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A New Characterization of Curves
in Euclidean 4-Space E4
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Abstract. In the present study, we characterize a regular curve whose position
vector can be written as a linear combination of its Serret-Frenet vectors in Euclidean
4-space E4. We investigate such curves in terms of their curvature functions. Further,
we obtain some results of T -constant, N -constant and constant ratio curves in E4.
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1 Introduction

Let x : I ⊂ R → E4 be a unit speed curve in Euclidean 4-space E4. Let us
denote T (s) = x′(s) and call as a unit tangent vector of x at s. We denote the
first Serret-Frenet curvature of x by κ1(s) = ‖x′′(s)‖. If κ1(s) 6= 0, then the unit
principal normal vector N1(s) of the curve x at s is given by N ′

1(s) + κ1(s)T (s) =
κ2(s)N2(s), where κ2 is the second Serret-Frenet curvature of x. If κ2(s) 6= 0,
then the unit second principal normal vector N2(s) of the curve x at s is given by
N ′

2(s) + κ2(s)N1(s) = κ3(s)N3(s), where κ3 is the third Serret-Frenet curvature of
x. Then we have the Serret-Frenet formulae (see [12]):

T ′(s) = κ1(s)N1(s),
N ′

1(s) = −κ1(s)T (s) + κ2(s)N2(s), (1)
N ′

2(s) = −κ2(s)N1(s) + κ3(s)N3(s),
N ′

3(s) = −κ3(s)N2(s).

If the Serret-Frenet curvatures κ1(s), κ2(s) and κ3(s) of x are constant functions
then x is called a screw line or a helix [11]. Since these curves are the traces of
1-parameter family of the groups of Euclidean transformations, F. Klein and S. Lie
called them W-curves [20]. If the tangent vector T of the curve x makes a constant
angle with a unit vector U of E4 then this curve is called a general helix (or inclined
curve ) in E4 [22]. It is known that a regular curve in En is said to have constant
curvature ratios if the ratios of the consecutive curvatures are constant [21]. The
Frenet curves with constant curvature ratios are called ccr-curves [22]. We remark
that a regular curve in E4 is a ccr-curve if H1(s) = κ1

κ2
(s) and H2(s) = κ3

κ2
(s) are

constant functions.
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Rectifying curves in Euclidean 3-space E3 are introduced by B. Y. Chen in [4]
as space curves whose position vector (denoted also by x) lies in its rectifying plane,
spanned by the tangent and the binormal normal vector fields T (s) and N2(s) of the
curve. In the same paper, B. Y. Chen gave a simple characterization of rectifying
curves. In particular, it is shown in [8] that there exists a simple relation between
rectifying curves and centrodes, which play an important role in mechanics kinemat-
ics as well as in differential geometry in defining the curves of constant procession. It
is also provided that a twisted curve is congruent to a non-constant linear function
of s [4]. Further, in the Minkowski 3-space E3

1, the rectifying curves are investigated
in [10, 15, 16]. In [16] a characterization of the spacelike, the timelike and the null
rectifying curves in the Minkowski 3-space in terms of centrodes is given.

For a unit speed regular curve x : I ⊂ R→ E4, the hyperplanes at each point of
x(s) which are spanned by {T,N1, N3} , {T,N2, N3} are known as the first osculating
hyperplane and the second osculating hyperplane, respectively. If the position vector
x lies on its first (resp. second) osculating hyperplane then x(s) is called osculating
curve of first (resp. second) kind. In [17], Ilarslan and Nesovic considered the
rectifying curve in Euclidean 4-space E4. They characterized the rectifying curves
given by the equation

x(s) = λ(s)T (s) + µ(s)N2(s) + υ(s)N3(s), (2)

for some differentiable functions λ(s), µ(s) and υ(s). Actually, these curves are os-
culating curves of second kind. Further, in the Minkowski 4-space E4

1, the rectifying
curves are investigated in [1, 18, 19]. Recently, quaternionic rectifying curves in the
semi-Euclidean space E4

2 have been considered in [9].
For a regular curve x(s), the position vector x can be decomposed into its tan-

gential and normal components at each point, i.e., x = xT + xN . A curve x(s) with
κ1(s) > 0 is said to be of constant ratio if the ratio

∥∥xT
∥∥ :

∥∥xN
∥∥ is constant on x(I)

where
∥∥xT

∥∥ and
∥∥xN

∥∥ denote the length of xT and xN , respectively [2].
Clearly a curve x in En is of constant ratio if and only if xT = 0 or

∥∥xT
∥∥ : ‖x‖ is

constant [2]. The distance function ρ = ‖x‖ satisfies ‖gradρ‖ = c for some constant
c if and only if we have

∥∥xT
∥∥ = c ‖x‖. In particular, if ‖gradρ‖ = c then c ∈ [0, 1].

In [4], B. Y. Chen gave a classification of constant ratio curves in Euclidean space. A
curve in En is called T -constant (resp. N -constant) if the tangential component xT

(resp. the normal component xN ) of its position vector x is of constant length [3,6].
Recently the present authors have studied curves with constant ratio in Euclidean
3-space E3 in [13]. For more details see also [5, 7].

In the present study, we give a generalization of rectifying curves in Euclidean
4-space E4. First of all, we consider a regular curve in Euclidean 4-space E4 as a
curve whose position vector satisfies the parametric equation

x(s) = m0(s)T (s) + m1(s)N1(s) + m2(s)N2(s) + m3(s)N3(s), (3)

for some differentiable functions mi(s), 0 ≤ i ≤ 3. Next, we characterize osculating
curves of first and second kind in terms of their curvature functions κ1(s), κ2(s) and
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κ3(s). We give necessary and sufficient conditions for the curves given with the
parametrization (3) to become W -curves. Furthermore, we obtain some results for
these types of curves to become ccr-curves. Finally, we consider T -constant and N -
constant curves in E4. Moreover, we obtain some explicit equations of constant-ratio
curves in E4.

2 Characterization of Curves in E4

In the present section, we consider unit speed curves with Serret-Frenet curva-
tures κ1(s) > 0, κ2(s), and κ3(s). By definition of the position vector of the curve
(also defined by x), it satisfies the vectorial equation (3) for some differentiable func-
tions mi(s), 0 ≤ i ≤ 3. By taking the derivative of (3) with respect to arclength
parameter s and using the Serret-Frenet equations (1), we obtain

x′(s) = (m′
0(s)− κ1(s)m1(s))T (s)

+(m′
1(s) + κ1(s)m0(s)− κ2(s)m2(s))N1(s) (4)

+(m′
2(s) + κ2(s)m1(s)− κ3(s)m3(s))N2(s)

+(m′
3(s) + κ3(s)m2(s))N3(s).

It follows that

m′
0 − κ1m1 = 1,

m′
1 + κ1m0 − κ2m2 = 0, (5)

m′
2 + κ2m1 − κ3m3 = 0,

m′
3 + κ3m2 = 0.

The following result explicitly determines the W -curves in E4.

Theorem 1. Let x : I ⊂ R→ E4 be a regular curve given with the parametrization
(3). If x is a W -curve of E4 then the position vector x is given by the curvature
functions

m0(s) = κ1

(−c1e
−λs + c2e

λs

λ
+
−c3e

−µs + c4e
µs

µ

)
+ c0,

m1(s) = c1e
−λs + c2e

λs + c3e
−µs + c4e

µs − 1
κ1

, (6)

m2(s) =
1
κ2

((
λ2 + κ2

1

λ

) (
−c1e

−λs + c2e
λs

)
+

(
µ2 + κ2

1

µ

) (−c3e
−µs + c4e

µs
))

+
κ1

κ2
c0

m3(s) = −κ3

∫
m2(s)ds

where ci (0 ≤ i ≤ 4) are integral constants and

λ =

√
−2a− 2

√
a2 − 4b

2
,
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µ =

√
−2a + 2

√
a2 − 4b

2
, (7)

a = κ2
1 + κ2

2 + κ2
3,

b = κ2
1κ

2
3,

are real constants.

Proof. Let x be a regular W -curve in E4, then by the use of the equations (5) we
get

m′
0 = κ1m1 + 1,

m′′
1 = κ2m

′
2 − κ1 (κ1m1 + 1) , (8)

m′′
2 = −κ2

3m2 − κ2m
′
1,

In particular, one can show that the system of equations (8) has a non-trivial
solution (6). Thus, the theorem is proved.

2.1 Osculating curve of first kind in E4

Definition 1. Let x : I ⊂ R→ E4 be a regular curve in E4 given with the arclength
parameter s. If the position vector x lies in the hyperplane spanned by {T,N1, N3}
then x is called an osculating curve of first kind in E4.

Assume that x : I ⊂ R → E4 is an osculating curve of first kind in E4 given
with the arclength parameter s. By definition the curvature function m2 vanishes
identically. So, from (5) we get

m′
0 − κ1m1 = 1,

m′
1 + κ1m0 = 0, (9)

κ2m1 − κ3m3 = 0,

m3 = c,

and therefore

m0 =
−cH ′

2

κ1
,

m1 = cH2, (10)
m3 = c,

where H2(s) = κ3
κ2

(s) and c ∈ R is a real constant. So, the position vector of x is
given by

x(s) = c

{−H ′
2

κ1
T (s) + H2N1(s) + N3(s)

}
. (11)

By the use of (9) with (10) we obtain the following result.
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Lemma 1. Let x : I ⊂ R → E4 be a unit speed in E4. Then, x is congruent to an
osculating curve of first kind if and only if

(
cH ′

2

κ1

)′
+ cκ1H2 + 1 = 0 (12)

holds, where H2(s) = κ3
κ2

(s) and c ∈ R.

As a consequence of (12), we obtain the following result.

Theorem 2. Let x : I ⊂ R → E4 be a regular curve congruent to an osculating
curve of first kind. If x is a ccr-curve then

H2 =
−1
cκ1

,

vhere c = m3 is a real constant.

Moreover, if two of the curvature functions are constant, we may consider the
following cases.

Suppose that κ1(s) = constant > 0, κ2(s) = constant 6= 0, and κ3(s) is a non-
constant function. By the use of (12), we obtain the differential equation

cκ′′3(s) + cκ2
1κ3(s) + κ1κ2 = 0, (13)

which has a non-trivial solution

κ3(s) = − κ2

cκ1
+ c1 cos (κ1s) + c2 sin (κ1s) .

Similarly, assume that κ1(s) = constant > 0, κ3(s) = constant 6= 0, and κ2(s) is
a non-constant function. Then the equation (12) implies the differential equation

cκ3

κ1

(
1

κ2(s)

)′′
+

cκ1κ3

κ2(s)
+ 1 = 0. (14)

Thus, the differential equation (14) has a non-trivial solution of the form

κ2(s) =
cκ1κ3

c1κ3 cos (κ1s)− c2κ3 sin (κ1s)− 1
.

Summing up these calculations, we obtain the following result.

Theorem 3. Let x : I ⊂ R→ E4 be a unit speed curve in E4. Then x is congruent
to an osculating curve of first kind if

i) κ1(s) = constant > 0, κ2(s) = constant 6= 0, and

κ3(s) = − κ2

cκ1
+ c1 cos (κ1s) + c2 sin (κ1s) ,

ii) κ1(s) = constant > 0 , κ3(s) = constant 6= 0, and

κ2(s) =
cκ1κ3

c1κ3 cos (κ1s)− c2κ3 sin (κ1s)− 1

where H2(s) = κ3
κ2

(s) and c, c1 and c2 ∈ R.
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2.2 Osculating curve of second kind in E4

Definition 2. Let x : I ⊂ R→ E4 be a regular curve in E4 given with the arclength
parameter s. If the position vector x lies in the hyperplane spanned by {T,N2, N3}
then x is called an osculating curve of second kind in E4.

In [17] K. Ilarslan and E. Nesovic considered the osculating curves of second
kind in E4. Observe that they called them rectifying curves in E4. It means that the
curvature function m1 vanishes identically. So, from (5) we get

m′
0 = 1,

κ2m2 − κ1m0 = 0,

m′
2 − κ3m3 = 0, (15)

m′
3 + κ3m2 = 0,

and therefore

m0 = s + b,

m2 = (s + b)H1, (16)

m3 =
1
κ3

{
(s + b)H ′

1 + H1

}
,

where H1(s) = κ1
κ2

(s) is the first harmonic curvature of x and b ∈ R. So, the position
vector of x is given by

x(s) = (s + b)T (s) + (s + b)H1N1(s) +
(s + b)H ′

1 + H1

κ3
N3(s). (17)

By the use of (9) with (10) we obtain the following result.

Theorem 4. Let x : I ⊂ R→ E4 be a unit speed curve in E4. Then, x is congruent
to an osculating curve of second kind if and only if

{
(s + b)H ′

1 + H1

κ3

}′
+ κ3(s + b)H1 = 0 (18)

holds, where H1(s) = κ1
κ2

(s), b ∈ R.

In [17] K. Ilarslan and E. Nesovic gave the following result.

Theorem 5. [17] There is no osculating curve of second kind with non-zero constant
curvatures κ1(s), κ2(s) and κ3(s).

As a consequence of (18) we obtain the following result.

Theorem 6. Let x : I ⊂ R → E4 be a regular curve congruent to an osculating
curve of second kind. If x is a ccr-curve then

κ3(s) =
∓1√

c− 2bs− s2
, (19)

where b, c ∈ R.
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Proof. Let x be an osculating curve of second kind. If x is a ccr-curve then by
definition, the curvature functions H1(s) = κ1

κ2
and H2(s) = κ3

κ2
are constant. So, by

the use of (18) one can get

κ′3(s) + (s + b)κ3
3(s) = 0 (20)

which has a nontrivial solution (19).

As a consequence of differential equation (18) one can get the following solutions
as in the previous section.

Corollary 1. Let x : I ⊂ R→ E4 be a unit speed curve in E4. Then x is congruent
to an osculating curve of second kind if

i) κ1(s) = constant > 0, κ2(s) = constant 6= 0, and κ3(s) = 1∣∣∣
√

c1−s2−2bs
∣∣∣

(see

[17]),
ii) κ2(s) = constant 6= 0, κ3(s) = constant 6= 0, and

κ1(s) =
1

s + b
(c2 sin (κ3s) + c1 cos (κ3s)) ,

iii) κ1(s) = constant > 0, κ3(s) = constant 6= 0, and

κ2(s) =
(s + b) κ1

c1 cos (κ1s)− c2 sin (κ1s)
,

where c1, c2 and b ∈ R.

2.3 T -constant curves in E4

Definition 3. Let x : I ⊂ R→ En be a unit speed curve in En. If
∥∥xT

∥∥ is constant
then x is called a T -constant curve. For a T -constant curve x, either

∥∥xT
∥∥ = 0 or∥∥xT

∥∥ = λ for some non-zero smooth function λ (see [3, 6]). Further, a T -constant
curve x is called of first kind if

∥∥xT
∥∥ = 0, otherwise of second kind.

As a consequence of (5), we get the following results.

Theorem 7. Let x : I ⊂ R → E4 be a unit speed curve in E4 given with the
parametrization (5).Then x is a T -constant curve of first kind if and only if

H2R
′ +




(
R′
κ2

)′

κ3
+

R

H2




′

= 0. (21)

where H2(s) = κ3
κ2

(s) and −m1(s) = R(s) = 1
κ1(s) is the radius of the curvature of

the curve x.
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Proof. Let x be a T -constant curve of first kind, then from (5) we get

m1 = − 1
κ1

, m2 =
m′

1

κ2
, m3 =

m′
2 + m1κ2

κ3
.

Further, substituting these values into m′
3 + κ3m2 = 0 we get the result.

Remark 1. Any unit speed regular curve in E4 satisfying the equality (21) is a
spherical curve lying on a sphere S3(r) of E4. Thus every T -constant curves of first
kind are spherical.

The following theorem characterizes T -constant curve of second kind in E4.

Theorem 8. Let x : I ⊂ R → E4 be a unit speed curve in E4 given with the
parametrization (5).Then x is a T -constant curve of second kind if and only if

H2

(
κ1m0 −R′) +




(
H1m0 − R′

κ2

)′

κ3
− R

H2




′

= 0, (22)

where m0 ∈ R , H1(s) = κ1
κ2

(s), H2(s) = κ3
κ2

(s) and −m1(s) = R(s) = 1
κ1(s) is the

radius of the curvature of the curve x.

Proof. Let x be a T -constant curve of second kind, then from (5) we get

m1 = − 1
κ1

, m2 =
m′

1 + κ1m0

κ2
, m3 =

m′
2 + m1κ2

κ3
.

Further, substituting these values into m′
3 + κ3m2 = 0, we get the result.

The following result explicitly determines the T -constant W -curves of second
kind in E4.

Corollary 2. Let x : I ⊂ R → E4 be a regular T -constant curve of second kind in
E4. If x is a W -curve of E4, then the position vector x has the parametrization

x(s) = λT −RN1 + H1λN2 + (bs + c)N3,

where R = 1
κ1

, H1 = κ1
κ2

, c is integral constant, b = −H1κ3λ and λ ∈ R.

The following result provides a simple characterization of T -constant curve of
second kind in E4.

Theorem 9. Let x : I ⊂ R → E4 be a T -constant curve of second kind. Then the
distance function ρ = ‖x‖ satisfies

ρ = ±
√

2λs + c. (23)

for some real constants c and λ = m0.

Proof. Differentiating the squared distance function ρ2 = 〈x(s), x(s)〉 and using (3)
we get ρρ′ = m0. If x is a T -constant curve of second kind then by definition, the
curvature function m0(s) of x is constant. It is easy to show that this differential
equation has a nontrivial solution (23).
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2.4 N-constant curves in E4

Definition 4. Let x : I ⊂ R→ En be a unit speed curve in En. If
∥∥xN

∥∥ is constant
then x is called an N -constant curve. For an N -constant curve x, either

∥∥xN
∥∥ = 0 or∥∥xN

∥∥ = µ for some non-zero smooth function µ (see [3,6]). Further, an N -constant
curve x is called of first kind if

∥∥xN
∥∥ = 0, otherwise of second kind.

So, for an N -constant curve x in E4

∥∥xN (s)
∥∥2

= m2
1(s) + m2

2(s) + m2
3(s) (24)

becomes a constant function. Therefore, by differentiation

m1m
′
1 + m2m

′
2 + m3m

′
3 = 0. (25)

For the N -constant curves of first kind we give the following result.

Proposition 1. Let x : I ⊂ R → E4 be a unit speed curve in E4. Then x is an
N -constant curve of first kind if and only if x(I) is an open portion of a straight
line through the origin.

Proof. Suppose that x is an N -constant curve of first kind in E4, then by definition∥∥xN (s)
∥∥ = µ = 0. Further, differentiating x(s) = m0(s)T (s) and using the Frenet

equation (1) we get κ1 = 0.

Further, for the N -constant curves of second kind, we obtain the following results.

Theorem 10. Let x(s) ∈ E4 be a unit speed regular curve that fully lies in E4. If
x is an N -constant curve of second kind, then the position vector x of the curve has
the parametrization

x(s) = (s + b) T (s) + (s + b)H1N2(s) +
(s + b) H ′

1 + H1

κ3
N3(s), (26)

where H1(s) = κ1
κ2

(s), b ∈ R.

Proof. Suppose that x is an N -constant curve of second kind in E4, then from
the equations in (5) and (25) we get m1 = 0, m0(s) = s + b, m2(s) = κ1

κ2
(s)m0

and m3(s) = m′
2(s)

κ3(s) for some constant function b. This completes the proof of the
theorem.

Corollary 3. Every N -constant curve of second kind in E4 is an osculating curve
of second kind.

The following result provides a simple characterization of N -constant curve of
second kind in E4.
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Theorem 11. Let x : I ⊂ R → E4 be an N -constant curve of second kind. Then
the distance function ρ = ‖x‖ satisfies

ρ = ∓
√

s2 + 2bs + d (27)

for some constant functions b, d.

Proof. Differentiating the squared distance function ρ2 = 〈x(s), x(s)〉 and using (3)
we get ρρ′ = m0. If x is an N -constant curve of second kind then from the previous
theorem m0(s) = s + b. It is easy to show that this differential equation has a
nontrivial solution (27).

Definition 5. Let x : I ⊂ R → En be a unit speed regular curve in En. Then the
position vector x can be decomposed into its tangential and normal components at
each point:

x = xT + xN .

If the ratio
∥∥xT

∥∥ :
∥∥xN

∥∥ is constant on x(I) then x is said to be of constant ratio,
or equivalently

∥∥xT
∥∥ : ‖x‖ = c =constant [2].

For a unit speed regular curve x in En, the gradient of the distance function
ρ = ‖x(s)‖ is given by

gradρ =
dρ

ds
x′(s) =

< x(s), x′(s) >

‖x(s)‖ T (s), (28)

where T is the tangent vector field of x.
The following results characterize constant-ratio curves.

Theorem 12. [7] Let x : I ⊂ R→ En be a unit speed regular curve in En. Then x
is of constant ratio with

∥∥xT
∥∥ : ‖x‖ = c if and only if ‖gradρ‖ = c which is constant.

In particular, for a curve of constant ratio we have ‖gradρ‖ = c ≤ 1.

As a consequence of (28) we obtain the following result.

Corollary 4. Let x : I ⊂ R → En be a unit speed regular curve in En. If x
is of constant ratio then the distance function ρ = m0

c , where ‖gradρ‖ = c and
m0 =< x(s), x′(s) > .

Theorem 13. [7] Let x : I ⊂ R → En be a unit speed regular curve in En. Then
‖gradρ‖ = c holds for a constant c if and only if one of the following three cases
occurs:

(i) ‖gradρ‖ = 0 ⇐⇒ x(I) is contained in a hypersphere centered at the origin.
(ii) ‖gradρ‖ = 1 ⇐⇒ x(I) is an open portion of a line through the origin.
(iii) ‖gradρ‖ = c ⇐⇒ ρ = ‖x(s)‖ = cs, for c ∈ (0, 1).

The following result provides some simple characterization of T -constant and
N -constant curves in E4. Observe that this result is also valid in 3-dimensional case
(see [13]).
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Corollary 5. Let x : I ⊂ R → E4 be a unit speed regular curve in E4. Then up to
a translation of the arc length function s, we have

i) If x is a T -constant curve of first kind then ‖gradρ‖ = 0,

ii) If x is an N -constant curve of first kind then ‖gradρ‖ = 1,

iii) If x is a T -constant curve of second kind then ρ2 = m0s + b,

iv) If x is an N -constant curve of second kind then ρ2 = (s + a)2 + m1,

where m0,m1, a, b are real constants.
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