the existence and uniqueness of problem (4), (5) solution.

Theorem 2. [10] Let operator M be (L, p)–bounded, γ = {µ ∈ C : |µ| = r > a},

U(t) =
1

2πi

∫

γ

RL
µ(M)Eα,β(µtα)dµ, t ∈ R+,

where Eα,β(z) =
∑∞

n=0
zn

Γ(αn+β) is Mittag–Leffler function. Then for all uk ∈ U1, k =
0, 1, . . . m− 1, there exists a unique solution of problem (4), (5), and it has the form

u(t) =
m−1∑

k=0

Jk
t U(t)uk. (7)

If for some l ∈ {0, 1, . . .m− 1}ul /∈ U1, then problem (4), (5) has no solutions.

2 Solvability of the equation of transition processes in
semiconductors

Let us return to problem (1)–(3) and reduce it to Cauchy problem (4), (5). Define
the formal differential operator

Bθ = (1− θ) + θ
∂

∂n
, θ ∈ R.

Operator A ∈ Cl(L2(Ω)) is defined as acting on its domain

DA = H2
θ (Ω) =

{
u ∈ H2(Ω) : Bθu(x) = 0, x ∈ ∂Ω

}

by Au = ∆u. Denote by {ϕk : k ∈ N} the orthonormal in the sense of the scalar
product 〈·, ·〉 in L2(Ω) eigenfunctions of operator A, numbered in the non–increasing
order with respect to the corresponding eigenvalues {λk : k ∈ N}, counting their
multiplicities. Note that the spectrum of operator A is real, discrete and condensed
to −∞ [12].

Let U =
{
u ∈ H2(Ω) : Bθu(x) = 0, x ∈ ∂Ω

}
(the Sobolev space), V = L2(Ω) (the

Lebesgue space), L = λ−A, M = βI ∈ L(U; V).
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Theorem 3. Let β 6= 0 or the spectrum σ(A) do not contain λ. Then operator M
is (L, 0)–bounded.

Proof. In conditions of the theorem consider the operator

µL−M =
∞∑

k=1

(µ(λ− λk)− β) 〈·, ϕk〉ϕk.

Show that for

|µ| > supλ 6=λk

∣∣∣∣
β

λ− λk

∣∣∣∣
the operator

(µL−M)−1 =
∞∑

k=1

〈·, ϕk〉ϕk

µ(λ− λk)− β
: L2(Ω) → U

exists and is continuous. For f ∈ L2(Ω)

||(µL−M)−1f ||2H2(Ω) =
∞∑

k=1

(1 + λ2
k)| 〈f, ϕk〉 |2

|µ(λ− λk)− β|2 =

=
∑

λk=λ

(1 + λ2
k)| 〈f, ϕk〉 |2
β2

+
∑

λk 6=λ

(1 + λ2
k)| 〈f, ϕk〉 |2

|λ− λk|2
∣∣∣µ− β

λ−λk

∣∣∣
2 ≤ C||f ||2L2(Ω)

because of finitness of the first sum in the last line. Indeed,

lim
k→∞

1 + λ2
k

|λ− λk|2 = 1,

so the corresponding sequence is bounded. Furthermore, the inequalities
∣∣∣∣µ−

β

λ− λk

∣∣∣∣ ≥ |µ| −
∣∣∣∣

β

λ− λk

∣∣∣∣ ≥ d > 0

are true. Thus, the operator M is (L, σ)–bounded with a constant

a = supλ 6=λk

∣∣∣∣
β

λ− λk

∣∣∣∣ .

Construct the projector

P =
1

2πi

∫

|µ|=a+1

∑

λk 6=λ

〈·, ϕk〉ϕk

µ− β
λ−λk

dµ =
∑

λk 6=λ

〈·, ϕk〉ϕk ∈ L(U).

It is obvious that the projector Q has the same form but is defined in L2(Ω).
Consequently U0 = V0 = span {ϕk : λk = λ} , U1 and V1 are the closures of
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span {ϕk : λk 6= λ} in the norm of spaces U and V respectively. Note that kerL =
kerP , hence

0 = Lu = (λI −A)u =
∞∑

k=1

(λ− λk) 〈u, ϕk〉 =
∑

λ 6=λk

(λ− λk) 〈u, ϕk〉 ,

then u =
∑

λk=λ ckϕk for some ck ∈ R, therefore u ∈ U0. Inversely, if u =∑
λk=λ ckϕk, then (λI − A)u =

∑
λk=λ ck(λ − λk)ϕk = 0 and u ∈ kerL. There-

fore H = O and the operator M is (L, 0)–bounded.

Theorem 4. Let β 6= 0 or the spectrum σ(A) do not contain λ, for all k ∈ N such
that λk = λ the equalities 〈ul, ϕk〉 = 0, l = 0, 1, . . . , m − 1, are true. Then there
exists a unique solution of problem (1)–(3), and it has the form

u(x, t) =
∑

λk 6=λ

m−1∑

l=0

tlEα,β+l

(
βtα

λ− λk

)
〈ul, ϕk〉ϕk(x).

Proof. Reduce the problem (1)–(3) to problem (4), (5). By Theorems 2, 3 obtain the
required assertion. The solution is calculated using the formula (7) and the residue
theorem in the same way as the projector is calculated in the previous theorem.
Note that the properties of Mittag–Leffler functions imply the equality

u(x, t) =
∑

λk 6=λ

m−1∑

l=0

J l
tEα,β

(
βtα

λ− λk

)
〈ul, ϕk〉ϕk(x) =

=
∑

λk 6=λ

m−1∑

l=0

tlEα,β+l

(
βtα

λ− λk

)
〈ul, ϕk〉ϕk(x).
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